blob: 641ffd5a35543a4a22c7409f9bf8633b15c4b548 [file] [log] [blame]
.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
. if \nF \{
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "GCC 1"
.TH GCC 1 "2014-07-16" "gcc-4.9.1" "GNU"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
gcc \- GNU project C and C++ compiler
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
gcc [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR] [\fB\-std=\fR\fIstandard\fR]
[\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
[\fB\-W\fR\fIwarn\fR...] [\fB\-Wpedantic\fR]
[\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
[\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
[\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
[\fB\-o\fR \fIoutfile\fR] [@\fIfile\fR] \fIinfile\fR...
.PP
Only the most useful options are listed here; see below for the
remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR.
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation,
assembly and linking. The \*(L"overall options\*(R" allow you to stop this
process at an intermediate stage. For example, the \fB\-c\fR option
says not to run the linker. Then the output consists of object files
output by the assembler.
.PP
Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
.PP
Most of the command-line options that you can use with \s-1GCC\s0 are useful
for C programs; when an option is only useful with another language
(usually \*(C+), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.
.PP
The \fBgcc\fR program accepts options and file names as operands. Many
options have multi-letter names; therefore multiple single-letter options
may \fInot\fR be grouped: \fB\-dv\fR is very different from \fB\-d\ \-v\fR.
.PP
You can mix options and other arguments. For the most part, the order
you use doesn't matter. Order does matter when you use several
options of the same kind; for example, if you specify \fB\-L\fR more
than once, the directories are searched in the order specified. Also,
the placement of the \fB\-l\fR option is significant.
.PP
Many options have long names starting with \fB\-f\fR or with
\&\fB\-W\fR\-\-\-for example,
\&\fB\-fmove\-loop\-invariants\fR, \fB\-Wformat\fR and so on. Most of
these have both positive and negative forms; the negative form of
\&\fB\-ffoo\fR is \fB\-fno\-foo\fR. This manual documents
only one of these two forms, whichever one is not the default.
.SH "OPTIONS"
.IX Header "OPTIONS"
.SS "Option Summary"
.IX Subsection "Option Summary"
Here is a summary of all the options, grouped by type. Explanations are
in the following sections.
.IP "\fIOverall Options\fR" 4
.IX Item "Overall Options"
\&\fB\-c \-S \-E \-o\fR \fIfile\fR \fB\-no\-canonical\-prefixes
\&\-pipe \-pass\-exit\-codes
\&\-x\fR \fIlanguage\fR \fB\-v \-### \-\-help\fR[\fB=\fR\fIclass\fR[\fB,...\fR]] \fB\-\-target\-help
\&\-\-version \-wrapper @\fR\fIfile\fR \fB\-fplugin=\fR\fIfile\fR \fB\-fplugin\-arg\-\fR\fIname\fR\fB=\fR\fIarg\fR
\&\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] \fB\-fada\-spec\-parent=\fR\fIunit\fR \fB\-fdump\-go\-spec=\fR\fIfile\fR
.IP "\fIC Language Options\fR" 4
.IX Item "C Language Options"
\&\fB\-ansi \-std=\fR\fIstandard\fR \fB\-fgnu89\-inline
\&\-aux\-info\fR \fIfilename\fR \fB\-fallow\-parameterless\-variadic\-functions
\&\-fno\-asm \-fno\-builtin \-fno\-builtin\-\fR\fIfunction\fR
\&\fB\-fhosted \-ffreestanding \-fopenmp \-fopenmp\-simd \-fms\-extensions
\&\-fplan9\-extensions \-trigraphs \-traditional \-traditional\-cpp
\&\-fallow\-single\-precision \-fcond\-mismatch \-flax\-vector\-conversions
\&\-fsigned\-bitfields \-fsigned\-char
\&\-funsigned\-bitfields \-funsigned\-char\fR
.IP "\fI\*(C+ Language Options\fR" 4
.IX Item " Language Options"
\&\fB\-fabi\-version=\fR\fIn\fR \fB\-fno\-access\-control \-fcheck\-new
\&\-fconstexpr\-depth=\fR\fIn\fR \fB\-ffriend\-injection
\&\-fno\-elide\-constructors
\&\-fno\-enforce\-eh\-specs
\&\-ffor\-scope \-fno\-for\-scope \-fno\-gnu\-keywords
\&\-fno\-implicit\-templates
\&\-fno\-implicit\-inline\-templates
\&\-fno\-implement\-inlines \-fms\-extensions
\&\-fno\-nonansi\-builtins \-fnothrow\-opt \-fno\-operator\-names
\&\-fno\-optional\-diags \-fpermissive
\&\-fno\-pretty\-templates
\&\-frepo \-fno\-rtti \-fstats \-ftemplate\-backtrace\-limit=\fR\fIn\fR
\&\fB\-ftemplate\-depth=\fR\fIn\fR
\&\fB\-fno\-threadsafe\-statics \-fuse\-cxa\-atexit \-fno\-weak \-nostdinc++
\&\-fvisibility\-inlines\-hidden
\&\-fvtable\-verify=\fR\fIstd|preinit|none\fR
\&\fB\-fvtv\-counts \-fvtv\-debug
\&\-fvisibility\-ms\-compat
\&\-fext\-numeric\-literals
\&\-Wabi \-Wconversion\-null \-Wctor\-dtor\-privacy
\&\-Wdelete\-non\-virtual\-dtor \-Wliteral\-suffix \-Wnarrowing
\&\-Wnoexcept \-Wnon\-virtual\-dtor \-Wreorder
\&\-Weffc++ \-Wstrict\-null\-sentinel
\&\-Wno\-non\-template\-friend \-Wold\-style\-cast
\&\-Woverloaded\-virtual \-Wno\-pmf\-conversions
\&\-Wsign\-promo\fR
.IP "\fIObjective-C and Objective\-\*(C+ Language Options\fR" 4
.IX Item "Objective-C and Objective- Language Options"
\&\fB\-fconstant\-string\-class=\fR\fIclass-name\fR
\&\fB\-fgnu\-runtime \-fnext\-runtime
\&\-fno\-nil\-receivers
\&\-fobjc\-abi\-version=\fR\fIn\fR
\&\fB\-fobjc\-call\-cxx\-cdtors
\&\-fobjc\-direct\-dispatch
\&\-fobjc\-exceptions
\&\-fobjc\-gc
\&\-fobjc\-nilcheck
\&\-fobjc\-std=objc1
\&\-freplace\-objc\-classes
\&\-fzero\-link
\&\-gen\-decls
\&\-Wassign\-intercept
\&\-Wno\-protocol \-Wselector
\&\-Wstrict\-selector\-match
\&\-Wundeclared\-selector\fR
.IP "\fILanguage Independent Options\fR" 4
.IX Item "Language Independent Options"
\&\fB\-fmessage\-length=\fR\fIn\fR
\&\fB\-fdiagnostics\-show\-location=\fR[\fBonce\fR|\fBevery-line\fR]
\&\fB\-fdiagnostics\-color=\fR[\fBauto\fR|\fBnever\fR|\fBalways\fR]
\&\fB\-fno\-diagnostics\-show\-option \-fno\-diagnostics\-show\-caret\fR
.IP "\fIWarning Options\fR" 4
.IX Item "Warning Options"
\&\fB\-fsyntax\-only \-fmax\-errors=\fR\fIn\fR \fB\-Wpedantic
\&\-pedantic\-errors
\&\-w \-Wextra \-Wall \-Waddress \-Waggregate\-return
\&\-Waggressive\-loop\-optimizations \-Warray\-bounds
\&\-Wno\-attributes \-Wno\-builtin\-macro\-redefined
\&\-Wc++\-compat \-Wc++11\-compat \-Wcast\-align \-Wcast\-qual
\&\-Wchar\-subscripts \-Wclobbered \-Wcomment \-Wconditionally\-supported
\&\-Wconversion \-Wcoverage\-mismatch \-Wdate\-time \-Wdelete\-incomplete \-Wno\-cpp
\&\-Wno\-deprecated \-Wno\-deprecated\-declarations \-Wdisabled\-optimization
\&\-Wno\-div\-by\-zero \-Wdouble\-promotion \-Wempty\-body \-Wenum\-compare
\&\-Wno\-endif\-labels \-Werror \-Werror=*
\&\-Wfatal\-errors \-Wfloat\-equal \-Wformat \-Wformat=2
\&\-Wno\-format\-contains\-nul \-Wno\-format\-extra\-args \-Wformat\-nonliteral
\&\-Wformat\-security \-Wformat\-y2k
\&\-Wframe\-larger\-than=\fR\fIlen\fR \fB\-Wno\-free\-nonheap\-object \-Wjump\-misses\-init
\&\-Wignored\-qualifiers
\&\-Wimplicit \-Wimplicit\-function\-declaration \-Wimplicit\-int
\&\-Winit\-self \-Winline \-Wmaybe\-uninitialized
\&\-Wno\-int\-to\-pointer\-cast \-Wno\-invalid\-offsetof
\&\-Winvalid\-pch \-Wlarger\-than=\fR\fIlen\fR \fB\-Wunsafe\-loop\-optimizations
\&\-Wlogical\-op \-Wlong\-long
\&\-Wmain \-Wmaybe\-uninitialized \-Wmissing\-braces \-Wmissing\-field\-initializers
\&\-Wmissing\-include\-dirs
\&\-Wno\-multichar \-Wnonnull \-Wno\-overflow \-Wopenmp\-simd
\&\-Woverlength\-strings \-Wpacked \-Wpacked\-bitfield\-compat \-Wpadded
\&\-Wparentheses \-Wpedantic\-ms\-format \-Wno\-pedantic\-ms\-format
\&\-Wpointer\-arith \-Wno\-pointer\-to\-int\-cast
\&\-Wredundant\-decls \-Wno\-return\-local\-addr
\&\-Wreturn\-type \-Wsequence\-point \-Wshadow
\&\-Wsign\-compare \-Wsign\-conversion \-Wfloat\-conversion
\&\-Wsizeof\-pointer\-memaccess
\&\-Wstack\-protector \-Wstack\-usage=\fR\fIlen\fR \fB\-Wstrict\-aliasing
\&\-Wstrict\-aliasing=n \-Wstrict\-overflow \-Wstrict\-overflow=\fR\fIn\fR
\&\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]
\&\fB\-Wmissing\-format\-attribute
\&\-Wswitch \-Wswitch\-default \-Wswitch\-enum \-Wsync\-nand
\&\-Wsystem\-headers \-Wtrampolines \-Wtrigraphs \-Wtype\-limits \-Wundef
\&\-Wuninitialized \-Wunknown\-pragmas \-Wno\-pragmas
\&\-Wunsuffixed\-float\-constants \-Wunused \-Wunused\-function
\&\-Wunused\-label \-Wunused\-local\-typedefs \-Wunused\-parameter
\&\-Wno\-unused\-result \-Wunused\-value \-Wunused\-variable
\&\-Wunused\-but\-set\-parameter \-Wunused\-but\-set\-variable
\&\-Wuseless\-cast \-Wvariadic\-macros \-Wvector\-operation\-performance
\&\-Wvla \-Wvolatile\-register\-var \-Wwrite\-strings \-Wzero\-as\-null\-pointer\-constant\fR
.IP "\fIC and Objective-C-only Warning Options\fR" 4
.IX Item "C and Objective-C-only Warning Options"
\&\fB\-Wbad\-function\-cast \-Wmissing\-declarations
\&\-Wmissing\-parameter\-type \-Wmissing\-prototypes \-Wnested\-externs
\&\-Wold\-style\-declaration \-Wold\-style\-definition
\&\-Wstrict\-prototypes \-Wtraditional \-Wtraditional\-conversion
\&\-Wdeclaration\-after\-statement \-Wpointer\-sign\fR
.IP "\fIDebugging Options\fR" 4
.IX Item "Debugging Options"
\&\fB\-d\fR\fIletters\fR \fB\-dumpspecs \-dumpmachine \-dumpversion
\&\-fsanitize=\fR\fIstyle\fR
\&\fB\-fdbg\-cnt\-list \-fdbg\-cnt=\fR\fIcounter-value-list\fR
\&\fB\-fdisable\-ipa\-\fR\fIpass_name\fR
\&\fB\-fdisable\-rtl\-\fR\fIpass_name\fR
\&\fB\-fdisable\-rtl\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
\&\fB\-fdisable\-tree\-\fR\fIpass_name\fR
\&\fB\-fdisable\-tree\-\fR\fIpass-name\fR\fB=\fR\fIrange-list\fR
\&\fB\-fdump\-noaddr \-fdump\-unnumbered \-fdump\-unnumbered\-links
\&\-fdump\-translation\-unit\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-class\-hierarchy\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-ipa\-all \-fdump\-ipa\-cgraph \-fdump\-ipa\-inline
\&\-fdump\-passes
\&\-fdump\-statistics
\&\-fdump\-tree\-all
\&\-fdump\-tree\-original\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-optimized\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-cfg \-fdump\-tree\-alias
\&\-fdump\-tree\-ch
\&\-fdump\-tree\-ssa\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-pre\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-ccp\fR[\fB\-\fR\fIn\fR] \fB\-fdump\-tree\-dce\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-gimple\fR[\fB\-raw\fR]
\&\fB\-fdump\-tree\-dom\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-dse\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-phiprop\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-phiopt\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-copyrename\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-nrv \-fdump\-tree\-vect
\&\-fdump\-tree\-sink
\&\-fdump\-tree\-sra\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-forwprop\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-fre\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-vtable\-verify
\&\-fdump\-tree\-vrp\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-tree\-storeccp\fR[\fB\-\fR\fIn\fR]
\&\fB\-fdump\-final\-insns=\fR\fIfile\fR
\&\fB\-fcompare\-debug\fR[\fB=\fR\fIopts\fR] \fB\-fcompare\-debug\-second
\&\-feliminate\-dwarf2\-dups \-fno\-eliminate\-unused\-debug\-types
\&\-feliminate\-unused\-debug\-symbols \-femit\-class\-debug\-always
\&\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR
\&\fB\-fenable\-\fR\fIkind\fR\fB\-\fR\fIpass\fR\fB=\fR\fIrange-list\fR
\&\fB\-fdebug\-types\-section \-fmem\-report\-wpa
\&\-fmem\-report \-fpre\-ipa\-mem\-report \-fpost\-ipa\-mem\-report \-fprofile\-arcs
\&\-fopt\-info
\&\-fopt\-info\-\fR\fIoptions\fR[\fB=\fR\fIfile\fR]
\&\fB\-frandom\-seed=\fR\fIstring\fR \fB\-fsched\-verbose=\fR\fIn\fR
\&\fB\-fsel\-sched\-verbose \-fsel\-sched\-dump\-cfg \-fsel\-sched\-pipelining\-verbose
\&\-fstack\-usage \-ftest\-coverage \-ftime\-report \-fvar\-tracking
\&\-fvar\-tracking\-assignments \-fvar\-tracking\-assignments\-toggle
\&\-g \-g\fR\fIlevel\fR \fB\-gtoggle \-gcoff \-gdwarf\-\fR\fIversion\fR
\&\fB\-ggdb \-grecord\-gcc\-switches \-gno\-record\-gcc\-switches
\&\-gstabs \-gstabs+ \-gstrict\-dwarf \-gno\-strict\-dwarf
\&\-gvms \-gxcoff \-gxcoff+
\&\-fno\-merge\-debug\-strings \-fno\-dwarf2\-cfi\-asm
\&\-fdebug\-prefix\-map=\fR\fIold\fR\fB=\fR\fInew\fR
\&\fB\-femit\-struct\-debug\-baseonly \-femit\-struct\-debug\-reduced
\&\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]
\&\fB\-p \-pg \-print\-file\-name=\fR\fIlibrary\fR \fB\-print\-libgcc\-file\-name
\&\-print\-multi\-directory \-print\-multi\-lib \-print\-multi\-os\-directory
\&\-print\-prog\-name=\fR\fIprogram\fR \fB\-print\-search\-dirs \-Q
\&\-print\-sysroot \-print\-sysroot\-headers\-suffix
\&\-save\-temps \-save\-temps=cwd \-save\-temps=obj \-time\fR[\fB=\fR\fIfile\fR]
.IP "\fIOptimization Options\fR" 4
.IX Item "Optimization Options"
\&\fB\-faggressive\-loop\-optimizations \-falign\-functions[=\fR\fIn\fR\fB]
\&\-falign\-jumps[=\fR\fIn\fR\fB]
\&\-falign\-labels[=\fR\fIn\fR\fB] \-falign\-loops[=\fR\fIn\fR\fB]
\&\-fassociative\-math \-fauto\-inc\-dec \-fbranch\-probabilities
\&\-fbranch\-target\-load\-optimize \-fbranch\-target\-load\-optimize2
\&\-fbtr\-bb\-exclusive \-fcaller\-saves
\&\-fcheck\-data\-deps \-fcombine\-stack\-adjustments \-fconserve\-stack
\&\-fcompare\-elim \-fcprop\-registers \-fcrossjumping
\&\-fcse\-follow\-jumps \-fcse\-skip\-blocks \-fcx\-fortran\-rules
\&\-fcx\-limited\-range
\&\-fdata\-sections \-fdce \-fdelayed\-branch
\&\-fdelete\-null\-pointer\-checks \-fdevirtualize \-fdevirtualize\-speculatively \-fdse
\&\-fearly\-inlining \-fipa\-sra \-fexpensive\-optimizations \-ffat\-lto\-objects
\&\-ffast\-math \-ffinite\-math\-only \-ffloat\-store \-fexcess\-precision=\fR\fIstyle\fR
\&\fB\-fforward\-propagate \-ffp\-contract=\fR\fIstyle\fR \fB\-ffunction\-sections
\&\-fgcse \-fgcse\-after\-reload \-fgcse\-las \-fgcse\-lm \-fgraphite\-identity
\&\-fgcse\-sm \-fhoist\-adjacent\-loads \-fif\-conversion
\&\-fif\-conversion2 \-findirect\-inlining
\&\-finline\-functions \-finline\-functions\-called\-once \-finline\-limit=\fR\fIn\fR
\&\fB\-finline\-small\-functions \-fipa\-cp \-fipa\-cp\-clone
\&\-fipa\-pta \-fipa\-profile \-fipa\-pure\-const \-fipa\-reference
\&\-fira\-algorithm=\fR\fIalgorithm\fR
\&\fB\-fira\-region=\fR\fIregion\fR \fB\-fira\-hoist\-pressure
\&\-fira\-loop\-pressure \-fno\-ira\-share\-save\-slots
\&\-fno\-ira\-share\-spill\-slots \-fira\-verbose=\fR\fIn\fR
\&\fB\-fisolate\-erroneous\-paths\-dereference \-fisolate\-erroneous\-paths\-attribute
\&\-fivopts \-fkeep\-inline\-functions \-fkeep\-static\-consts \-flive\-range\-shrinkage
\&\-floop\-block \-floop\-interchange \-floop\-strip\-mine \-floop\-nest\-optimize
\&\-floop\-parallelize\-all \-flto \-flto\-compression\-level
\&\-flto\-partition=\fR\fIalg\fR \fB\-flto\-report \-flto\-report\-wpa \-fmerge\-all\-constants
\&\-fmerge\-constants \-fmodulo\-sched \-fmodulo\-sched\-allow\-regmoves
\&\-fmove\-loop\-invariants \-fno\-branch\-count\-reg
\&\-fno\-defer\-pop \-fno\-function\-cse \-fno\-guess\-branch\-probability
\&\-fno\-inline \-fno\-math\-errno \-fno\-peephole \-fno\-peephole2
\&\-fno\-sched\-interblock \-fno\-sched\-spec \-fno\-signed\-zeros
\&\-fno\-toplevel\-reorder \-fno\-trapping\-math \-fno\-zero\-initialized\-in\-bss
\&\-fomit\-frame\-pointer \-foptimize\-sibling\-calls
\&\-fpartial\-inlining \-fpeel\-loops \-fpredictive\-commoning
\&\-fprefetch\-loop\-arrays \-fprofile\-report
\&\-fprofile\-correction \-fprofile\-dir=\fR\fIpath\fR \fB\-fprofile\-generate
\&\-fprofile\-generate=\fR\fIpath\fR
\&\fB\-fprofile\-use \-fprofile\-use=\fR\fIpath\fR \fB\-fprofile\-values \-fprofile\-reorder\-functions
\&\-freciprocal\-math \-free \-frename\-registers \-freorder\-blocks
\&\-freorder\-blocks\-and\-partition \-freorder\-functions
\&\-frerun\-cse\-after\-loop \-freschedule\-modulo\-scheduled\-loops
\&\-frounding\-math \-fsched2\-use\-superblocks \-fsched\-pressure
\&\-fsched\-spec\-load \-fsched\-spec\-load\-dangerous
\&\-fsched\-stalled\-insns\-dep[=\fR\fIn\fR\fB] \-fsched\-stalled\-insns[=\fR\fIn\fR\fB]
\&\-fsched\-group\-heuristic \-fsched\-critical\-path\-heuristic
\&\-fsched\-spec\-insn\-heuristic \-fsched\-rank\-heuristic
\&\-fsched\-last\-insn\-heuristic \-fsched\-dep\-count\-heuristic
\&\-fschedule\-insns \-fschedule\-insns2 \-fsection\-anchors
\&\-fselective\-scheduling \-fselective\-scheduling2
\&\-fsel\-sched\-pipelining \-fsel\-sched\-pipelining\-outer\-loops
\&\-fshrink\-wrap \-fsignaling\-nans \-fsingle\-precision\-constant
\&\-fsplit\-ivs\-in\-unroller \-fsplit\-wide\-types \-fstack\-protector
\&\-fstack\-protector\-all \-fstack\-protector\-strong \-fstrict\-aliasing
\&\-fstrict\-overflow \-fthread\-jumps \-ftracer \-ftree\-bit\-ccp
\&\-ftree\-builtin\-call\-dce \-ftree\-ccp \-ftree\-ch
\&\-ftree\-coalesce\-inline\-vars \-ftree\-coalesce\-vars \-ftree\-copy\-prop
\&\-ftree\-copyrename \-ftree\-dce \-ftree\-dominator\-opts \-ftree\-dse
\&\-ftree\-forwprop \-ftree\-fre \-ftree\-loop\-if\-convert
\&\-ftree\-loop\-if\-convert\-stores \-ftree\-loop\-im
\&\-ftree\-phiprop \-ftree\-loop\-distribution \-ftree\-loop\-distribute\-patterns
\&\-ftree\-loop\-ivcanon \-ftree\-loop\-linear \-ftree\-loop\-optimize
\&\-ftree\-loop\-vectorize
\&\-ftree\-parallelize\-loops=\fR\fIn\fR \fB\-ftree\-pre \-ftree\-partial\-pre \-ftree\-pta
\&\-ftree\-reassoc \-ftree\-sink \-ftree\-slsr \-ftree\-sra
\&\-ftree\-switch\-conversion \-ftree\-tail\-merge \-ftree\-ter
\&\-ftree\-vectorize \-ftree\-vrp
\&\-funit\-at\-a\-time \-funroll\-all\-loops \-funroll\-loops
\&\-funsafe\-loop\-optimizations \-funsafe\-math\-optimizations \-funswitch\-loops
\&\-fvariable\-expansion\-in\-unroller \-fvect\-cost\-model \-fvpt \-fweb
\&\-fwhole\-program \-fwpa \-fuse\-ld=\fR\fIlinker\fR \fB\-fuse\-linker\-plugin
\&\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR
\&\fB\-O \-O0 \-O1 \-O2 \-O3 \-Os \-Ofast \-Og\fR
.IP "\fIPreprocessor Options\fR" 4
.IX Item "Preprocessor Options"
\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR
\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
\&\fB\-C \-dD \-dI \-dM \-dN
\&\-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR] \fB\-E \-H
\&\-idirafter\fR \fIdir\fR
\&\fB\-include\fR \fIfile\fR \fB\-imacros\fR \fIfile\fR
\&\fB\-iprefix\fR \fIfile\fR \fB\-iwithprefix\fR \fIdir\fR
\&\fB\-iwithprefixbefore\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR
\&\fB\-imultilib\fR \fIdir\fR \fB\-isysroot\fR \fIdir\fR
\&\fB\-M \-MM \-MF \-MG \-MP \-MQ \-MT \-nostdinc
\&\-P \-fdebug\-cpp \-ftrack\-macro\-expansion \-fworking\-directory
\&\-remap \-trigraphs \-undef \-U\fR\fImacro\fR
\&\fB\-Wp,\fR\fIoption\fR \fB\-Xpreprocessor\fR \fIoption\fR \fB\-no\-integrated\-cpp\fR
.IP "\fIAssembler Option\fR" 4
.IX Item "Assembler Option"
\&\fB\-Wa,\fR\fIoption\fR \fB\-Xassembler\fR \fIoption\fR
.IP "\fILinker Options\fR" 4
.IX Item "Linker Options"
\&\fIobject-file-name\fR \fB\-l\fR\fIlibrary\fR
\&\fB\-nostartfiles \-nodefaultlibs \-nostdlib \-pie \-rdynamic
\&\-s \-static \-static\-libgcc \-static\-libstdc++
\&\-static\-libasan \-static\-libtsan \-static\-liblsan \-static\-libubsan
\&\-shared \-shared\-libgcc \-symbolic
\&\-T\fR \fIscript\fR \fB\-Wl,\fR\fIoption\fR \fB\-Xlinker\fR \fIoption\fR
\&\fB\-u\fR \fIsymbol\fR
.IP "\fIDirectory Options\fR" 4
.IX Item "Directory Options"
\&\fB\-B\fR\fIprefix\fR \fB\-I\fR\fIdir\fR \fB\-iplugindir=\fR\fIdir\fR
\&\fB\-iquote\fR\fIdir\fR \fB\-L\fR\fIdir\fR \fB\-specs=\fR\fIfile\fR \fB\-I\-
\&\-\-sysroot=\fR\fIdir\fR \fB\-\-no\-sysroot\-suffix\fR
.IP "\fIMachine Dependent Options\fR" 4
.IX Item "Machine Dependent Options"
\&\fIAArch64 Options\fR
\&\fB\-mabi=\fR\fIname\fR \fB\-mbig\-endian \-mlittle\-endian
\&\-mgeneral\-regs\-only
\&\-mcmodel=tiny \-mcmodel=small \-mcmodel=large
\&\-mstrict\-align
\&\-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
\&\-mtls\-dialect=desc \-mtls\-dialect=traditional
\&\-march=\fR\fIname\fR \fB\-mcpu=\fR\fIname\fR \fB\-mtune=\fR\fIname\fR
.Sp
\&\fIAdapteva Epiphany Options\fR
\&\fB\-mhalf\-reg\-file \-mprefer\-short\-insn\-regs
\&\-mbranch\-cost=\fR\fInum\fR \fB\-mcmove \-mnops=\fR\fInum\fR \fB\-msoft\-cmpsf
\&\-msplit\-lohi \-mpost\-inc \-mpost\-modify \-mstack\-offset=\fR\fInum\fR
\&\fB\-mround\-nearest \-mlong\-calls \-mshort\-calls \-msmall16
\&\-mfp\-mode=\fR\fImode\fR \fB\-mvect\-double \-max\-vect\-align=\fR\fInum\fR
\&\fB\-msplit\-vecmove\-early \-m1reg\-\fR\fIreg\fR
.Sp
\&\fI\s-1ARC\s0 Options\fR
\&\fB\-mbarrel\-shifter
\&\-mcpu=\fR\fIcpu\fR \fB\-mA6 \-mARC600 \-mA7 \-mARC700
\&\-mdpfp \-mdpfp\-compact \-mdpfp\-fast \-mno\-dpfp\-lrsr
\&\-mea \-mno\-mpy \-mmul32x16 \-mmul64
\&\-mnorm \-mspfp \-mspfp\-compact \-mspfp\-fast \-msimd \-msoft\-float \-mswap
\&\-mcrc \-mdsp\-packa \-mdvbf \-mlock \-mmac\-d16 \-mmac\-24 \-mrtsc \-mswape
\&\-mtelephony \-mxy \-misize \-mannotate\-align \-marclinux \-marclinux_prof
\&\-mepilogue\-cfi \-mlong\-calls \-mmedium\-calls \-msdata
\&\-mucb\-mcount \-mvolatile\-cache
\&\-malign\-call \-mauto\-modify\-reg \-mbbit\-peephole \-mno\-brcc
\&\-mcase\-vector\-pcrel \-mcompact\-casesi \-mno\-cond\-exec \-mearly\-cbranchsi
\&\-mexpand\-adddi \-mindexed\-loads \-mlra \-mlra\-priority\-none
\&\-mlra\-priority\-compact mlra-priority-noncompact \-mno\-millicode
\&\-mmixed\-code \-mq\-class \-mRcq \-mRcw \-msize\-level=\fR\fIlevel\fR
\&\fB\-mtune=\fR\fIcpu\fR \fB\-mmultcost=\fR\fInum\fR \fB\-munalign\-prob\-threshold=\fR\fIprobability\fR
.Sp
\&\fI\s-1ARM\s0 Options\fR
\&\fB\-mapcs\-frame \-mno\-apcs\-frame
\&\-mabi=\fR\fIname\fR
\&\fB\-mapcs\-stack\-check \-mno\-apcs\-stack\-check
\&\-mapcs\-float \-mno\-apcs\-float
\&\-mapcs\-reentrant \-mno\-apcs\-reentrant
\&\-msched\-prolog \-mno\-sched\-prolog
\&\-mlittle\-endian \-mbig\-endian \-mwords\-little\-endian
\&\-mfloat\-abi=\fR\fIname\fR
\&\fB\-mfp16\-format=\fR\fIname\fR
\&\fB\-mthumb\-interwork \-mno\-thumb\-interwork
\&\-mcpu=\fR\fIname\fR \fB\-march=\fR\fIname\fR \fB\-mfpu=\fR\fIname\fR
\&\fB\-mstructure\-size\-boundary=\fR\fIn\fR
\&\fB\-mabort\-on\-noreturn
\&\-mlong\-calls \-mno\-long\-calls
\&\-msingle\-pic\-base \-mno\-single\-pic\-base
\&\-mpic\-register=\fR\fIreg\fR
\&\fB\-mnop\-fun\-dllimport
\&\-mpoke\-function\-name
\&\-mthumb \-marm
\&\-mtpcs\-frame \-mtpcs\-leaf\-frame
\&\-mcaller\-super\-interworking \-mcallee\-super\-interworking
\&\-mtp=\fR\fIname\fR \fB\-mtls\-dialect=\fR\fIdialect\fR
\&\fB\-mword\-relocations
\&\-mfix\-cortex\-m3\-ldrd
\&\-munaligned\-access
\&\-mneon\-for\-64bits
\&\-mslow\-flash\-data
\&\-mrestrict\-it\fR
.Sp
\&\fI\s-1AVR\s0 Options\fR
\&\fB\-mmcu=\fR\fImcu\fR \fB\-maccumulate\-args \-mbranch\-cost=\fR\fIcost\fR
\&\fB\-mcall\-prologues \-mint8 \-mno\-interrupts \-mrelax
\&\-mstrict\-X \-mtiny\-stack \-Waddr\-space\-convert\fR
.Sp
\&\fIBlackfin Options\fR
\&\fB\-mcpu=\fR\fIcpu\fR[\fB\-\fR\fIsirevision\fR]
\&\fB\-msim \-momit\-leaf\-frame\-pointer \-mno\-omit\-leaf\-frame\-pointer
\&\-mspecld\-anomaly \-mno\-specld\-anomaly \-mcsync\-anomaly \-mno\-csync\-anomaly
\&\-mlow\-64k \-mno\-low64k \-mstack\-check\-l1 \-mid\-shared\-library
\&\-mno\-id\-shared\-library \-mshared\-library\-id=\fR\fIn\fR
\&\fB\-mleaf\-id\-shared\-library \-mno\-leaf\-id\-shared\-library
\&\-msep\-data \-mno\-sep\-data \-mlong\-calls \-mno\-long\-calls
\&\-mfast\-fp \-minline\-plt \-mmulticore \-mcorea \-mcoreb \-msdram
\&\-micplb\fR
.Sp
\&\fIC6X Options\fR
\&\fB\-mbig\-endian \-mlittle\-endian \-march=\fR\fIcpu\fR
\&\fB\-msim \-msdata=\fR\fIsdata-type\fR
.Sp
\&\fI\s-1CRIS\s0 Options\fR
\&\fB\-mcpu=\fR\fIcpu\fR \fB\-march=\fR\fIcpu\fR \fB\-mtune=\fR\fIcpu\fR
\&\fB\-mmax\-stack\-frame=\fR\fIn\fR \fB\-melinux\-stacksize=\fR\fIn\fR
\&\fB\-metrax4 \-metrax100 \-mpdebug \-mcc\-init \-mno\-side\-effects
\&\-mstack\-align \-mdata\-align \-mconst\-align
\&\-m32\-bit \-m16\-bit \-m8\-bit \-mno\-prologue\-epilogue \-mno\-gotplt
\&\-melf \-maout \-melinux \-mlinux \-sim \-sim2
\&\-mmul\-bug\-workaround \-mno\-mul\-bug\-workaround\fR
.Sp
\&\fI\s-1CR16\s0 Options\fR
\&\fB\-mmac
\&\-mcr16cplus \-mcr16c
\&\-msim \-mint32 \-mbit\-ops
\&\-mdata\-model=\fR\fImodel\fR
.Sp
\&\fIDarwin Options\fR
\&\fB\-all_load \-allowable_client \-arch \-arch_errors_fatal
\&\-arch_only \-bind_at_load \-bundle \-bundle_loader
\&\-client_name \-compatibility_version \-current_version
\&\-dead_strip
\&\-dependency\-file \-dylib_file \-dylinker_install_name
\&\-dynamic \-dynamiclib \-exported_symbols_list
\&\-filelist \-flat_namespace \-force_cpusubtype_ALL
\&\-force_flat_namespace \-headerpad_max_install_names
\&\-iframework
\&\-image_base \-init \-install_name \-keep_private_externs
\&\-multi_module \-multiply_defined \-multiply_defined_unused
\&\-noall_load \-no_dead_strip_inits_and_terms
\&\-nofixprebinding \-nomultidefs \-noprebind \-noseglinkedit
\&\-pagezero_size \-prebind \-prebind_all_twolevel_modules
\&\-private_bundle \-read_only_relocs \-sectalign
\&\-sectobjectsymbols \-whyload \-seg1addr
\&\-sectcreate \-sectobjectsymbols \-sectorder
\&\-segaddr \-segs_read_only_addr \-segs_read_write_addr
\&\-seg_addr_table \-seg_addr_table_filename \-seglinkedit
\&\-segprot \-segs_read_only_addr \-segs_read_write_addr
\&\-single_module \-static \-sub_library \-sub_umbrella
\&\-twolevel_namespace \-umbrella \-undefined
\&\-unexported_symbols_list \-weak_reference_mismatches
\&\-whatsloaded \-F \-gused \-gfull \-mmacosx\-version\-min=\fR\fIversion\fR
\&\fB\-mkernel \-mone\-byte\-bool\fR
.Sp
\&\fI\s-1DEC\s0 Alpha Options\fR
\&\fB\-mno\-fp\-regs \-msoft\-float
\&\-mieee \-mieee\-with\-inexact \-mieee\-conformant
\&\-mfp\-trap\-mode=\fR\fImode\fR \fB\-mfp\-rounding\-mode=\fR\fImode\fR
\&\fB\-mtrap\-precision=\fR\fImode\fR \fB\-mbuild\-constants
\&\-mcpu=\fR\fIcpu-type\fR \fB\-mtune=\fR\fIcpu-type\fR
\&\fB\-mbwx \-mmax \-mfix \-mcix
\&\-mfloat\-vax \-mfloat\-ieee
\&\-mexplicit\-relocs \-msmall\-data \-mlarge\-data
\&\-msmall\-text \-mlarge\-text
\&\-mmemory\-latency=\fR\fItime\fR
.Sp
\&\fI\s-1FR30\s0 Options\fR
\&\fB\-msmall\-model \-mno\-lsim\fR
.Sp
\&\fI\s-1FRV\s0 Options\fR
\&\fB\-mgpr\-32 \-mgpr\-64 \-mfpr\-32 \-mfpr\-64
\&\-mhard\-float \-msoft\-float
\&\-malloc\-cc \-mfixed\-cc \-mdword \-mno\-dword
\&\-mdouble \-mno\-double
\&\-mmedia \-mno\-media \-mmuladd \-mno\-muladd
\&\-mfdpic \-minline\-plt \-mgprel\-ro \-multilib\-library\-pic
\&\-mlinked\-fp \-mlong\-calls \-malign\-labels
\&\-mlibrary\-pic \-macc\-4 \-macc\-8
\&\-mpack \-mno\-pack \-mno\-eflags \-mcond\-move \-mno\-cond\-move
\&\-moptimize\-membar \-mno\-optimize\-membar
\&\-mscc \-mno\-scc \-mcond\-exec \-mno\-cond\-exec
\&\-mvliw\-branch \-mno\-vliw\-branch
\&\-mmulti\-cond\-exec \-mno\-multi\-cond\-exec \-mnested\-cond\-exec
\&\-mno\-nested\-cond\-exec \-mtomcat\-stats
\&\-mTLS \-mtls
\&\-mcpu=\fR\fIcpu\fR
.Sp
\&\fIGNU/Linux Options\fR
\&\fB\-mglibc \-muclibc \-mbionic \-mandroid
\&\-tno\-android\-cc \-tno\-android\-ld\fR
.Sp
\&\fIH8/300 Options\fR
\&\fB\-mrelax \-mh \-ms \-mn \-mexr \-mno\-exr \-mint32 \-malign\-300\fR
.Sp
\&\fI\s-1HPPA\s0 Options\fR
\&\fB\-march=\fR\fIarchitecture-type\fR
\&\fB\-mdisable\-fpregs \-mdisable\-indexing
\&\-mfast\-indirect\-calls \-mgas \-mgnu\-ld \-mhp\-ld
\&\-mfixed\-range=\fR\fIregister-range\fR
\&\fB\-mjump\-in\-delay \-mlinker\-opt \-mlong\-calls
\&\-mlong\-load\-store \-mno\-disable\-fpregs
\&\-mno\-disable\-indexing \-mno\-fast\-indirect\-calls \-mno\-gas
\&\-mno\-jump\-in\-delay \-mno\-long\-load\-store
\&\-mno\-portable\-runtime \-mno\-soft\-float
\&\-mno\-space\-regs \-msoft\-float \-mpa\-risc\-1\-0
\&\-mpa\-risc\-1\-1 \-mpa\-risc\-2\-0 \-mportable\-runtime
\&\-mschedule=\fR\fIcpu-type\fR \fB\-mspace\-regs \-msio \-mwsio
\&\-munix=\fR\fIunix-std\fR \fB\-nolibdld \-static \-threads\fR
.Sp
\&\fIi386 and x86\-64 Options\fR
\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
\&\fB\-mtune\-ctrl=\fR\fIfeature-list\fR \fB\-mdump\-tune\-features \-mno\-default
\&\-mfpmath=\fR\fIunit\fR
\&\fB\-masm=\fR\fIdialect\fR \fB\-mno\-fancy\-math\-387
\&\-mno\-fp\-ret\-in\-387 \-msoft\-float
\&\-mno\-wide\-multiply \-mrtd \-malign\-double
\&\-mpreferred\-stack\-boundary=\fR\fInum\fR
\&\fB\-mincoming\-stack\-boundary=\fR\fInum\fR
\&\fB\-mcld \-mcx16 \-msahf \-mmovbe \-mcrc32
\&\-mrecip \-mrecip=\fR\fIopt\fR
\&\fB\-mvzeroupper \-mprefer\-avx128
\&\-mmmx \-msse \-msse2 \-msse3 \-mssse3 \-msse4.1 \-msse4.2 \-msse4 \-mavx
\&\-mavx2 \-mavx512f \-mavx512pf \-mavx512er \-mavx512cd \-msha
\&\-maes \-mpclmul \-mfsgsbase \-mrdrnd \-mf16c \-mfma \-mprefetchwt1
\&\-msse4a \-m3dnow \-mpopcnt \-mabm \-mbmi \-mtbm \-mfma4 \-mxop \-mlzcnt
\&\-mbmi2 \-mfxsr \-mxsave \-mxsaveopt \-mrtm \-mlwp \-mthreads
\&\-mno\-align\-stringops \-minline\-all\-stringops
\&\-minline\-stringops\-dynamically \-mstringop\-strategy=\fR\fIalg\fR
\&\fB\-mmemcpy\-strategy=\fR\fIstrategy\fR \fB\-mmemset\-strategy=\fR\fIstrategy\fR
\&\fB\-mpush\-args \-maccumulate\-outgoing\-args \-m128bit\-long\-double
\&\-m96bit\-long\-double \-mlong\-double\-64 \-mlong\-double\-80 \-mlong\-double\-128
\&\-mregparm=\fR\fInum\fR \fB\-msseregparm
\&\-mveclibabi=\fR\fItype\fR \fB\-mvect8\-ret\-in\-mem
\&\-mpc32 \-mpc64 \-mpc80 \-mstackrealign
\&\-momit\-leaf\-frame\-pointer \-mno\-red\-zone \-mno\-tls\-direct\-seg\-refs
\&\-mcmodel=\fR\fIcode-model\fR \fB\-mabi=\fR\fIname\fR \fB\-maddress\-mode=\fR\fImode\fR
\&\fB\-m32 \-m64 \-mx32 \-m16 \-mlarge\-data\-threshold=\fR\fInum\fR
\&\fB\-msse2avx \-mfentry \-m8bit\-idiv
\&\-mavx256\-split\-unaligned\-load \-mavx256\-split\-unaligned\-store
\&\-mstack\-protector\-guard=\fR\fIguard\fR
.Sp
\&\fIi386 and x86\-64 Windows Options\fR
\&\fB\-mconsole \-mcygwin \-mno\-cygwin \-mdll
\&\-mnop\-fun\-dllimport \-mthread
\&\-municode \-mwin32 \-mwindows \-fno\-set\-stack\-executable\fR
.Sp
\&\fI\s-1IA\-64\s0 Options\fR
\&\fB\-mbig\-endian \-mlittle\-endian \-mgnu\-as \-mgnu\-ld \-mno\-pic
\&\-mvolatile\-asm\-stop \-mregister\-names \-msdata \-mno\-sdata
\&\-mconstant\-gp \-mauto\-pic \-mfused\-madd
\&\-minline\-float\-divide\-min\-latency
\&\-minline\-float\-divide\-max\-throughput
\&\-mno\-inline\-float\-divide
\&\-minline\-int\-divide\-min\-latency
\&\-minline\-int\-divide\-max\-throughput
\&\-mno\-inline\-int\-divide
\&\-minline\-sqrt\-min\-latency \-minline\-sqrt\-max\-throughput
\&\-mno\-inline\-sqrt
\&\-mdwarf2\-asm \-mearly\-stop\-bits
\&\-mfixed\-range=\fR\fIregister-range\fR \fB\-mtls\-size=\fR\fItls-size\fR
\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-milp32 \-mlp64
\&\-msched\-br\-data\-spec \-msched\-ar\-data\-spec \-msched\-control\-spec
\&\-msched\-br\-in\-data\-spec \-msched\-ar\-in\-data\-spec \-msched\-in\-control\-spec
\&\-msched\-spec\-ldc \-msched\-spec\-control\-ldc
\&\-msched\-prefer\-non\-data\-spec\-insns \-msched\-prefer\-non\-control\-spec\-insns
\&\-msched\-stop\-bits\-after\-every\-cycle \-msched\-count\-spec\-in\-critical\-path
\&\-msel\-sched\-dont\-check\-control\-spec \-msched\-fp\-mem\-deps\-zero\-cost
\&\-msched\-max\-memory\-insns\-hard\-limit \-msched\-max\-memory\-insns=\fR\fImax-insns\fR
.Sp
\&\fI\s-1LM32\s0 Options\fR
\&\fB\-mbarrel\-shift\-enabled \-mdivide\-enabled \-mmultiply\-enabled
\&\-msign\-extend\-enabled \-muser\-enabled\fR
.Sp
\&\fIM32R/D Options\fR
\&\fB\-m32r2 \-m32rx \-m32r
\&\-mdebug
\&\-malign\-loops \-mno\-align\-loops
\&\-missue\-rate=\fR\fInumber\fR
\&\fB\-mbranch\-cost=\fR\fInumber\fR
\&\fB\-mmodel=\fR\fIcode-size-model-type\fR
\&\fB\-msdata=\fR\fIsdata-type\fR
\&\fB\-mno\-flush\-func \-mflush\-func=\fR\fIname\fR
\&\fB\-mno\-flush\-trap \-mflush\-trap=\fR\fInumber\fR
\&\fB\-G\fR \fInum\fR
.Sp
\&\fIM32C Options\fR
\&\fB\-mcpu=\fR\fIcpu\fR \fB\-msim \-memregs=\fR\fInumber\fR
.Sp
\&\fIM680x0 Options\fR
\&\fB\-march=\fR\fIarch\fR \fB\-mcpu=\fR\fIcpu\fR \fB\-mtune=\fR\fItune\fR
\&\fB\-m68000 \-m68020 \-m68020\-40 \-m68020\-60 \-m68030 \-m68040
\&\-m68060 \-mcpu32 \-m5200 \-m5206e \-m528x \-m5307 \-m5407
\&\-mcfv4e \-mbitfield \-mno\-bitfield \-mc68000 \-mc68020
\&\-mnobitfield \-mrtd \-mno\-rtd \-mdiv \-mno\-div \-mshort
\&\-mno\-short \-mhard\-float \-m68881 \-msoft\-float \-mpcrel
\&\-malign\-int \-mstrict\-align \-msep\-data \-mno\-sep\-data
\&\-mshared\-library\-id=n \-mid\-shared\-library \-mno\-id\-shared\-library
\&\-mxgot \-mno\-xgot\fR
.Sp
\&\fIMCore Options\fR
\&\fB\-mhardlit \-mno\-hardlit \-mdiv \-mno\-div \-mrelax\-immediates
\&\-mno\-relax\-immediates \-mwide\-bitfields \-mno\-wide\-bitfields
\&\-m4byte\-functions \-mno\-4byte\-functions \-mcallgraph\-data
\&\-mno\-callgraph\-data \-mslow\-bytes \-mno\-slow\-bytes \-mno\-lsim
\&\-mlittle\-endian \-mbig\-endian \-m210 \-m340 \-mstack\-increment\fR
.Sp
\&\fIMeP Options\fR
\&\fB\-mabsdiff \-mall\-opts \-maverage \-mbased=\fR\fIn\fR \fB\-mbitops
\&\-mc=\fR\fIn\fR \fB\-mclip \-mconfig=\fR\fIname\fR \fB\-mcop \-mcop32 \-mcop64 \-mivc2
\&\-mdc \-mdiv \-meb \-mel \-mio\-volatile \-ml \-mleadz \-mm \-mminmax
\&\-mmult \-mno\-opts \-mrepeat \-ms \-msatur \-msdram \-msim \-msimnovec \-mtf
\&\-mtiny=\fR\fIn\fR
.Sp
\&\fIMicroBlaze Options\fR
\&\fB\-msoft\-float \-mhard\-float \-msmall\-divides \-mcpu=\fR\fIcpu\fR
\&\fB\-mmemcpy \-mxl\-soft\-mul \-mxl\-soft\-div \-mxl\-barrel\-shift
\&\-mxl\-pattern\-compare \-mxl\-stack\-check \-mxl\-gp\-opt \-mno\-clearbss
\&\-mxl\-multiply\-high \-mxl\-float\-convert \-mxl\-float\-sqrt
\&\-mbig\-endian \-mlittle\-endian \-mxl\-reorder \-mxl\-mode\-\fR\fIapp-model\fR
.Sp
\&\fI\s-1MIPS\s0 Options\fR
\&\fB\-EL \-EB \-march=\fR\fIarch\fR \fB\-mtune=\fR\fIarch\fR
\&\fB\-mips1 \-mips2 \-mips3 \-mips4 \-mips32 \-mips32r2
\&\-mips64 \-mips64r2
\&\-mips16 \-mno\-mips16 \-mflip\-mips16
\&\-minterlink\-compressed \-mno\-interlink\-compressed
\&\-minterlink\-mips16 \-mno\-interlink\-mips16
\&\-mabi=\fR\fIabi\fR \fB\-mabicalls \-mno\-abicalls
\&\-mshared \-mno\-shared \-mplt \-mno\-plt \-mxgot \-mno\-xgot
\&\-mgp32 \-mgp64 \-mfp32 \-mfp64 \-mhard\-float \-msoft\-float
\&\-mno\-float \-msingle\-float \-mdouble\-float
\&\-mabs=\fR\fImode\fR \fB\-mnan=\fR\fIencoding\fR
\&\fB\-mdsp \-mno\-dsp \-mdspr2 \-mno\-dspr2
\&\-mmcu \-mmno\-mcu
\&\-meva \-mno\-eva
\&\-mvirt \-mno\-virt
\&\-mmicromips \-mno\-micromips
\&\-mfpu=\fR\fIfpu-type\fR
\&\fB\-msmartmips \-mno\-smartmips
\&\-mpaired\-single \-mno\-paired\-single \-mdmx \-mno\-mdmx
\&\-mips3d \-mno\-mips3d \-mmt \-mno\-mt \-mllsc \-mno\-llsc
\&\-mlong64 \-mlong32 \-msym32 \-mno\-sym32
\&\-G\fR\fInum\fR \fB\-mlocal\-sdata \-mno\-local\-sdata
\&\-mextern\-sdata \-mno\-extern\-sdata \-mgpopt \-mno\-gopt
\&\-membedded\-data \-mno\-embedded\-data
\&\-muninit\-const\-in\-rodata \-mno\-uninit\-const\-in\-rodata
\&\-mcode\-readable=\fR\fIsetting\fR
\&\fB\-msplit\-addresses \-mno\-split\-addresses
\&\-mexplicit\-relocs \-mno\-explicit\-relocs
\&\-mcheck\-zero\-division \-mno\-check\-zero\-division
\&\-mdivide\-traps \-mdivide\-breaks
\&\-mmemcpy \-mno\-memcpy \-mlong\-calls \-mno\-long\-calls
\&\-mmad \-mno\-mad \-mimadd \-mno\-imadd \-mfused\-madd \-mno\-fused\-madd \-nocpp
\&\-mfix\-24k \-mno\-fix\-24k
\&\-mfix\-r4000 \-mno\-fix\-r4000 \-mfix\-r4400 \-mno\-fix\-r4400
\&\-mfix\-r10000 \-mno\-fix\-r10000 \-mfix\-rm7000 \-mno\-fix\-rm7000
\&\-mfix\-vr4120 \-mno\-fix\-vr4120
\&\-mfix\-vr4130 \-mno\-fix\-vr4130 \-mfix\-sb1 \-mno\-fix\-sb1
\&\-mflush\-func=\fR\fIfunc\fR \fB\-mno\-flush\-func
\&\-mbranch\-cost=\fR\fInum\fR \fB\-mbranch\-likely \-mno\-branch\-likely
\&\-mfp\-exceptions \-mno\-fp\-exceptions
\&\-mvr4130\-align \-mno\-vr4130\-align \-msynci \-mno\-synci
\&\-mrelax\-pic\-calls \-mno\-relax\-pic\-calls \-mmcount\-ra\-address\fR
.Sp
\&\fI\s-1MMIX\s0 Options\fR
\&\fB\-mlibfuncs \-mno\-libfuncs \-mepsilon \-mno\-epsilon \-mabi=gnu
\&\-mabi=mmixware \-mzero\-extend \-mknuthdiv \-mtoplevel\-symbols
\&\-melf \-mbranch\-predict \-mno\-branch\-predict \-mbase\-addresses
\&\-mno\-base\-addresses \-msingle\-exit \-mno\-single\-exit\fR
.Sp
\&\fI\s-1MN10300\s0 Options\fR
\&\fB\-mmult\-bug \-mno\-mult\-bug
\&\-mno\-am33 \-mam33 \-mam33\-2 \-mam34
\&\-mtune=\fR\fIcpu-type\fR
\&\fB\-mreturn\-pointer\-on\-d0
\&\-mno\-crt0 \-mrelax \-mliw \-msetlb\fR
.Sp
\&\fIMoxie Options\fR
\&\fB\-meb \-mel \-mno\-crt0\fR
.Sp
\&\fI\s-1MSP430\s0 Options\fR
\&\fB\-msim \-masm\-hex \-mmcu= \-mcpu= \-mlarge \-msmall \-mrelax
\&\-mhwmult=\fR
.Sp
\&\fI\s-1NDS32\s0 Options\fR
\&\fB\-mbig\-endian \-mlittle\-endian
\&\-mreduced\-regs \-mfull\-regs
\&\-mcmov \-mno\-cmov
\&\-mperf\-ext \-mno\-perf\-ext
\&\-mv3push \-mno\-v3push
\&\-m16bit \-mno\-16bit
\&\-mgp\-direct \-mno\-gp\-direct
\&\-misr\-vector\-size=\fR\fInum\fR
\&\fB\-mcache\-block\-size=\fR\fInum\fR
\&\fB\-march=\fR\fIarch\fR
\&\fB\-mforce\-fp\-as\-gp \-mforbid\-fp\-as\-gp
\&\-mex9 \-mctor\-dtor \-mrelax\fR
.Sp
\&\fINios \s-1II\s0 Options\fR
\&\fB\-G\fR \fInum\fR \fB\-mgpopt \-mno\-gpopt \-mel \-meb
\&\-mno\-bypass\-cache \-mbypass\-cache
\&\-mno\-cache\-volatile \-mcache\-volatile
\&\-mno\-fast\-sw\-div \-mfast\-sw\-div
\&\-mhw\-mul \-mno\-hw\-mul \-mhw\-mulx \-mno\-hw\-mulx \-mno\-hw\-div \-mhw\-div
\&\-mcustom\-\fR\fIinsn\fR\fB=\fR\fIN\fR \fB\-mno\-custom\-\fR\fIinsn\fR
\&\fB\-mcustom\-fpu\-cfg=\fR\fIname\fR
\&\fB\-mhal \-msmallc \-msys\-crt0=\fR\fIname\fR \fB\-msys\-lib=\fR\fIname\fR
.Sp
\&\fI\s-1PDP\-11\s0 Options\fR
\&\fB\-mfpu \-msoft\-float \-mac0 \-mno\-ac0 \-m40 \-m45 \-m10
\&\-mbcopy \-mbcopy\-builtin \-mint32 \-mno\-int16
\&\-mint16 \-mno\-int32 \-mfloat32 \-mno\-float64
\&\-mfloat64 \-mno\-float32 \-mabshi \-mno\-abshi
\&\-mbranch\-expensive \-mbranch\-cheap
\&\-munix\-asm \-mdec\-asm\fR
.Sp
\&\fIpicoChip Options\fR
\&\fB\-mae=\fR\fIae_type\fR \fB\-mvliw\-lookahead=\fR\fIN\fR
\&\fB\-msymbol\-as\-address \-mno\-inefficient\-warnings\fR
.Sp
\&\fIPowerPC Options\fR
See \s-1RS/6000\s0 and PowerPC Options.
.Sp
\&\fI\s-1RL78\s0 Options\fR
\&\fB\-msim \-mmul=none \-mmul=g13 \-mmul=rl78\fR
.Sp
\&\fI\s-1RS/6000\s0 and PowerPC Options\fR
\&\fB\-mcpu=\fR\fIcpu-type\fR
\&\fB\-mtune=\fR\fIcpu-type\fR
\&\fB\-mcmodel=\fR\fIcode-model\fR
\&\fB\-mpowerpc64
\&\-maltivec \-mno\-altivec
\&\-mpowerpc\-gpopt \-mno\-powerpc\-gpopt
\&\-mpowerpc\-gfxopt \-mno\-powerpc\-gfxopt
\&\-mmfcrf \-mno\-mfcrf \-mpopcntb \-mno\-popcntb \-mpopcntd \-mno\-popcntd
\&\-mfprnd \-mno\-fprnd
\&\-mcmpb \-mno\-cmpb \-mmfpgpr \-mno\-mfpgpr \-mhard\-dfp \-mno\-hard\-dfp
\&\-mfull\-toc \-mminimal\-toc \-mno\-fp\-in\-toc \-mno\-sum\-in\-toc
\&\-m64 \-m32 \-mxl\-compat \-mno\-xl\-compat \-mpe
\&\-malign\-power \-malign\-natural
\&\-msoft\-float \-mhard\-float \-mmultiple \-mno\-multiple
\&\-msingle\-float \-mdouble\-float \-msimple\-fpu
\&\-mstring \-mno\-string \-mupdate \-mno\-update
\&\-mavoid\-indexed\-addresses \-mno\-avoid\-indexed\-addresses
\&\-mfused\-madd \-mno\-fused\-madd \-mbit\-align \-mno\-bit\-align
\&\-mstrict\-align \-mno\-strict\-align \-mrelocatable
\&\-mno\-relocatable \-mrelocatable\-lib \-mno\-relocatable\-lib
\&\-mtoc \-mno\-toc \-mlittle \-mlittle\-endian \-mbig \-mbig\-endian
\&\-mdynamic\-no\-pic \-maltivec \-mswdiv \-msingle\-pic\-base
\&\-mprioritize\-restricted\-insns=\fR\fIpriority\fR
\&\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR
\&\fB\-minsert\-sched\-nops=\fR\fIscheme\fR
\&\fB\-mcall\-sysv \-mcall\-netbsd
\&\-maix\-struct\-return \-msvr4\-struct\-return
\&\-mabi=\fR\fIabi-type\fR \fB\-msecure\-plt \-mbss\-plt
\&\-mblock\-move\-inline\-limit=\fR\fInum\fR
\&\fB\-misel \-mno\-isel
\&\-misel=yes \-misel=no
\&\-mspe \-mno\-spe
\&\-mspe=yes \-mspe=no
\&\-mpaired
\&\-mgen\-cell\-microcode \-mwarn\-cell\-microcode
\&\-mvrsave \-mno\-vrsave
\&\-mmulhw \-mno\-mulhw
\&\-mdlmzb \-mno\-dlmzb
\&\-mfloat\-gprs=yes \-mfloat\-gprs=no \-mfloat\-gprs=single \-mfloat\-gprs=double
\&\-mprototype \-mno\-prototype
\&\-msim \-mmvme \-mads \-myellowknife \-memb \-msdata
\&\-msdata=\fR\fIopt\fR \fB\-mvxworks \-G\fR \fInum\fR \fB\-pthread
\&\-mrecip \-mrecip=\fR\fIopt\fR \fB\-mno\-recip \-mrecip\-precision
\&\-mno\-recip\-precision
\&\-mveclibabi=\fR\fItype\fR \fB\-mfriz \-mno\-friz
\&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions
\&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect
\&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector
\&\-mcrypto \-mno\-crypto \-mdirect\-move \-mno\-direct\-move
\&\-mquad\-memory \-mno\-quad\-memory
\&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic
\&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR
.Sp
\&\fI\s-1RX\s0 Options\fR
\&\fB\-m64bit\-doubles \-m32bit\-doubles \-fpu \-nofpu
\&\-mcpu=
\&\-mbig\-endian\-data \-mlittle\-endian\-data
\&\-msmall\-data
\&\-msim \-mno\-sim
\&\-mas100\-syntax \-mno\-as100\-syntax
\&\-mrelax
\&\-mmax\-constant\-size=
\&\-mint\-register=
\&\-mpid
\&\-mno\-warn\-multiple\-fast\-interrupts
\&\-msave\-acc\-in\-interrupts\fR
.Sp
\&\fIS/390 and zSeries Options\fR
\&\fB\-mtune=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR
\&\fB\-mhard\-float \-msoft\-float \-mhard\-dfp \-mno\-hard\-dfp
\&\-mlong\-double\-64 \-mlong\-double\-128
\&\-mbackchain \-mno\-backchain \-mpacked\-stack \-mno\-packed\-stack
\&\-msmall\-exec \-mno\-small\-exec \-mmvcle \-mno\-mvcle
\&\-m64 \-m31 \-mdebug \-mno\-debug \-mesa \-mzarch
\&\-mtpf\-trace \-mno\-tpf\-trace \-mfused\-madd \-mno\-fused\-madd
\&\-mwarn\-framesize \-mwarn\-dynamicstack \-mstack\-size \-mstack\-guard
\&\-mhotpatch[=\fR\fIhalfwords\fR\fB] \-mno\-hotpatch\fR
.Sp
\&\fIScore Options\fR
\&\fB\-meb \-mel
\&\-mnhwloop
\&\-muls
\&\-mmac
\&\-mscore5 \-mscore5u \-mscore7 \-mscore7d\fR
.Sp
\&\fI\s-1SH\s0 Options\fR
\&\fB\-m1 \-m2 \-m2e
\&\-m2a\-nofpu \-m2a\-single\-only \-m2a\-single \-m2a
\&\-m3 \-m3e
\&\-m4\-nofpu \-m4\-single\-only \-m4\-single \-m4
\&\-m4a\-nofpu \-m4a\-single\-only \-m4a\-single \-m4a \-m4al
\&\-m5\-64media \-m5\-64media\-nofpu
\&\-m5\-32media \-m5\-32media\-nofpu
\&\-m5\-compact \-m5\-compact\-nofpu
\&\-mb \-ml \-mdalign \-mrelax
\&\-mbigtable \-mfmovd \-mhitachi \-mrenesas \-mno\-renesas \-mnomacsave
\&\-mieee \-mno\-ieee \-mbitops \-misize \-minline\-ic_invalidate \-mpadstruct
\&\-mspace \-mprefergot \-musermode \-multcost=\fR\fInumber\fR \fB\-mdiv=\fR\fIstrategy\fR
\&\fB\-mdivsi3_libfunc=\fR\fIname\fR \fB\-mfixed\-range=\fR\fIregister-range\fR
\&\fB\-mindexed\-addressing \-mgettrcost=\fR\fInumber\fR \fB\-mpt\-fixed
\&\-maccumulate\-outgoing\-args \-minvalid\-symbols
\&\-matomic\-model=\fR\fIatomic-model\fR
\&\fB\-mbranch\-cost=\fR\fInum\fR \fB\-mzdcbranch \-mno\-zdcbranch
\&\-mfused\-madd \-mno\-fused\-madd \-mfsca \-mno\-fsca \-mfsrra \-mno\-fsrra
\&\-mpretend\-cmove \-mtas\fR
.Sp
\&\fISolaris 2 Options\fR
\&\fB\-mclear\-hwcap \-mno\-clear\-hwcap \-mimpure\-text \-mno\-impure\-text
\&\-pthreads \-pthread\fR
.Sp
\&\fI\s-1SPARC\s0 Options\fR
\&\fB\-mcpu=\fR\fIcpu-type\fR
\&\fB\-mtune=\fR\fIcpu-type\fR
\&\fB\-mcmodel=\fR\fIcode-model\fR
\&\fB\-mmemory\-model=\fR\fImem-model\fR
\&\fB\-m32 \-m64 \-mapp\-regs \-mno\-app\-regs
\&\-mfaster\-structs \-mno\-faster\-structs \-mflat \-mno\-flat
\&\-mfpu \-mno\-fpu \-mhard\-float \-msoft\-float
\&\-mhard\-quad\-float \-msoft\-quad\-float
\&\-mstack\-bias \-mno\-stack\-bias
\&\-munaligned\-doubles \-mno\-unaligned\-doubles
\&\-muser\-mode \-mno\-user\-mode
\&\-mv8plus \-mno\-v8plus \-mvis \-mno\-vis
\&\-mvis2 \-mno\-vis2 \-mvis3 \-mno\-vis3
\&\-mcbcond \-mno\-cbcond
\&\-mfmaf \-mno\-fmaf \-mpopc \-mno\-popc
\&\-mfix\-at697f \-mfix\-ut699\fR
.Sp
\&\fI\s-1SPU\s0 Options\fR
\&\fB\-mwarn\-reloc \-merror\-reloc
\&\-msafe\-dma \-munsafe\-dma
\&\-mbranch\-hints
\&\-msmall\-mem \-mlarge\-mem \-mstdmain
\&\-mfixed\-range=\fR\fIregister-range\fR
\&\fB\-mea32 \-mea64
\&\-maddress\-space\-conversion \-mno\-address\-space\-conversion
\&\-mcache\-size=\fR\fIcache-size\fR
\&\fB\-matomic\-updates \-mno\-atomic\-updates\fR
.Sp
\&\fISystem V Options\fR
\&\fB\-Qy \-Qn \-YP,\fR\fIpaths\fR \fB\-Ym,\fR\fIdir\fR
.Sp
\&\fITILE-Gx Options\fR
\&\fB\-mcpu=CPU \-m32 \-m64 \-mbig\-endian \-mlittle\-endian
\&\-mcmodel=\fR\fIcode-model\fR
.Sp
\&\fITILEPro Options\fR
\&\fB\-mcpu=\fR\fIcpu\fR \fB\-m32\fR
.Sp
\&\fIV850 Options\fR
\&\fB\-mlong\-calls \-mno\-long\-calls \-mep \-mno\-ep
\&\-mprolog\-function \-mno\-prolog\-function \-mspace
\&\-mtda=\fR\fIn\fR \fB\-msda=\fR\fIn\fR \fB\-mzda=\fR\fIn\fR
\&\fB\-mapp\-regs \-mno\-app\-regs
\&\-mdisable\-callt \-mno\-disable\-callt
\&\-mv850e2v3 \-mv850e2 \-mv850e1 \-mv850es
\&\-mv850e \-mv850 \-mv850e3v5
\&\-mloop
\&\-mrelax
\&\-mlong\-jumps
\&\-msoft\-float
\&\-mhard\-float
\&\-mgcc\-abi
\&\-mrh850\-abi
\&\-mbig\-switch\fR
.Sp
\&\fI\s-1VAX\s0 Options\fR
\&\fB\-mg \-mgnu \-munix\fR
.Sp
\&\fI\s-1VMS\s0 Options\fR
\&\fB\-mvms\-return\-codes \-mdebug\-main=\fR\fIprefix\fR \fB\-mmalloc64
\&\-mpointer\-size=\fR\fIsize\fR
.Sp
\&\fIVxWorks Options\fR
\&\fB\-mrtp \-non\-static \-Bstatic \-Bdynamic
\&\-Xbind\-lazy \-Xbind\-now\fR
.Sp
\&\fIx86\-64 Options\fR
See i386 and x86\-64 Options.
.Sp
\&\fIXstormy16 Options\fR
\&\fB\-msim\fR
.Sp
\&\fIXtensa Options\fR
\&\fB\-mconst16 \-mno\-const16
\&\-mfused\-madd \-mno\-fused\-madd
\&\-mforce\-no\-pic
\&\-mserialize\-volatile \-mno\-serialize\-volatile
\&\-mtext\-section\-literals \-mno\-text\-section\-literals
\&\-mtarget\-align \-mno\-target\-align
\&\-mlongcalls \-mno\-longcalls\fR
.Sp
\&\fIzSeries Options\fR
See S/390 and zSeries Options.
.IP "\fICode Generation Options\fR" 4
.IX Item "Code Generation Options"
\&\fB\-fcall\-saved\-\fR\fIreg\fR \fB\-fcall\-used\-\fR\fIreg\fR
\&\fB\-ffixed\-\fR\fIreg\fR \fB\-fexceptions
\&\-fnon\-call\-exceptions \-fdelete\-dead\-exceptions \-funwind\-tables
\&\-fasynchronous\-unwind\-tables
\&\-fno\-gnu\-unique
\&\-finhibit\-size\-directive \-finstrument\-functions
\&\-finstrument\-functions\-exclude\-function\-list=\fR\fIsym\fR\fB,\fR\fIsym\fR\fB,...
\&\-finstrument\-functions\-exclude\-file\-list=\fR\fIfile\fR\fB,\fR\fIfile\fR\fB,...
\&\-fno\-common \-fno\-ident
\&\-fpcc\-struct\-return \-fpic \-fPIC \-fpie \-fPIE
\&\-fno\-jump\-tables
\&\-frecord\-gcc\-switches
\&\-freg\-struct\-return \-fshort\-enums
\&\-fshort\-double \-fshort\-wchar
\&\-fverbose\-asm \-fpack\-struct[=\fR\fIn\fR\fB] \-fstack\-check
\&\-fstack\-limit\-register=\fR\fIreg\fR \fB\-fstack\-limit\-symbol=\fR\fIsym\fR
\&\fB\-fno\-stack\-limit \-fsplit\-stack
\&\-fleading\-underscore \-ftls\-model=\fR\fImodel\fR
\&\fB\-fstack\-reuse=\fR\fIreuse_level\fR
\&\fB\-ftrapv \-fwrapv \-fbounds\-check
\&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR
.SS "Options Controlling the Kind of Output"
.IX Subsection "Options Controlling the Kind of Output"
Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.
.PP
For any given input file, the file name suffix determines what kind of
compilation is done:
.IP "\fIfile\fR\fB.c\fR" 4
.IX Item "file.c"
C source code that must be preprocessed.
.IP "\fIfile\fR\fB.i\fR" 4
.IX Item "file.i"
C source code that should not be preprocessed.
.IP "\fIfile\fR\fB.ii\fR" 4
.IX Item "file.ii"
\&\*(C+ source code that should not be preprocessed.
.IP "\fIfile\fR\fB.m\fR" 4
.IX Item "file.m"
Objective-C source code. Note that you must link with the \fIlibobjc\fR
library to make an Objective-C program work.
.IP "\fIfile\fR\fB.mi\fR" 4
.IX Item "file.mi"
Objective-C source code that should not be preprocessed.
.IP "\fIfile\fR\fB.mm\fR" 4
.IX Item "file.mm"
.PD 0
.IP "\fIfile\fR\fB.M\fR" 4
.IX Item "file.M"
.PD
Objective\-\*(C+ source code. Note that you must link with the \fIlibobjc\fR
library to make an Objective\-\*(C+ program work. Note that \fB.M\fR refers
to a literal capital M.
.IP "\fIfile\fR\fB.mii\fR" 4
.IX Item "file.mii"
Objective\-\*(C+ source code that should not be preprocessed.
.IP "\fIfile\fR\fB.h\fR" 4
.IX Item "file.h"
C, \*(C+, Objective-C or Objective\-\*(C+ header file to be turned into a
precompiled header (default), or C, \*(C+ header file to be turned into an
Ada spec (via the \fB\-fdump\-ada\-spec\fR switch).
.IP "\fIfile\fR\fB.cc\fR" 4
.IX Item "file.cc"
.PD 0
.IP "\fIfile\fR\fB.cp\fR" 4
.IX Item "file.cp"
.IP "\fIfile\fR\fB.cxx\fR" 4
.IX Item "file.cxx"
.IP "\fIfile\fR\fB.cpp\fR" 4
.IX Item "file.cpp"
.IP "\fIfile\fR\fB.CPP\fR" 4
.IX Item "file.CPP"
.IP "\fIfile\fR\fB.c++\fR" 4
.IX Item "file.c++"
.IP "\fIfile\fR\fB.C\fR" 4
.IX Item "file.C"
.PD
\&\*(C+ source code that must be preprocessed. Note that in \fB.cxx\fR,
the last two letters must both be literally \fBx\fR. Likewise,
\&\fB.C\fR refers to a literal capital C.
.IP "\fIfile\fR\fB.mm\fR" 4
.IX Item "file.mm"
.PD 0
.IP "\fIfile\fR\fB.M\fR" 4
.IX Item "file.M"
.PD
Objective\-\*(C+ source code that must be preprocessed.
.IP "\fIfile\fR\fB.mii\fR" 4
.IX Item "file.mii"
Objective\-\*(C+ source code that should not be preprocessed.
.IP "\fIfile\fR\fB.hh\fR" 4
.IX Item "file.hh"
.PD 0
.IP "\fIfile\fR\fB.H\fR" 4
.IX Item "file.H"
.IP "\fIfile\fR\fB.hp\fR" 4
.IX Item "file.hp"
.IP "\fIfile\fR\fB.hxx\fR" 4
.IX Item "file.hxx"
.IP "\fIfile\fR\fB.hpp\fR" 4
.IX Item "file.hpp"
.IP "\fIfile\fR\fB.HPP\fR" 4
.IX Item "file.HPP"
.IP "\fIfile\fR\fB.h++\fR" 4
.IX Item "file.h++"
.IP "\fIfile\fR\fB.tcc\fR" 4
.IX Item "file.tcc"
.PD
\&\*(C+ header file to be turned into a precompiled header or Ada spec.
.IP "\fIfile\fR\fB.f\fR" 4
.IX Item "file.f"
.PD 0
.IP "\fIfile\fR\fB.for\fR" 4
.IX Item "file.for"
.IP "\fIfile\fR\fB.ftn\fR" 4
.IX Item "file.ftn"
.PD
Fixed form Fortran source code that should not be preprocessed.
.IP "\fIfile\fR\fB.F\fR" 4
.IX Item "file.F"
.PD 0
.IP "\fIfile\fR\fB.FOR\fR" 4
.IX Item "file.FOR"
.IP "\fIfile\fR\fB.fpp\fR" 4
.IX Item "file.fpp"
.IP "\fIfile\fR\fB.FPP\fR" 4
.IX Item "file.FPP"
.IP "\fIfile\fR\fB.FTN\fR" 4
.IX Item "file.FTN"
.PD
Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).
.IP "\fIfile\fR\fB.f90\fR" 4
.IX Item "file.f90"
.PD 0
.IP "\fIfile\fR\fB.f95\fR" 4
.IX Item "file.f95"
.IP "\fIfile\fR\fB.f03\fR" 4
.IX Item "file.f03"
.IP "\fIfile\fR\fB.f08\fR" 4
.IX Item "file.f08"
.PD
Free form Fortran source code that should not be preprocessed.
.IP "\fIfile\fR\fB.F90\fR" 4
.IX Item "file.F90"
.PD 0
.IP "\fIfile\fR\fB.F95\fR" 4
.IX Item "file.F95"
.IP "\fIfile\fR\fB.F03\fR" 4
.IX Item "file.F03"
.IP "\fIfile\fR\fB.F08\fR" 4
.IX Item "file.F08"
.PD
Free form Fortran source code that must be preprocessed (with the
traditional preprocessor).
.IP "\fIfile\fR\fB.go\fR" 4
.IX Item "file.go"
Go source code.
.IP "\fIfile\fR\fB.ads\fR" 4
.IX Item "file.ads"
Ada source code file that contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also
called \fIspecs\fR.
.IP "\fIfile\fR\fB.adb\fR" 4
.IX Item "file.adb"
Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called \fIbodies\fR.
.IP "\fIfile\fR\fB.s\fR" 4
.IX Item "file.s"
Assembler code.
.IP "\fIfile\fR\fB.S\fR" 4
.IX Item "file.S"
.PD 0
.IP "\fIfile\fR\fB.sx\fR" 4
.IX Item "file.sx"
.PD
Assembler code that must be preprocessed.
.IP "\fIother\fR" 4
.IX Item "other"
An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
.PP
You can specify the input language explicitly with the \fB\-x\fR option:
.IP "\fB\-x\fR \fIlanguage\fR" 4
.IX Item "-x language"
Specify explicitly the \fIlanguage\fR for the following input files
(rather than letting the compiler choose a default based on the file
name suffix). This option applies to all following input files until
the next \fB\-x\fR option. Possible values for \fIlanguage\fR are:
.Sp
.Vb 9
\& c c\-header cpp\-output
\& c++ c++\-header c++\-cpp\-output
\& objective\-c objective\-c\-header objective\-c\-cpp\-output
\& objective\-c++ objective\-c++\-header objective\-c++\-cpp\-output
\& assembler assembler\-with\-cpp
\& ada
\& f77 f77\-cpp\-input f95 f95\-cpp\-input
\& go
\& java
.Ve
.IP "\fB\-x none\fR" 4
.IX Item "-x none"
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if \fB\-x\fR
has not been used at all).
.IP "\fB\-pass\-exit\-codes\fR" 4
.IX Item "-pass-exit-codes"
Normally the \fBgcc\fR program exits with the code of 1 if any
phase of the compiler returns a non-success return code. If you specify
\&\fB\-pass\-exit\-codes\fR, the \fBgcc\fR program instead returns with
the numerically highest error produced by any phase returning an error
indication. The C, \*(C+, and Fortran front ends return 4 if an internal
compiler error is encountered.
.PP
If you only want some of the stages of compilation, you can use
\&\fB\-x\fR (or filename suffixes) to tell \fBgcc\fR where to start, and
one of the options \fB\-c\fR, \fB\-S\fR, or \fB\-E\fR to say where
\&\fBgcc\fR is to stop. Note that some combinations (for example,
\&\fB\-x cpp-output \-E\fR) instruct \fBgcc\fR to do nothing at all.
.IP "\fB\-c\fR" 4
.IX Item "-c"
Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
.Sp
By default, the object file name for a source file is made by replacing
the suffix \fB.c\fR, \fB.i\fR, \fB.s\fR, etc., with \fB.o\fR.
.Sp
Unrecognized input files, not requiring compilation or assembly, are
ignored.
.IP "\fB\-S\fR" 4
.IX Item "-S"
Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each non-assembler input
file specified.
.Sp
By default, the assembler file name for a source file is made by
replacing the suffix \fB.c\fR, \fB.i\fR, etc., with \fB.s\fR.
.Sp
Input files that don't require compilation are ignored.
.IP "\fB\-E\fR" 4
.IX Item "-E"
Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
.Sp
Input files that don't require preprocessing are ignored.
.IP "\fB\-o\fR \fIfile\fR" 4
.IX Item "-o file"
Place output in file \fIfile\fR. This applies to whatever
sort of output is being produced, whether it be an executable file,
an object file, an assembler file or preprocessed C code.
.Sp
If \fB\-o\fR is not specified, the default is to put an executable
file in \fIa.out\fR, the object file for
\&\fI\fIsource\fI.\fIsuffix\fI\fR in \fI\fIsource\fI.o\fR, its
assembler file in \fI\fIsource\fI.s\fR, a precompiled header file in
\&\fI\fIsource\fI.\fIsuffix\fI.gch\fR, and all preprocessed C source on
standard output.
.IP "\fB\-v\fR" 4
.IX Item "-v"
Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
.IP "\fB\-###\fR" 4
.IX Item "-###"
Like \fB\-v\fR except the commands are not executed and arguments
are quoted unless they contain only alphanumeric characters or \f(CW\*(C`./\-_\*(C'\fR.
This is useful for shell scripts to capture the driver-generated command lines.
.IP "\fB\-pipe\fR" 4
.IX Item "-pipe"
Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the \s-1GNU\s0 assembler has
no trouble.
.IP "\fB\-\-help\fR" 4
.IX Item "--help"
Print (on the standard output) a description of the command-line options
understood by \fBgcc\fR. If the \fB\-v\fR option is also specified
then \fB\-\-help\fR is also passed on to the various processes
invoked by \fBgcc\fR, so that they can display the command-line options
they accept. If the \fB\-Wextra\fR option has also been specified
(prior to the \fB\-\-help\fR option), then command-line options that
have no documentation associated with them are also displayed.
.IP "\fB\-\-target\-help\fR" 4
.IX Item "--target-help"
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific
information may also be printed.
.IP "\fB\-\-help={\fR\fIclass\fR|[\fB^\fR]\fIqualifier\fR\fB}\fR[\fB,...\fR]" 4
.IX Item "--help={class|[^]qualifier}[,...]"
Print (on the standard output) a description of the command-line
options understood by the compiler that fit into all specified classes
and qualifiers. These are the supported classes:
.RS 4
.IP "\fBoptimizers\fR" 4
.IX Item "optimizers"
Display all of the optimization options supported by the
compiler.
.IP "\fBwarnings\fR" 4
.IX Item "warnings"
Display all of the options controlling warning messages
produced by the compiler.
.IP "\fBtarget\fR" 4
.IX Item "target"
Display target-specific options. Unlike the
\&\fB\-\-target\-help\fR option however, target-specific options of the
linker and assembler are not displayed. This is because those
tools do not currently support the extended \fB\-\-help=\fR syntax.
.IP "\fBparams\fR" 4
.IX Item "params"
Display the values recognized by the \fB\-\-param\fR
option.
.IP "\fIlanguage\fR" 4
.IX Item "language"
Display the options supported for \fIlanguage\fR, where
\&\fIlanguage\fR is the name of one of the languages supported in this
version of \s-1GCC.\s0
.IP "\fBcommon\fR" 4
.IX Item "common"
Display the options that are common to all languages.
.RE
.RS 4
.Sp
These are the supported qualifiers:
.IP "\fBundocumented\fR" 4
.IX Item "undocumented"
Display only those options that are undocumented.
.IP "\fBjoined\fR" 4
.IX Item "joined"
Display options taking an argument that appears after an equal
sign in the same continuous piece of text, such as:
\&\fB\-\-help=target\fR.
.IP "\fBseparate\fR" 4
.IX Item "separate"
Display options taking an argument that appears as a separate word
following the original option, such as: \fB\-o output-file\fR.
.RE
.RS 4
.Sp
Thus for example to display all the undocumented target-specific
switches supported by the compiler, use:
.Sp
.Vb 1
\& \-\-help=target,undocumented
.Ve
.Sp
The sense of a qualifier can be inverted by prefixing it with the
\&\fB^\fR character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument) that have a description, use:
.Sp
.Vb 1
\& \-\-help=warnings,^joined,^undocumented
.Ve
.Sp
The argument to \fB\-\-help=\fR should not consist solely of inverted
qualifiers.
.Sp
Combining several classes is possible, although this usually
restricts the output so much that there is nothing to display. One
case where it does work, however, is when one of the classes is
\&\fItarget\fR. For example, to display all the target-specific
optimization options, use:
.Sp
.Vb 1
\& \-\-help=target,optimizers
.Ve
.Sp
The \fB\-\-help=\fR option can be repeated on the command line. Each
successive use displays its requested class of options, skipping
those that have already been displayed.
.Sp
If the \fB\-Q\fR option appears on the command line before the
\&\fB\-\-help=\fR option, then the descriptive text displayed by
\&\fB\-\-help=\fR is changed. Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the \fB\-\-help=\fR option is used).
.Sp
Here is a truncated example from the \s-1ARM\s0 port of \fBgcc\fR:
.Sp
.Vb 5
\& % gcc \-Q \-mabi=2 \-\-help=target \-c
\& The following options are target specific:
\& \-mabi= 2
\& \-mabort\-on\-noreturn [disabled]
\& \-mapcs [disabled]
.Ve
.Sp
The output is sensitive to the effects of previous command-line
options, so for example it is possible to find out which optimizations
are enabled at \fB\-O2\fR by using:
.Sp
.Vb 1
\& \-Q \-O2 \-\-help=optimizers
.Ve
.Sp
Alternatively you can discover which binary optimizations are enabled
by \fB\-O3\fR by using:
.Sp
.Vb 3
\& gcc \-c \-Q \-O3 \-\-help=optimizers > /tmp/O3\-opts
\& gcc \-c \-Q \-O2 \-\-help=optimizers > /tmp/O2\-opts
\& diff /tmp/O2\-opts /tmp/O3\-opts | grep enabled
.Ve
.RE
.IP "\fB\-no\-canonical\-prefixes\fR" 4
.IX Item "-no-canonical-prefixes"
Do not expand any symbolic links, resolve references to \fB/../\fR
or \fB/./\fR, or make the path absolute when generating a relative
prefix.
.IP "\fB\-\-version\fR" 4
.IX Item "--version"
Display the version number and copyrights of the invoked \s-1GCC.\s0
.IP "\fB\-wrapper\fR" 4
.IX Item "-wrapper"
Invoke all subcommands under a wrapper program. The name of the
wrapper program and its parameters are passed as a comma separated
list.
.Sp
.Vb 1
\& gcc \-c t.c \-wrapper gdb,\-\-args
.Ve
.Sp
This invokes all subprograms of \fBgcc\fR under
\&\fBgdb \-\-args\fR, thus the invocation of \fBcc1\fR is
\&\fBgdb \-\-args cc1 ...\fR.
.IP "\fB\-fplugin=\fR\fIname\fR\fB.so\fR" 4
.IX Item "-fplugin=name.so"
Load the plugin code in file \fIname\fR.so, assumed to be a
shared object to be dlopen'd by the compiler. The base name of
the shared object file is used to identify the plugin for the
purposes of argument parsing (See
\&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below).
Each plugin should define the callback functions specified in the
Plugins \s-1API.\s0
.IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4
.IX Item "-fplugin-arg-name-key=value"
Define an argument called \fIkey\fR with a value of \fIvalue\fR
for the plugin called \fIname\fR.
.IP "\fB\-fdump\-ada\-spec\fR[\fB\-slim\fR]" 4
.IX Item "-fdump-ada-spec[-slim]"
For C and \*(C+ source and include files, generate corresponding Ada specs.
.IP "\fB\-fada\-spec\-parent=\fR\fIunit\fR" 4
.IX Item "-fada-spec-parent=unit"
In conjunction with \fB\-fdump\-ada\-spec\fR[\fB\-slim\fR] above, generate
Ada specs as child units of parent \fIunit\fR.
.IP "\fB\-fdump\-go\-spec=\fR\fIfile\fR" 4
.IX Item "-fdump-go-spec=file"
For input files in any language, generate corresponding Go
declarations in \fIfile\fR. This generates Go \f(CW\*(C`const\*(C'\fR,
\&\f(CW\*(C`type\*(C'\fR, \f(CW\*(C`var\*(C'\fR, and \f(CW\*(C`func\*(C'\fR declarations which may be a
useful way to start writing a Go interface to code written in some
other language.
.IP "\fB@\fR\fIfile\fR" 4
.IX Item "@file"
Read command-line options from \fIfile\fR. The options read are
inserted in place of the original @\fIfile\fR option. If \fIfile\fR
does not exist, or cannot be read, then the option will be treated
literally, and not removed.
.Sp
Options in \fIfile\fR are separated by whitespace. A whitespace
character may be included in an option by surrounding the entire
option in either single or double quotes. Any character (including a
backslash) may be included by prefixing the character to be included
with a backslash. The \fIfile\fR may itself contain additional
@\fIfile\fR options; any such options will be processed recursively.
.SS "Compiling \*(C+ Programs"
.IX Subsection "Compiling Programs"
\&\*(C+ source files conventionally use one of the suffixes \fB.C\fR,
\&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or
\&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR,
\&\fB.H\fR, or (for shared template code) \fB.tcc\fR; and
preprocessed \*(C+ files use the suffix \fB.ii\fR. \s-1GCC\s0 recognizes
files with these names and compiles them as \*(C+ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name \fBgcc\fR).
.PP
However, the use of \fBgcc\fR does not add the \*(C+ library.
\&\fBg++\fR is a program that calls \s-1GCC\s0 and automatically specifies linking
against the \*(C+ library. It treats \fB.c\fR,
\&\fB.h\fR and \fB.i\fR files as \*(C+ source files instead of C source
files unless \fB\-x\fR is used. This program is also useful when
precompiling a C header file with a \fB.h\fR extension for use in \*(C+
compilations. On many systems, \fBg++\fR is also installed with
the name \fBc++\fR.
.PP
When you compile \*(C+ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for \*(C+ programs.
.SS "Options Controlling C Dialect"
.IX Subsection "Options Controlling C Dialect"
The following options control the dialect of C (or languages derived
from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler
accepts:
.IP "\fB\-ansi\fR" 4
.IX Item "-ansi"
In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is
equivalent to \fB\-std=c++98\fR.
.Sp
This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO
C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code),
such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and
predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the
type of system you are using. It also enables the undesirable and
rarely used \s-1ISO\s0 trigraph feature. For the C compiler,
it disables recognition of \*(C+ style \fB//\fR comments as well as
the \f(CW\*(C`inline\*(C'\fR keyword.
.Sp
The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR,
\&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite
\&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of
course, but it is useful to put them in header files that might be included
in compilations done with \fB\-ansi\fR. Alternate predefined macros
such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or
without \fB\-ansi\fR.
.Sp
The \fB\-ansi\fR option does not cause non-ISO programs to be
rejected gratuitously. For that, \fB\-Wpedantic\fR is required in
addition to \fB\-ansi\fR.
.Sp
The macro \f(CW\*(C`_\|_STRICT_ANSI_\|_\*(C'\fR is predefined when the \fB\-ansi\fR
option is used. Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
\&\s-1ISO\s0 standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.
.Sp
Functions that are normally built in but do not have semantics
defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in
functions when \fB\-ansi\fR is used.
.IP "\fB\-std=\fR" 4
.IX Item "-std="
Determine the language standard. This option
is currently only supported when compiling C or \*(C+.
.Sp
The compiler can accept several base standards, such as \fBc90\fR or
\&\fBc++98\fR, and \s-1GNU\s0 dialects of those standards, such as
\&\fBgnu90\fR or \fBgnu++98\fR. When a base standard is specified, the
compiler accepts all programs following that standard plus those
using \s-1GNU\s0 extensions that do not contradict it. For example,
\&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are
incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR
keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in
\&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR
expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is
specified, all features supported by the compiler are enabled, even when
those features change the meaning of the base standard. As a result, some
strict-conforming programs may be rejected. The particular standard
is used by \fB\-Wpedantic\fR to identify which features are \s-1GNU\s0
extensions given that version of the standard. For example
\&\fB\-std=gnu90 \-Wpedantic\fR warns about \*(C+ style \fB//\fR
comments, while \fB\-std=gnu99 \-Wpedantic\fR does not.
.Sp
A value for this option must be provided; possible values are
.RS 4
.IP "\fBc90\fR" 4
.IX Item "c90"
.PD 0
.IP "\fBc89\fR" 4
.IX Item "c89"
.IP "\fBiso9899:1990\fR" 4
.IX Item "iso9899:1990"
.PD
Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict
with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code.
.IP "\fBiso9899:199409\fR" 4
.IX Item "iso9899:199409"
\&\s-1ISO C90\s0 as modified in amendment 1.
.IP "\fBc99\fR" 4
.IX Item "c99"
.PD 0
.IP "\fBc9x\fR" 4
.IX Item "c9x"
.IP "\fBiso9899:1999\fR" 4
.IX Item "iso9899:1999"
.IP "\fBiso9899:199x\fR" 4
.IX Item "iso9899:199x"
.PD
\&\s-1ISO C99. \s0 This standard is substantially completely supported, modulo
bugs, extended identifiers (supported except for corner cases when
\&\fB\-fextended\-identifiers\fR is used) and floating-point issues
(mainly but not entirely relating to optional C99 features from
Annexes F and G). See
<\fBhttp://gcc.gnu.org/c99status.html\fR> for more information. The
names \fBc9x\fR and \fBiso9899:199x\fR are deprecated.
.IP "\fBc11\fR" 4
.IX Item "c11"
.PD 0
.IP "\fBc1x\fR" 4
.IX Item "c1x"
.IP "\fBiso9899:2011\fR" 4
.IX Item "iso9899:2011"
.PD
\&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. This standard is
substantially completely supported, modulo bugs, extended identifiers
(supported except for corner cases when
\&\fB\-fextended\-identifiers\fR is used), floating-point issues
(mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name \fBc1x\fR is deprecated.
.IP "\fBgnu90\fR" 4
.IX Item "gnu90"
.PD 0
.IP "\fBgnu89\fR" 4
.IX Item "gnu89"
.PD
\&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This
is the default for C code.
.IP "\fBgnu99\fR" 4
.IX Item "gnu99"
.PD 0
.IP "\fBgnu9x\fR" 4
.IX Item "gnu9x"
.PD
\&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 The name \fBgnu9x\fR is deprecated.
.IP "\fBgnu11\fR" 4
.IX Item "gnu11"
.PD 0
.IP "\fBgnu1x\fR" 4
.IX Item "gnu1x"
.PD
\&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 This is intended to become the default in a
future release of \s-1GCC. \s0 The name \fBgnu1x\fR is deprecated.
.IP "\fBc++98\fR" 4
.IX Item "c++98"
.PD 0
.IP "\fBc++03\fR" 4
.IX Item "c++03"
.PD
The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some
additional defect reports. Same as \fB\-ansi\fR for \*(C+ code.
.IP "\fBgnu++98\fR" 4
.IX Item "gnu++98"
.PD 0
.IP "\fBgnu++03\fR" 4
.IX Item "gnu++03"
.PD
\&\s-1GNU\s0 dialect of \fB\-std=c++98\fR. This is the default for
\&\*(C+ code.
.IP "\fBc++11\fR" 4
.IX Item "c++11"
.PD 0
.IP "\fBc++0x\fR" 4
.IX Item "c++0x"
.PD
The 2011 \s-1ISO \*(C+\s0 standard plus amendments.
The name \fBc++0x\fR is deprecated.
.IP "\fBgnu++11\fR" 4
.IX Item "gnu++11"
.PD 0
.IP "\fBgnu++0x\fR" 4
.IX Item "gnu++0x"
.PD
\&\s-1GNU\s0 dialect of \fB\-std=c++11\fR.
The name \fBgnu++0x\fR is deprecated.
.IP "\fBc++1y\fR" 4
.IX Item "c++1y"
The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for
2014. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.
.IP "\fBgnu++1y\fR" 4
.IX Item "gnu++1y"
\&\s-1GNU\s0 dialect of \fB\-std=c++1y\fR. Support is highly experimental,
and will almost certainly change in incompatible ways in future
releases.
.RE
.RS 4
.RE
.IP "\fB\-fgnu89\-inline\fR" 4
.IX Item "-fgnu89-inline"
The option \fB\-fgnu89\-inline\fR tells \s-1GCC\s0 to use the traditional
\&\s-1GNU\s0 semantics for \f(CW\*(C`inline\*(C'\fR functions when in C99 mode.
This option
is accepted and ignored by \s-1GCC\s0 versions 4.1.3 up to but not including
4.3. In \s-1GCC\s0 versions 4.3 and later it changes the behavior of \s-1GCC\s0 in
C99 mode. Using this option is roughly equivalent to adding the
\&\f(CW\*(C`gnu_inline\*(C'\fR function attribute to all inline functions.
.Sp
The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the
C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it
specifies the default behavior). This option was first supported in
\&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or
\&\fB\-std=gnu90\fR mode.
.Sp
The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and
\&\f(CW\*(C`_\|_GNUC_STDC_INLINE_\|_\*(C'\fR may be used to check which semantics are
in effect for \f(CW\*(C`inline\*(C'\fR functions.
.IP "\fB\-aux\-info\fR \fIfilename\fR" 4
.IX Item "-aux-info filename"
Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C.
.Sp
Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (\fBI\fR, \fBN\fR for new or
\&\fBO\fR for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (\fBC\fR or \fBF\fR, respectively, in the following
character). In the case of function definitions, a K&R\-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
.IP "\fB\-fallow\-parameterless\-variadic\-functions\fR" 4
.IX Item "-fallow-parameterless-variadic-functions"
Accept variadic functions without named parameters.
.Sp
Although it is possible to define such a function, this is not very
useful as it is not possible to read the arguments. This is only
supported for C as this construct is allowed by \*(C+.
.IP "\fB\-fno\-asm\fR" 4
.IX Item "-fno-asm"
Do not recognize \f(CW\*(C`asm\*(C'\fR, \f(CW\*(C`inline\*(C'\fR or \f(CW\*(C`typeof\*(C'\fR as a
keyword, so that code can use these words as identifiers. You can use
the keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR
instead. \fB\-ansi\fR implies \fB\-fno\-asm\fR.
.Sp
In \*(C+, this switch only affects the \f(CW\*(C`typeof\*(C'\fR keyword, since
\&\f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`inline\*(C'\fR are standard keywords. You may want to
use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same
effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this
switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since
\&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0
.IP "\fB\-fno\-builtin\fR" 4
.IX Item "-fno-builtin"
.PD 0
.IP "\fB\-fno\-builtin\-\fR\fIfunction\fR" 4
.IX Item "-fno-builtin-function"
.PD
Don't recognize built-in functions that do not begin with
\&\fB_\|_builtin_\fR as prefix.
.Sp
\&\s-1GCC\s0 normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to \f(CW\*(C`alloca\*(C'\fR may become single
instructions which adjust the stack directly, and calls to \f(CW\*(C`memcpy\*(C'\fR
may become inline copy loops. The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition,
when a function is recognized as a built-in function, \s-1GCC\s0 may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example,
warnings are given with \fB\-Wformat\fR for bad calls to
\&\f(CW\*(C`printf\*(C'\fR when \f(CW\*(C`printf\*(C'\fR is built in and \f(CW\*(C`strlen\*(C'\fR is
known not to modify global memory.
.Sp
With the \fB\-fno\-builtin\-\fR\fIfunction\fR option
only the built-in function \fIfunction\fR is
disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a
function is named that is not built-in in this version of \s-1GCC,\s0 this
option is ignored. There is no corresponding
\&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable
built-in functions selectively when using \fB\-fno\-builtin\fR or
\&\fB\-ffreestanding\fR, you may define macros such as:
.Sp
.Vb 2
\& #define abs(n) _\|_builtin_abs ((n))
\& #define strcpy(d, s) _\|_builtin_strcpy ((d), (s))
.Ve
.IP "\fB\-fhosted\fR" 4
.IX Item "-fhosted"
Assert that compilation targets a hosted environment. This implies
\&\fB\-fbuiltin\fR. A hosted environment is one in which the
entire standard library is available, and in which \f(CW\*(C`main\*(C'\fR has a return
type of \f(CW\*(C`int\*(C'\fR. Examples are nearly everything except a kernel.
This is equivalent to \fB\-fno\-freestanding\fR.
.IP "\fB\-ffreestanding\fR" 4
.IX Item "-ffreestanding"
Assert that compilation targets a freestanding environment. This
implies \fB\-fno\-builtin\fR. A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at \f(CW\*(C`main\*(C'\fR. The most obvious example is an \s-1OS\s0 kernel.
This is equivalent to \fB\-fno\-hosted\fR.
.IP "\fB\-fopenmp\fR" 4
.IX Item "-fopenmp"
Enable handling of OpenMP directives \f(CW\*(C`#pragma omp\*(C'\fR in C/\*(C+ and
\&\f(CW\*(C`!$omp\*(C'\fR in Fortran. When \fB\-fopenmp\fR is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v4.0 <\fBhttp://www.openmp.org/\fR>. This option
implies \fB\-pthread\fR, and thus is only supported on targets that
have support for \fB\-pthread\fR. \fB\-fopenmp\fR implies
\&\fB\-fopenmp\-simd\fR.
.IP "\fB\-fopenmp\-simd\fR" 4
.IX Item "-fopenmp-simd"
Enable handling of OpenMP's \s-1SIMD\s0 directives with \f(CW\*(C`#pragma omp\*(C'\fR
in C/\*(C+ and \f(CW\*(C`!$omp\*(C'\fR in Fortran. Other OpenMP directives
are ignored.
.IP "\fB\-fcilkplus\fR" 4
.IX Item "-fcilkplus"
Enable the usage of Cilk Plus language extension features for C/\*(C+.
When the option \fB\-fcilkplus\fR is specified, enable the usage of
the Cilk Plus Language extension features for C/\*(C+. The present
implementation follows \s-1ABI\s0 version 1.2. This is an experimental
feature that is only partially complete, and whose interface may
change in future versions of \s-1GCC\s0 as the official specification
changes. Currently, all features but \f(CW\*(C`_Cilk_for\*(C'\fR have been
implemented.
.IP "\fB\-fgnu\-tm\fR" 4
.IX Item "-fgnu-tm"
When the option \fB\-fgnu\-tm\fR is specified, the compiler
generates code for the Linux variant of Intel's current Transactional
Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is
an experimental feature whose interface may change in future versions
of \s-1GCC,\s0 as the official specification changes. Please note that not
all architectures are supported for this feature.
.Sp
For more information on \s-1GCC\s0's support for transactional memory,
.Sp
Note that the transactional memory feature is not supported with
non-call exceptions (\fB\-fnon\-call\-exceptions\fR).
.IP "\fB\-fms\-extensions\fR" 4
.IX Item "-fms-extensions"
Accept some non-standard constructs used in Microsoft header files.
.Sp
In \*(C+ code, this allows member names in structures to be similar
to previous types declarations.
.Sp
.Vb 4
\& typedef int UOW;
\& struct ABC {
\& UOW UOW;
\& };
.Ve
.Sp
Some cases of unnamed fields in structures and unions are only
accepted with this option.
.Sp
Note that this option is off for all targets but i?86 and x86_64
targets using ms-abi.
.IP "\fB\-fplan9\-extensions\fR" 4
.IX Item "-fplan9-extensions"
Accept some non-standard constructs used in Plan 9 code.
.Sp
This enables \fB\-fms\-extensions\fR, permits passing pointers to
structures with anonymous fields to functions that expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef. This is only
supported for C, not \*(C+.
.IP "\fB\-trigraphs\fR" 4
.IX Item "-trigraphs"
Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR
options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR.
.IP "\fB\-traditional\fR" 4
.IX Item "-traditional"
.PD 0
.IP "\fB\-traditional\-cpp\fR" 4
.IX Item "-traditional-cpp"
.PD
Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard
C compiler. They are now only supported with the \fB\-E\fR switch.
The preprocessor continues to support a pre-standard mode. See the \s-1GNU
CPP\s0 manual for details.
.IP "\fB\-fcond\-mismatch\fR" 4
.IX Item "-fcond-mismatch"
Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option
is not supported for \*(C+.
.IP "\fB\-flax\-vector\-conversions\fR" 4
.IX Item "-flax-vector-conversions"
Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be
used for new code.
.IP "\fB\-funsigned\-char\fR" 4
.IX Item "-funsigned-char"
Let the type \f(CW\*(C`char\*(C'\fR be unsigned, like \f(CW\*(C`unsigned char\*(C'\fR.
.Sp
Each kind of machine has a default for what \f(CW\*(C`char\*(C'\fR should
be. It is either like \f(CW\*(C`unsigned char\*(C'\fR by default or like
\&\f(CW\*(C`signed char\*(C'\fR by default.
.Sp
Ideally, a portable program should always use \f(CW\*(C`signed char\*(C'\fR or
\&\f(CW\*(C`unsigned char\*(C'\fR when it depends on the signedness of an object.
But many programs have been written to use plain \f(CW\*(C`char\*(C'\fR and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let you
make such a program work with the opposite default.
.Sp
The type \f(CW\*(C`char\*(C'\fR is always a distinct type from each of
\&\f(CW\*(C`signed char\*(C'\fR or \f(CW\*(C`unsigned char\*(C'\fR, even though its behavior
is always just like one of those two.
.IP "\fB\-fsigned\-char\fR" 4
.IX Item "-fsigned-char"
Let the type \f(CW\*(C`char\*(C'\fR be signed, like \f(CW\*(C`signed char\*(C'\fR.
.Sp
Note that this is equivalent to \fB\-fno\-unsigned\-char\fR, which is
the negative form of \fB\-funsigned\-char\fR. Likewise, the option
\&\fB\-fno\-signed\-char\fR is equivalent to \fB\-funsigned\-char\fR.
.IP "\fB\-fsigned\-bitfields\fR" 4
.IX Item "-fsigned-bitfields"
.PD 0
.IP "\fB\-funsigned\-bitfields\fR" 4
.IX Item "-funsigned-bitfields"
.IP "\fB\-fno\-signed\-bitfields\fR" 4
.IX Item "-fno-signed-bitfields"
.IP "\fB\-fno\-unsigned\-bitfields\fR" 4
.IX Item "-fno-unsigned-bitfields"
.PD
These options control whether a bit-field is signed or unsigned, when the
declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types.
.SS "Options Controlling \*(C+ Dialect"
.IX Subsection "Options Controlling Dialect"
This section describes the command-line options that are only meaningful
for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options
regardless of what language your program is in. For example, you
might compile a file \f(CW\*(C`firstClass.C\*(C'\fR like this:
.PP
.Vb 1
\& g++ \-g \-frepo \-O \-c firstClass.C
.Ve
.PP
In this example, only \fB\-frepo\fR is an option meant
only for \*(C+ programs; you can use the other options with any
language supported by \s-1GCC.\s0
.PP
Here is a list of options that are \fIonly\fR for compiling \*(C+ programs:
.IP "\fB\-fabi\-version=\fR\fIn\fR" 4
.IX Item "-fabi-version=n"
Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2.
.Sp
Version 0 refers to the version conforming most closely to
the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0
will change in different versions of G++ as \s-1ABI\s0 bugs are fixed.
.Sp
Version 1 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.2.
.Sp
Version 2 is the version of the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.4.
.Sp
Version 3 corrects an error in mangling a constant address as a
template argument.
.Sp
Version 4, which first appeared in G++ 4.5, implements a standard
mangling for vector types.
.Sp
Version 5, which first appeared in G++ 4.6, corrects the mangling of
attribute const/volatile on function pointer types, decltype of a
plain decl, and use of a function parameter in the declaration of
another parameter.
.Sp
Version 6, which first appeared in G++ 4.7, corrects the promotion
behavior of \*(C+11 scoped enums and the mangling of template argument
packs, const/static_cast, prefix ++ and \-\-, and a class scope function
used as a template argument.
.Sp
See also \fB\-Wabi\fR.
.IP "\fB\-fno\-access\-control\fR" 4
.IX Item "-fno-access-control"
Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
.IP "\fB\-fcheck\-new\fR" 4
.IX Item "-fcheck-new"
Check that the pointer returned by \f(CW\*(C`operator new\*(C'\fR is non-null
before attempting to modify the storage allocated. This check is
normally unnecessary because the \*(C+ standard specifies that
\&\f(CW\*(C`operator new\*(C'\fR only returns \f(CW0\fR if it is declared
\&\fB\f(BIthrow()\fB\fR, in which case the compiler always checks the
return value even without this option. In all other cases, when
\&\f(CW\*(C`operator new\*(C'\fR has a non-empty exception specification, memory
exhaustion is signalled by throwing \f(CW\*(C`std::bad_alloc\*(C'\fR. See also
\&\fBnew (nothrow)\fR.
.IP "\fB\-fconstexpr\-depth=\fR\fIn\fR" 4
.IX Item "-fconstexpr-depth=n"
Set the maximum nested evaluation depth for \*(C+11 constexpr functions
to \fIn\fR. A limit is needed to detect endless recursion during
constant expression evaluation. The minimum specified by the standard
is 512.
.IP "\fB\-fdeduce\-init\-list\fR" 4
.IX Item "-fdeduce-init-list"
Enable deduction of a template type parameter as
\&\f(CW\*(C`std::initializer_list\*(C'\fR from a brace-enclosed initializer list, i.e.
.Sp
.Vb 4
\& template <class T> auto forward(T t) \-> decltype (realfn (t))
\& {
\& return realfn (t);
\& }
\&
\& void f()
\& {
\& forward({1,2}); // call forward<std::initializer_list<int>>
\& }
.Ve
.Sp
This deduction was implemented as a possible extension to the
originally proposed semantics for the \*(C+11 standard, but was not part
of the final standard, so it is disabled by default. This option is
deprecated, and may be removed in a future version of G++.
.IP "\fB\-ffriend\-injection\fR" 4
.IX Item "-ffriend-injection"
Inject friend functions into the enclosing namespace, so that they are
visible outside the scope of the class in which they are declared.
Friend functions were documented to work this way in the old Annotated
\&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked
that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared
in an enclosing scope can only be found using argument dependent
lookup. This option causes friends to be injected as they were in
earlier releases.
.Sp
This option is for compatibility, and may be removed in a future
release of G++.
.IP "\fB\-fno\-elide\-constructors\fR" 4
.IX Item "-fno-elide-constructors"
The \*(C+ standard allows an implementation to omit creating a temporary
that is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases.
.IP "\fB\-fno\-enforce\-eh\-specs\fR" 4
.IX Item "-fno-enforce-eh-specs"
Don't generate code to check for violation of exception specifications
at run time. This option violates the \*(C+ standard, but may be useful
for reducing code size in production builds, much like defining
\&\fB\s-1NDEBUG\s0\fR. This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.
.IP "\fB\-fextern\-tls\-init\fR" 4
.IX Item "-fextern-tls-init"
.PD 0
.IP "\fB\-fno\-extern\-tls\-init\fR" 4
.IX Item "-fno-extern-tls-init"
.PD
The \*(C+11 and OpenMP standards allow \fBthread_local\fR and
\&\fBthreadprivate\fR variables to have dynamic (runtime)
initialization. To support this, any use of such a variable goes
through a wrapper function that performs any necessary initialization.
When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the
use is in a different translation unit there is significant overhead
even if the variable doesn't actually need dynamic initialization. If
the programmer can be sure that no use of the variable in a
non-defining \s-1TU\s0 needs to trigger dynamic initialization (either
because the variable is statically initialized, or a use of the
variable in the defining \s-1TU\s0 will be executed before any uses in
another \s-1TU\s0), they can avoid this overhead with the
\&\fB\-fno\-extern\-tls\-init\fR option.
.Sp
On targets that support symbol aliases, the default is
\&\fB\-fextern\-tls\-init\fR. On targets that do not support symbol
aliases, the default is \fB\-fno\-extern\-tls\-init\fR.
.IP "\fB\-ffor\-scope\fR" 4
.IX Item "-ffor-scope"
.PD 0
.IP "\fB\-fno\-for\-scope\fR" 4
.IX Item "-fno-for-scope"
.PD
If \fB\-ffor\-scope\fR is specified, the scope of variables declared in
a \fIfor-init-statement\fR is limited to the \fBfor\fR loop itself,
as specified by the \*(C+ standard.
If \fB\-fno\-for\-scope\fR is specified, the scope of variables declared in
a \fIfor-init-statement\fR extends to the end of the enclosing scope,
as was the case in old versions of G++, and other (traditional)
implementations of \*(C+.
.Sp
If neither flag is given, the default is to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.
.IP "\fB\-fno\-gnu\-keywords\fR" 4
.IX Item "-fno-gnu-keywords"
Do not recognize \f(CW\*(C`typeof\*(C'\fR as a keyword, so that code can use this
word as an identifier. You can use the keyword \f(CW\*(C`_\|_typeof_\|_\*(C'\fR instead.
\&\fB\-ansi\fR implies \fB\-fno\-gnu\-keywords\fR.
.IP "\fB\-fno\-implicit\-templates\fR" 4
.IX Item "-fno-implicit-templates"
Never emit code for non-inline templates that are instantiated
implicitly (i.e. by use); only emit code for explicit instantiations.
.IP "\fB\-fno\-implicit\-inline\-templates\fR" 4
.IX Item "-fno-implicit-inline-templates"
Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization need the same set of explicit instantiations.
.IP "\fB\-fno\-implement\-inlines\fR" 4
.IX Item "-fno-implement-inlines"
To save space, do not emit out-of-line copies of inline functions
controlled by \fB#pragma implementation\fR. This causes linker
errors if these functions are not inlined everywhere they are called.
.IP "\fB\-fms\-extensions\fR" 4
.IX Item "-fms-extensions"
Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit
int and getting a pointer to member function via non-standard syntax.
.IP "\fB\-fno\-nonansi\-builtins\fR" 4
.IX Item "-fno-nonansi-builtins"
Disable built-in declarations of functions that are not mandated by
\&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR,
\&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions.
.IP "\fB\-fnothrow\-opt\fR" 4
.IX Item "-fnothrow-opt"
Treat a \f(CW\*(C`throw()\*(C'\fR exception specification as if it were a
\&\f(CW\*(C`noexcept\*(C'\fR specification to reduce or eliminate the text size
overhead relative to a function with no exception specification. If
the function has local variables of types with non-trivial
destructors, the exception specification actually makes the
function smaller because the \s-1EH\s0 cleanups for those variables can be
optimized away. The semantic effect is that an exception thrown out of
a function with such an exception specification results in a call
to \f(CW\*(C`terminate\*(C'\fR rather than \f(CW\*(C`unexpected\*(C'\fR.
.IP "\fB\-fno\-operator\-names\fR" 4
.IX Item "-fno-operator-names"
Do not treat the operator name keywords \f(CW\*(C`and\*(C'\fR, \f(CW\*(C`bitand\*(C'\fR,
\&\f(CW\*(C`bitor\*(C'\fR, \f(CW\*(C`compl\*(C'\fR, \f(CW\*(C`not\*(C'\fR, \f(CW\*(C`or\*(C'\fR and \f(CW\*(C`xor\*(C'\fR as
synonyms as keywords.
.IP "\fB\-fno\-optional\-diags\fR" 4
.IX Item "-fno-optional-diags"
Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.
.IP "\fB\-fpermissive\fR" 4
.IX Item "-fpermissive"
Downgrade some diagnostics about nonconformant code from errors to
warnings. Thus, using \fB\-fpermissive\fR allows some
nonconforming code to compile.
.IP "\fB\-fno\-pretty\-templates\fR" 4
.IX Item "-fno-pretty-templates"
When an error message refers to a specialization of a function
template, the compiler normally prints the signature of the
template followed by the template arguments and any typedefs or
typenames in the signature (e.g. \f(CW\*(C`void f(T) [with T = int]\*(C'\fR
rather than \f(CW\*(C`void f(int)\*(C'\fR) so that it's clear which template is
involved. When an error message refers to a specialization of a class
template, the compiler omits any template arguments that match
the default template arguments for that template. If either of these
behaviors make it harder to understand the error message rather than
easier, you can use \fB\-fno\-pretty\-templates\fR to disable them.
.IP "\fB\-frepo\fR" 4
.IX Item "-frepo"
Enable automatic template instantiation at link time. This option also
implies \fB\-fno\-implicit\-templates\fR.
.IP "\fB\-fno\-rtti\fR" 4
.IX Item "-fno-rtti"
Disable generation of information about every class with virtual
functions for use by the \*(C+ run-time type identification features
(\fBdynamic_cast\fR and \fBtypeid\fR). If you don't use those parts
of the language, you can save some space by using this flag. Note that
exception handling uses the same information, but G++ generates it as
needed. The \fBdynamic_cast\fR operator can still be used for casts that
do not require run-time type information, i.e. casts to \f(CW\*(C`void *\*(C'\fR or to
unambiguous base classes.
.IP "\fB\-fstats\fR" 4
.IX Item "-fstats"
Emit statistics about front-end processing at the end of the compilation.
This information is generally only useful to the G++ development team.
.IP "\fB\-fstrict\-enums\fR" 4
.IX Item "-fstrict-enums"
Allow the compiler to optimize using the assumption that a value of
enumerated type can only be one of the values of the enumeration (as
defined in the \*(C+ standard; basically, a value that can be
represented in the minimum number of bits needed to represent all the
enumerators). This assumption may not be valid if the program uses a
cast to convert an arbitrary integer value to the enumerated type.
.IP "\fB\-ftemplate\-backtrace\-limit=\fR\fIn\fR" 4
.IX Item "-ftemplate-backtrace-limit=n"
Set the maximum number of template instantiation notes for a single
warning or error to \fIn\fR. The default value is 10.
.IP "\fB\-ftemplate\-depth=\fR\fIn\fR" 4
.IX Item "-ftemplate-depth=n"
Set the maximum instantiation depth for template classes to \fIn\fR.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0
conforming programs must not rely on a maximum depth greater than 17
(changed to 1024 in \*(C+11). The default value is 900, as the compiler
can run out of stack space before hitting 1024 in some situations.
.IP "\fB\-fno\-threadsafe\-statics\fR" 4
.IX Item "-fno-threadsafe-statics"
Do not emit the extra code to use the routines specified in the \*(C+
\&\s-1ABI\s0 for thread-safe initialization of local statics. You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.
.IP "\fB\-fuse\-cxa\-atexit\fR" 4
.IX Item "-fuse-cxa-atexit"
Register destructors for objects with static storage duration with the
\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR function rather than the \f(CW\*(C`atexit\*(C'\fR function.
This option is required for fully standards-compliant handling of static
destructors, but only works if your C library supports
\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR.
.IP "\fB\-fno\-use\-cxa\-get\-exception\-ptr\fR" 4
.IX Item "-fno-use-cxa-get-exception-ptr"
Don't use the \f(CW\*(C`_\|_cxa_get_exception_ptr\*(C'\fR runtime routine. This
causes \f(CW\*(C`std::uncaught_exception\*(C'\fR to be incorrect, but is necessary
if the runtime routine is not available.
.IP "\fB\-fvisibility\-inlines\-hidden\fR" 4
.IX Item "-fvisibility-inlines-hidden"
This switch declares that the user does not attempt to compare
pointers to inline functions or methods where the addresses of the two functions
are taken in different shared objects.
.Sp
The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with
\&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not
appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection
when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect
on load and link times of a \s-1DSO\s0 as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.
.Sp
The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.
.Sp
You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method. For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility. Marking the enclosing class with explicit
visibility has no effect.
.Sp
Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
.IP "\fB\-fvisibility\-ms\-compat\fR" 4
.IX Item "-fvisibility-ms-compat"
This flag attempts to use visibility settings to make \s-1GCC\s0's \*(C+
linkage model compatible with that of Microsoft Visual Studio.
.Sp
The flag makes these changes to \s-1GCC\s0's linkage model:
.RS 4
.IP "1." 4
It sets the default visibility to \f(CW\*(C`hidden\*(C'\fR, like
\&\fB\-fvisibility=hidden\fR.
.IP "2." 4
Types, but not their members, are not hidden by default.
.IP "3." 4
The One Definition Rule is relaxed for types without explicit
visibility specifications that are defined in more than one
shared object: those declarations are permitted if they are
permitted when this option is not used.
.RE
.RS 4
.Sp
In new code it is better to use \fB\-fvisibility=hidden\fR and
export those classes that are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.
.Sp
Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects are different, so changing one does not change the other;
and that pointers to function members defined in different shared
objects may not compare equal. When this flag is given, it is a
violation of the \s-1ODR\s0 to define types with the same name differently.
.RE
.IP "\fB\-fvtable\-verify=\fR\fIstd|preinit|none\fR" 4
.IX Item "-fvtable-verify=std|preinit|none"
Turn on (or off, if using \fB\-fvtable\-verify=none\fR) the security
feature that verifies at runtime, for every virtual call that is made, that
the vtable pointer through which the call is made is valid for the type of
the object, and has not been corrupted or overwritten. If an invalid vtable
pointer is detected (at runtime), an error is reported and execution of the
program is immediately halted.
.Sp
This option causes runtime data structures to be built, at program start up,
for verifying the vtable pointers. The options \f(CW\*(C`std\*(C'\fR and \f(CW\*(C`preinit\*(C'\fR
control the timing of when these data structures are built. In both cases the
data structures are built before execution reaches 'main'. The
\&\fB\-fvtable\-verify=std\fR causes these data structure to be built after the
shared libraries have been loaded and initialized.
\&\fB\-fvtable\-verify=preinit\fR causes them to be built before the shared
libraries have been loaded and initialized.
.Sp
If this option appears multiple times in the compiler line, with different
values specified, 'none' will take highest priority over both 'std' and
\&'preinit'; 'preinit' will take priority over 'std'.
.IP "\fB\-fvtv\-debug\fR" 4
.IX Item "-fvtv-debug"
Causes debug versions of the runtime functions for the vtable verification
feature to be called. This assumes the \fB\-fvtable\-verify=std\fR or
\&\fB\-fvtable\-verify=preinit\fR has been used. This flag will also cause the
compiler to keep track of which vtable pointers it found for each class, and
record that information in the file \*(L"vtv_set_ptr_data.log\*(R", in the dump
file directory on the user's machine.
.Sp
Note: This feature \s-1APPENDS\s0 data to the log file. If you want a fresh log
file, be sure to delete any existing one.
.IP "\fB\-fvtv\-counts\fR" 4
.IX Item "-fvtv-counts"
This is a debugging flag. When used in conjunction with
\&\fB\-fvtable\-verify=std\fR or \fB\-fvtable\-verify=preinit\fR, this
causes the compiler to keep track of the total number of virtual calls
it encountered and the number of verifications it inserted. It also
counts the number of calls to certain runtime library functions
that it inserts. This information, for each compilation unit, is written
to a file named \*(L"vtv_count_data.log\*(R", in the dump_file directory on
the user's machine. It also counts the size of the vtable pointer sets
for each class, and writes this information to \*(L"vtv_class_set_sizes.log\*(R"
in the same directory.
.Sp
Note: This feature \s-1APPENDS\s0 data to the log files. To get a fresh log
files, be sure to delete any existing ones.
.IP "\fB\-fno\-weak\fR" 4
.IX Item "-fno-weak"
Do not use weak symbol support, even if it is provided by the linker.
By default, G++ uses weak symbols if they are available. This
option exists only for testing, and should not be used by end-users;
it results in inferior code and has no benefits. This option may
be removed in a future release of G++.
.IP "\fB\-nostdinc++\fR" 4
.IX Item "-nostdinc++"
Do not search for header files in the standard directories specific to
\&\*(C+, but do still search the other standard directories. (This option
is used when building the \*(C+ library.)
.PP
In addition, these optimization, warning, and code generation options
have meanings only for \*(C+ programs:
.IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wabi (C, Objective-C, and Objective- only)"
Warn when G++ generates code that is probably not compatible with the
vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code. There may also be
cases where warnings are emitted even though the code that is generated
is compatible.
.Sp
You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.
.Sp
The known incompatibilities in \fB\-fabi\-version=2\fR (the default) include:
.RS 4
.IP "\(bu" 4
A template with a non-type template parameter of reference type is
mangled incorrectly:
.Sp
.Vb 3
\& extern int N;
\& template <int &> struct S {};
\& void n (S<N>) {2}
.Ve
.Sp
This is fixed in \fB\-fabi\-version=3\fR.
.IP "\(bu" 4
\&\s-1SIMD\s0 vector types declared using \f(CW\*(C`_\|_attribute ((vector_size))\*(C'\fR are
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.
.Sp
The mangling is changed in \fB\-fabi\-version=4\fR.
.RE
.RS 4
.Sp
The known incompatibilities in \fB\-fabi\-version=1\fR include:
.IP "\(bu" 4
Incorrect handling of tail-padding for bit-fields. G++ may attempt to
pack data into the same byte as a base class. For example:
.Sp
.Vb 2
\& struct A { virtual void f(); int f1 : 1; };
\& struct B : public A { int f2 : 1; };
.Ve
.Sp
In this case, G++ places \f(CW\*(C`B::f2\*(C'\fR into the same byte
as \f(CW\*(C`A::f1\*(C'\fR; other compilers do not. You can avoid this problem
by explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of the
byte size on your platform; that causes G++ and other compilers to
lay out \f(CW\*(C`B\*(C'\fR identically.
.IP "\(bu" 4
Incorrect handling of tail-padding for virtual bases. G++ does not use
tail padding when laying out virtual bases. For example:
.Sp
.Vb 3
\& struct A { virtual void f(); char c1; };
\& struct B { B(); char c2; };
\& struct C : public A, public virtual B {};
.Ve
.Sp
In this case, G++ does not place \f(CW\*(C`B\*(C'\fR into the tail-padding for
\&\f(CW\*(C`A\*(C'\fR; other compilers do. You can avoid this problem by
explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of its
alignment (ignoring virtual base classes); that causes G++ and other
compilers to lay out \f(CW\*(C`C\*(C'\fR identically.
.IP "\(bu" 4
Incorrect handling of bit-fields with declared widths greater than that
of their underlying types, when the bit-fields appear in a union. For
example:
.Sp
.Vb 1
\& union U { int i : 4096; };
.Ve
.Sp
Assuming that an \f(CW\*(C`int\*(C'\fR does not have 4096 bits, G++ makes the
union too small by the number of bits in an \f(CW\*(C`int\*(C'\fR.
.IP "\(bu" 4
Empty classes can be placed at incorrect offsets. For example:
.Sp
.Vb 1
\& struct A {};
\&
\& struct B {
\& A a;
\& virtual void f ();
\& };
\&
\& struct C : public B, public A {};
.Ve
.Sp
G++ places the \f(CW\*(C`A\*(C'\fR base class of \f(CW\*(C`C\*(C'\fR at a nonzero offset;
it should be placed at offset zero. G++ mistakenly believes that the
\&\f(CW\*(C`A\*(C'\fR data member of \f(CW\*(C`B\*(C'\fR is already at offset zero.
.IP "\(bu" 4
Names of template functions whose types involve \f(CW\*(C`typename\*(C'\fR or
template template parameters can be mangled incorrectly.
.Sp
.Vb 2
\& template <typename Q>
\& void f(typename Q::X) {}
\&
\& template <template <typename> class Q>
\& void f(typename Q<int>::X) {}
.Ve
.Sp
Instantiations of these templates may be mangled incorrectly.
.RE
.RS 4
.Sp
It also warns about psABI-related changes. The known psABI changes at this
point include:
.IP "\(bu" 4
For SysV/x86\-64, unions with \f(CW\*(C`long double\*(C'\fR members are
passed in memory as specified in psABI. For example:
.Sp
.Vb 4
\& union U {
\& long double ld;
\& int i;
\& };
.Ve
.Sp
\&\f(CW\*(C`union U\*(C'\fR is always passed in memory.
.RE
.RS 4
.RE
.IP "\fB\-Wctor\-dtor\-privacy\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wctor-dtor-privacy ( and Objective- only)"
Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions. Also warn if there are no non-private
methods, and there's at least one private member function that isn't
a constructor or destructor.
.IP "\fB\-Wdelete\-non\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wdelete-non-virtual-dtor ( and Objective- only)"
Warn when \fBdelete\fR is used to destroy an instance of a class that
has virtual functions and non-virtual destructor. It is unsafe to delete
an instance of a derived class through a pointer to a base class if the
base class does not have a virtual destructor. This warning is enabled
by \fB\-Wall\fR.
.IP "\fB\-Wliteral\-suffix\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wliteral-suffix ( and Objective- only)"
Warn when a string or character literal is followed by a ud-suffix which does
not begin with an underscore. As a conforming extension, \s-1GCC\s0 treats such
suffixes as separate preprocessing tokens in order to maintain backwards
compatibility with code that uses formatting macros from \f(CW\*(C`<inttypes.h>\*(C'\fR.
For example:
.Sp
.Vb 3
\& #define _\|_STDC_FORMAT_MACROS
\& #include <inttypes.h>
\& #include <stdio.h>
\&
\& int main() {
\& int64_t i64 = 123;
\& printf("My int64: %"PRId64"\en", i64);
\& }
.Ve
.Sp
In this case, \f(CW\*(C`PRId64\*(C'\fR is treated as a separate preprocessing token.
.Sp
This warning is enabled by default.
.IP "\fB\-Wnarrowing\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wnarrowing ( and Objective- only)"
Warn when a narrowing conversion prohibited by \*(C+11 occurs within
\&\fB{ }\fR, e.g.
.Sp
.Vb 1
\& int i = { 2.2 }; // error: narrowing from double to int
.Ve
.Sp
This flag is included in \fB\-Wall\fR and \fB\-Wc++11\-compat\fR.
.Sp
With \fB\-std=c++11\fR, \fB\-Wno\-narrowing\fR suppresses the diagnostic
required by the standard. Note that this does not affect the meaning
of well-formed code; narrowing conversions are still considered
ill-formed in \s-1SFINAE\s0 context.
.IP "\fB\-Wnoexcept\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wnoexcept ( and Objective- only)"
Warn when a noexcept-expression evaluates to false because of a call
to a function that does not have a non-throwing exception
specification (i.e. \fB\f(BIthrow()\fB\fR or \fBnoexcept\fR) but is known by
the compiler to never throw an exception.
.IP "\fB\-Wnon\-virtual\-dtor\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wnon-virtual-dtor ( and Objective- only)"
Warn when a class has virtual functions and an accessible non-virtual
destructor itself or in an accessible polymorphic base class, in which
case it is possible but unsafe to delete an instance of a derived
class through a pointer to the class itself or base class. This
warning is automatically enabled if \fB\-Weffc++\fR is specified.
.IP "\fB\-Wreorder\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wreorder ( and Objective- only)"
Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
.Sp
.Vb 5
\& struct A {
\& int i;
\& int j;
\& A(): j (0), i (1) { }
\& };
.Ve
.Sp
The compiler rearranges the member initializers for \fBi\fR
and \fBj\fR to match the declaration order of the members, emitting
a warning to that effect. This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-fext\-numeric\-literals\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-fext-numeric-literals ( and Objective- only)"
Accept imaginary, fixed-point, or machine-defined
literal number suffixes as \s-1GNU\s0 extensions.
When this option is turned off these suffixes are treated
as \*(C+11 user-defined literal numeric suffixes.
This is on by default for all pre\-\*(C+11 dialects and all \s-1GNU\s0 dialects:
\&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR,
\&\fB\-std=gnu++1y\fR.
This option is off by default
for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...).
.PP
The following \fB\-W...\fR options are not affected by \fB\-Wall\fR.
.IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Weffc++ ( and Objective- only)"
Warn about violations of the following style guidelines from Scott Meyers'
\&\fIEffective \*(C+\fR series of books:
.RS 4
.IP "\(bu" 4
Define a copy constructor and an assignment operator for classes
with dynamically-allocated memory.
.IP "\(bu" 4
Prefer initialization to assignment in constructors.
.IP "\(bu" 4
Have \f(CW\*(C`operator=\*(C'\fR return a reference to \f(CW*this\fR.
.IP "\(bu" 4
Don't try to return a reference when you must return an object.
.IP "\(bu" 4
Distinguish between prefix and postfix forms of increment and
decrement operators.
.IP "\(bu" 4
Never overload \f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, or \f(CW\*(C`,\*(C'\fR.
.RE
.RS 4
.Sp
This option also enables \fB\-Wnon\-virtual\-dtor\fR, which is also
one of the effective \*(C+ recommendations. However, the check is
extended to warn about the lack of virtual destructor in accessible
non-polymorphic bases classes too.
.Sp
When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use \fBgrep \-v\fR
to filter out those warnings.
.RE
.IP "\fB\-Wstrict\-null\-sentinel\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wstrict-null-sentinel ( and Objective- only)"
Warn about the use of an uncasted \f(CW\*(C`NULL\*(C'\fR as sentinel. When
compiling only with \s-1GCC\s0 this is a valid sentinel, as \f(CW\*(C`NULL\*(C'\fR is defined
to \f(CW\*(C`_\|_null\*(C'\fR. Although it is a null pointer constant rather than a
null pointer, it is guaranteed to be of the same size as a pointer.
But this use is not portable across different compilers.
.IP "\fB\-Wno\-non\-template\-friend\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wno-non-template-friend ( and Objective- only)"
Disable warnings when non-templatized friend functions are declared
within a template. Since the advent of explicit template specification
support in G++, if the name of the friend is an unqualified-id (i.e.,
\&\fBfriend foo(int)\fR), the \*(C+ language specification demands that the
friend declare or define an ordinary, nontemplate function. (Section
14.5.3). Before G++ implemented explicit specification, unqualified-ids
could be interpreted as a particular specialization of a templatized
function. Because this non-conforming behavior is no longer the default
behavior for G++, \fB\-Wnon\-template\-friend\fR allows the compiler to
check existing code for potential trouble spots and is on by default.
This new compiler behavior can be turned off with
\&\fB\-Wno\-non\-template\-friend\fR, which keeps the conformant compiler code
but disables the helpful warning.
.IP "\fB\-Wold\-style\-cast\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wold-style-cast ( and Objective- only)"
Warn if an old-style (C\-style) cast to a non-void type is used within
a \*(C+ program. The new-style casts (\fBdynamic_cast\fR,
\&\fBstatic_cast\fR, \fBreinterpret_cast\fR, and \fBconst_cast\fR) are
less vulnerable to unintended effects and much easier to search for.
.IP "\fB\-Woverloaded\-virtual\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Woverloaded-virtual ( and Objective- only)"
Warn when a function declaration hides virtual functions from a
base class. For example, in:
.Sp
.Vb 3
\& struct A {
\& virtual void f();
\& };
\&
\& struct B: public A {
\& void f(int);
\& };
.Ve
.Sp
the \f(CW\*(C`A\*(C'\fR class version of \f(CW\*(C`f\*(C'\fR is hidden in \f(CW\*(C`B\*(C'\fR, and code
like:
.Sp
.Vb 2
\& B* b;
\& b\->f();
.Ve
.Sp
fails to compile.
.IP "\fB\-Wno\-pmf\-conversions\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wno-pmf-conversions ( and Objective- only)"
Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
.IP "\fB\-Wsign\-promo\fR (\*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wsign-promo ( and Objective- only)"
Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ tried to preserve
unsignedness, but the standard mandates the current behavior.
.SS "Options Controlling Objective-C and Objective\-\*(C+ Dialects"
.IX Subsection "Options Controlling Objective-C and Objective- Dialects"
(\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+
languages themselves.
.PP
This section describes the command-line options that are only meaningful
for Objective-C and Objective\-\*(C+ programs. You can also use most of
the language-independent \s-1GNU\s0 compiler options.
For example, you might compile a file \f(CW\*(C`some_class.m\*(C'\fR like this:
.PP
.Vb 1
\& gcc \-g \-fgnu\-runtime \-O \-c some_class.m
.Ve
.PP
In this example, \fB\-fgnu\-runtime\fR is an option meant only for
Objective-C and Objective\-\*(C+ programs; you can use the other options with
any language supported by \s-1GCC.\s0
.PP
Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
\&\fB\-Wtraditional\fR). Similarly, Objective\-\*(C+ compilations may use
\&\*(C+\-specific options (e.g., \fB\-Wabi\fR).
.PP
Here is a list of options that are \fIonly\fR for compiling Objective-C
and Objective\-\*(C+ programs:
.IP "\fB\-fconstant\-string\-class=\fR\fIclass-name\fR" 4
.IX Item "-fconstant-string-class=class-name"
Use \fIclass-name\fR as the name of the class to instantiate for each
literal string specified with the syntax \f(CW\*(C`@"..."\*(C'\fR. The default
class name is \f(CW\*(C`NXConstantString\*(C'\fR if the \s-1GNU\s0 runtime is being used, and
\&\f(CW\*(C`NSConstantString\*(C'\fR if the NeXT runtime is being used (see below). The
\&\fB\-fconstant\-cfstrings\fR option, if also present, overrides the
\&\fB\-fconstant\-string\-class\fR setting and cause \f(CW\*(C`@"..."\*(C'\fR literals
to be laid out as constant CoreFoundation strings.
.IP "\fB\-fgnu\-runtime\fR" 4
.IX Item "-fgnu-runtime"
Generate object code compatible with the standard \s-1GNU\s0 Objective-C
runtime. This is the default for most types of systems.
.IP "\fB\-fnext\-runtime\fR" 4
.IX Item "-fnext-runtime"
Generate output compatible with the NeXT runtime. This is the default
for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro
\&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is
used.
.IP "\fB\-fno\-nil\-receivers\fR" 4
.IX Item "-fno-nil-receivers"
Assume that all Objective-C message dispatches (\f(CW\*(C`[receiver
message:arg]\*(C'\fR) in this translation unit ensure that the receiver is
not \f(CW\*(C`nil\*(C'\fR. This allows for more efficient entry points in the
runtime to be used. This option is only available in conjunction with
the NeXT runtime and \s-1ABI\s0 version 0 or 1.
.IP "\fB\-fobjc\-abi\-version=\fR\fIn\fR" 4
.IX Item "-fobjc-abi-version=n"
Use version \fIn\fR of the Objective-C \s-1ABI\s0 for the selected runtime.
This option is currently supported only for the NeXT runtime. In that
case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for
properties and other Objective-C 2.0 additions. Version 1 is the
traditional (32\-bit) \s-1ABI\s0 with support for properties and other
Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If
nothing is specified, the default is Version 0 on 32\-bit target
machines, and Version 2 on 64\-bit target machines.
.IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4
.IX Item "-fobjc-call-cxx-cdtors"
For each Objective-C class, check if any of its instance variables is a
\&\*(C+ object with a non-trivial default constructor. If so, synthesize a
special \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR instance method which runs
non-trivial default constructors on any such instance variables, in order,
and then return \f(CW\*(C`self\*(C'\fR. Similarly, check if any instance variable
is a \*(C+ object with a non-trivial destructor, and if so, synthesize a
special \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR method which runs
all such default destructors, in reverse order.
.Sp
The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR
methods thusly generated only operate on instance variables
declared in the current Objective-C class, and not those inherited
from superclasses. It is the responsibility of the Objective-C
runtime to invoke all such methods in an object's inheritance
hierarchy. The \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR methods are invoked
by the runtime immediately after a new object instance is allocated;
the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately
before the runtime deallocates an object instance.
.Sp
As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has
support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and
\&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods.
.IP "\fB\-fobjc\-direct\-dispatch\fR" 4
.IX Item "-fobjc-direct-dispatch"
Allow fast jumps to the message dispatcher. On Darwin this is
accomplished via the comm page.
.IP "\fB\-fobjc\-exceptions\fR" 4
.IX Item "-fobjc-exceptions"
Enable syntactic support for structured exception handling in
Objective-C, similar to what is offered by \*(C+ and Java. This option
is required to use the Objective-C keywords \f(CW@try\fR,
\&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and
\&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0
runtime and the NeXT runtime (but not available in conjunction with
the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier).
.IP "\fB\-fobjc\-gc\fR" 4
.IX Item "-fobjc-gc"
Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+
programs. This option is only available with the NeXT runtime; the
\&\s-1GNU\s0 runtime has a different garbage collection implementation that
does not require special compiler flags.
.IP "\fB\-fobjc\-nilcheck\fR" 4
.IX Item "-fobjc-nilcheck"
For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil
receiver in method invocations before doing the actual method call.
This is the default and can be disabled using
\&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never
checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older
version of the NeXT runtime \s-1ABI,\s0 is used.
.IP "\fB\-fobjc\-std=objc1\fR" 4
.IX Item "-fobjc-std=objc1"
Conform to the language syntax of Objective-C 1.0, the language
recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to
the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards,
which is controlled by the separate C/\*(C+ dialect option flags. When
this option is used with the Objective-C or Objective\-\*(C+ compiler,
any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected.
This is useful if you need to make sure that your Objective-C code can
be compiled with older versions of \s-1GCC.\s0
.IP "\fB\-freplace\-objc\-classes\fR" 4
.IX Item "-freplace-objc-classes"
Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in
the resulting object file, and allow \fB\f(BIdyld\fB\|(1)\fR to load it in at
run time instead. This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself. Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0
and later.
.IP "\fB\-fzero\-link\fR" 4
.IX Item "-fzero-link"
When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to \f(CW\*(C`objc_getClass("...")\*(C'\fR (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance. Specifying the \fB\-fzero\-link\fR flag
suppresses this behavior and causes calls to \f(CW\*(C`objc_getClass("...")\*(C'\fR
to be retained. This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.
The \s-1GNU\s0 runtime currently always retains calls to \f(CW\*(C`objc_get_class("...")\*(C'\fR
regardless of command-line options.
.IP "\fB\-gen\-decls\fR" 4
.IX Item "-gen-decls"
Dump interface declarations for all classes seen in the source file to a
file named \fI\fIsourcename\fI.decl\fR.
.IP "\fB\-Wassign\-intercept\fR (Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wassign-intercept (Objective-C and Objective- only)"
Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
.IP "\fB\-Wno\-protocol\fR (Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wno-protocol (Objective-C and Objective- only)"
If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the \fB\-Wno\-protocol\fR option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
.IP "\fB\-Wselector\fR (Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wselector (Objective-C and Objective- only)"
Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods
in the final stage of compilation. Additionally, a check is performed
for each selector appearing in a \f(CW\*(C`@selector(...)\*(C'\fR
expression, and a corresponding method for that selector has been found
during compilation. Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the \fB\-fsyntax\-only\fR option is
being used.
.IP "\fB\-Wstrict\-selector\-match\fR (Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wstrict-selector-match (Objective-C and Objective- only)"
Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type \f(CW\*(C`id\*(C'\fR or \f(CW\*(C`Class\*(C'\fR. When this flag
is off (which is the default behavior), the compiler omits such warnings
if any differences found are confined to types that share the same size
and alignment.
.IP "\fB\-Wundeclared\-selector\fR (Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wundeclared-selector (Objective-C and Objective- only)"
Warn if a \f(CW\*(C`@selector(...)\*(C'\fR expression referring to an
undeclared selector is found. A selector is considered undeclared if no
method with that name has been declared before the
\&\f(CW\*(C`@selector(...)\*(C'\fR expression, either explicitly in an
\&\f(CW@interface\fR or \f(CW@protocol\fR declaration, or implicitly in
an \f(CW@implementation\fR section. This option always performs its
checks as soon as a \f(CW\*(C`@selector(...)\*(C'\fR expression is found,
while \fB\-Wselector\fR only performs its checks in the final stage of
compilation. This also enforces the coding style convention
that methods and selectors must be declared before being used.
.IP "\fB\-print\-objc\-runtime\-info\fR" 4
.IX Item "-print-objc-runtime-info"
Generate C header describing the largest structure that is passed by
value, if any.
.SS "Options to Control Diagnostic Messages Formatting"
.IX Subsection "Options to Control Diagnostic Messages Formatting"
Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g. its width, ...). You can use the
options described below
to control the formatting algorithm for diagnostic messages,
e.g. how many characters per line, how often source location
information should be reported. Note that some language front ends may not
honor these options.
.IP "\fB\-fmessage\-length=\fR\fIn\fR" 4
.IX Item "-fmessage-length=n"
Try to format error messages so that they fit on lines of about \fIn\fR
characters. The default is 72 characters for \fBg++\fR and 0 for the rest of
the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no
line-wrapping is done; each error message appears on a single
line.
.IP "\fB\-fdiagnostics\-show\-location=once\fR" 4
.IX Item "-fdiagnostics-show-location=once"
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit source location information \fIonce\fR; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines. This is the default
behavior.
.IP "\fB\-fdiagnostics\-show\-location=every\-line\fR" 4
.IX Item "-fdiagnostics-show-location=every-line"
Only meaningful in line-wrapping mode. Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.
.IP "\fB\-fdiagnostics\-color[=\fR\fI\s-1WHEN\s0\fR\fB]\fR" 4
.IX Item "-fdiagnostics-color[=WHEN]"
.PD 0
.IP "\fB\-fno\-diagnostics\-color\fR" 4
.IX Item "-fno-diagnostics-color"
.PD
Use color in diagnostics. \fI\s-1WHEN\s0\fR is \fBnever\fR, \fBalways\fR,
or \fBauto\fR. The default is \fBnever\fR if \fB\s-1GCC_COLORS\s0\fR environment
variable isn't present in the environment, and \fBauto\fR otherwise.
\&\fBauto\fR means to use color only when the standard error is a terminal.
The forms \fB\-fdiagnostics\-color\fR and \fB\-fno\-diagnostics\-color\fR are
aliases for \fB\-fdiagnostics\-color=always\fR and
\&\fB\-fdiagnostics\-color=never\fR, respectively.
.Sp
The colors are defined by the environment variable \fB\s-1GCC_COLORS\s0\fR.
Its value is a colon-separated list of capabilities and Select Graphic
Rendition (\s-1SGR\s0) substrings. \s-1SGR\s0 commands are interpreted by the
terminal or terminal emulator. (See the section in the documentation
of your text terminal for permitted values and their meanings as
character attributes.) These substring values are integers in decimal
representation and can be concatenated with semicolons.
Common values to concatenate include
\&\fB1\fR for bold,
\&\fB4\fR for underline,
\&\fB5\fR for blink,
\&\fB7\fR for inverse,
\&\fB39\fR for default foreground color,
\&\fB30\fR to \fB37\fR for foreground colors,
\&\fB90\fR to \fB97\fR for 16\-color mode foreground colors,
\&\fB38;5;0\fR to \fB38;5;255\fR
for 88\-color and 256\-color modes foreground colors,
\&\fB49\fR for default background color,
\&\fB40\fR to \fB47\fR for background colors,
\&\fB100\fR to \fB107\fR for 16\-color mode background colors,
and \fB48;5;0\fR to \fB48;5;255\fR
for 88\-color and 256\-color modes background colors.
.Sp
The default \fB\s-1GCC_COLORS\s0\fR is
\&\fBerror=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01\fR
where \fB01;31\fR is bold red, \fB01;35\fR is bold magenta,
\&\fB01;36\fR is bold cyan, \fB01;32\fR is bold green and
\&\fB01\fR is bold. Setting \fB\s-1GCC_COLORS\s0\fR to the empty
string disables colors.
Supported capabilities are as follows.
.RS 4
.ie n .IP """error=""" 4
.el .IP "\f(CWerror=\fR" 4
.IX Item "error="
\&\s-1SGR\s0 substring for error: markers.
.ie n .IP """warning=""" 4
.el .IP "\f(CWwarning=\fR" 4
.IX Item "warning="
\&\s-1SGR\s0 substring for warning: markers.
.ie n .IP """note=""" 4
.el .IP "\f(CWnote=\fR" 4
.IX Item "note="
\&\s-1SGR\s0 substring for note: markers.
.ie n .IP """caret=""" 4
.el .IP "\f(CWcaret=\fR" 4
.IX Item "caret="
\&\s-1SGR\s0 substring for caret line.
.ie n .IP """locus=""" 4
.el .IP "\f(CWlocus=\fR" 4
.IX Item "locus="
\&\s-1SGR\s0 substring for location information, \fBfile:line\fR or
\&\fBfile:line:column\fR etc.
.ie n .IP """quote=""" 4
.el .IP "\f(CWquote=\fR" 4
.IX Item "quote="
\&\s-1SGR\s0 substring for information printed within quotes.
.RE
.RS 4
.RE
.IP "\fB\-fno\-diagnostics\-show\-option\fR" 4
.IX Item "-fno-diagnostics-show-option"
By default, each diagnostic emitted includes text indicating the
command-line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery). Specifying the
\&\fB\-fno\-diagnostics\-show\-option\fR flag suppresses that behavior.
.IP "\fB\-fno\-diagnostics\-show\-caret\fR" 4
.IX Item "-fno-diagnostics-show-caret"
By default, each diagnostic emitted includes the original source line
and a caret '^' indicating the column. This option suppresses this
information.
.SS "Options to Request or Suppress Warnings"
.IX Subsection "Options to Request or Suppress Warnings"
Warnings are diagnostic messages that report constructions that
are not inherently erroneous but that are risky or suggest there
may have been an error.
.PP
The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by \s-1GCC.\s0
.IP "\fB\-fsyntax\-only\fR" 4
.IX Item "-fsyntax-only"
Check the code for syntax errors, but don't do anything beyond that.
.IP "\fB\-fmax\-errors=\fR\fIn\fR" 4
.IX Item "-fmax-errors=n"
Limits the maximum number of error messages to \fIn\fR, at which point
\&\s-1GCC\s0 bails out rather than attempting to continue processing the source
code. If \fIn\fR is 0 (the default), there is no limit on the number
of error messages produced. If \fB\-Wfatal\-errors\fR is also
specified, then \fB\-Wfatal\-errors\fR takes precedence over this
option.
.IP "\fB\-w\fR" 4
.IX Item "-w"
Inhibit all warning messages.
.IP "\fB\-Werror\fR" 4
.IX Item "-Werror"
Make all warnings into errors.
.IP "\fB\-Werror=\fR" 4
.IX Item "-Werror="
Make the specified warning into an error. The specifier for a warning
is appended; for example \fB\-Werror=switch\fR turns the warnings
controlled by \fB\-Wswitch\fR into errors. This switch takes a
negative form, to be used to negate \fB\-Werror\fR for specific
warnings; for example \fB\-Wno\-error=switch\fR makes
\&\fB\-Wswitch\fR warnings not be errors, even when \fB\-Werror\fR
is in effect.
.Sp
The warning message for each controllable warning includes the
option that controls the warning. That option can then be used with
\&\fB\-Werror=\fR and \fB\-Wno\-error=\fR as described above.
(Printing of the option in the warning message can be disabled using the
\&\fB\-fno\-diagnostics\-show\-option\fR flag.)
.Sp
Note that specifying \fB\-Werror=\fR\fIfoo\fR automatically implies
\&\fB\-W\fR\fIfoo\fR. However, \fB\-Wno\-error=\fR\fIfoo\fR does not
imply anything.
.IP "\fB\-Wfatal\-errors\fR" 4
.IX Item "-Wfatal-errors"
This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
.PP
You can request many specific warnings with options beginning with
\&\fB\-W\fR, for example \fB\-Wimplicit\fR to request warnings on
implicit declarations. Each of these specific warning options also
has a negative form beginning \fB\-Wno\-\fR to turn off warnings; for
example, \fB\-Wno\-implicit\fR. This manual lists only one of the
two forms, whichever is not the default. For further
language-specific options also refer to \fB\*(C+ Dialect Options\fR and
\&\fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
.PP
When an unrecognized warning option is requested (e.g.,
\&\fB\-Wunknown\-warning\fR), \s-1GCC\s0 emits a diagnostic stating
that the option is not recognized. However, if the \fB\-Wno\-\fR form
is used, the behavior is slightly different: no diagnostic is
produced for \fB\-Wno\-unknown\-warning\fR unless other diagnostics
are being produced. This allows the use of new \fB\-Wno\-\fR options
with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.
.IP "\fB\-Wpedantic\fR" 4
.IX Item "-Wpedantic"
.PD 0
.IP "\fB\-pedantic\fR" 4
.IX Item "-pedantic"
.PD
Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0;
reject all programs that use forbidden extensions, and some other
programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the
version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used.
.Sp
Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without
this option (though a rare few require \fB\-ansi\fR or a
\&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However,
without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+
features are supported as well. With this option, they are rejected.
.Sp
\&\fB\-Wpedantic\fR does not cause warning messages for use of the
alternate keywords whose names begin and end with \fB_\|_\fR. Pedantic
warnings are also disabled in the expression that follows
\&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use
these escape routes; application programs should avoid them.
.Sp
Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO
C\s0 conformance. They soon find that it does not do quite what they want:
it finds some non-ISO practices, but not all\-\-\-only those for which
\&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which
diagnostics have been added.
.Sp
A feature to report any failure to conform to \s-1ISO C\s0 might be useful in
some instances, but would require considerable additional work and would
be quite different from \fB\-Wpedantic\fR. We don't have plans to
support such a feature in the near future.
.Sp
Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0
extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a
corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0
extended dialect is based. Warnings from \fB\-Wpedantic\fR are given
where they are required by the base standard. (It does not make sense
for such warnings to be given only for features not in the specified \s-1GNU
C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
.IP "\fB\-pedantic\-errors\fR" 4
.IX Item "-pedantic-errors"
Like \fB\-Wpedantic\fR, except that errors are produced rather than
warnings.
.IP "\fB\-Wall\fR" 4
.IX Item "-Wall"
This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in \fB\*(C+ Dialect
Options\fR and \fBObjective-C and Objective\-\*(C+ Dialect Options\fR.
.Sp
\&\fB\-Wall\fR turns on the following warning flags:
.Sp
\&\fB\-Waddress
\&\-Warray\-bounds\fR (only with\fB \fR\fB\-O2\fR)
\&\fB\-Wc++11\-compat
\&\-Wchar\-subscripts
\&\-Wenum\-compare\fR (in C/ObjC; this is on by default in \*(C+)
\&\fB\-Wimplicit\-int\fR (C and Objective-C only)
\&\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)
\&\fB\-Wcomment
\&\-Wformat
\&\-Wmain\fR (only for C/ObjC and unless\fB \fR\fB\-ffreestanding\fR)
\&\fB\-Wmaybe\-uninitialized
\&\-Wmissing\-braces\fR (only for C/ObjC)
\&\fB\-Wnonnull
\&\-Wopenmp\-simd
\&\-Wparentheses
\&\-Wpointer\-sign
\&\-Wreorder
\&\-Wreturn\-type
\&\-Wsequence\-point
\&\-Wsign\-compare\fR (only in \*(C+)
\&\fB\-Wstrict\-aliasing
\&\-Wstrict\-overflow=1
\&\-Wswitch
\&\-Wtrigraphs
\&\-Wuninitialized
\&\-Wunknown\-pragmas
\&\-Wunused\-function
\&\-Wunused\-label
\&\-Wunused\-value
\&\-Wunused\-variable
\&\-Wvolatile\-register\-var\fR
.Sp
Note that some warning flags are not implied by \fB\-Wall\fR. Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by \fB\-Wextra\fR but many of
them must be enabled individually.
.IP "\fB\-Wextra\fR" 4
.IX Item "-Wextra"
This enables some extra warning flags that are not enabled by
\&\fB\-Wall\fR. (This option used to be called \fB\-W\fR. The older
name is still supported, but the newer name is more descriptive.)
.Sp
\&\fB\-Wclobbered
\&\-Wempty\-body
\&\-Wignored\-qualifiers
\&\-Wmissing\-field\-initializers
\&\-Wmissing\-parameter\-type\fR (C only)
\&\fB\-Wold\-style\-declaration\fR (C only)
\&\fB\-Woverride\-init
\&\-Wsign\-compare
\&\-Wtype\-limits
\&\-Wuninitialized
\&\-Wunused\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR)
\&\fB\-Wunused\-but\-set\-parameter\fR (only with\fB \fR\fB\-Wunused\fR\fB \fRor\fB \fR\fB\-Wall\fR) \fB \fR
.Sp
The option \fB\-Wextra\fR also prints warning messages for the
following cases:
.RS 4
.IP "\(bu" 4
A pointer is compared against integer zero with \fB<\fR, \fB<=\fR,
\&\fB>\fR, or \fB>=\fR.
.IP "\(bu" 4
(\*(C+ only) An enumerator and a non-enumerator both appear in a
conditional expression.
.IP "\(bu" 4
(\*(C+ only) Ambiguous virtual bases.
.IP "\(bu" 4
(\*(C+ only) Subscripting an array that has been declared \fBregister\fR.
.IP "\(bu" 4
(\*(C+ only) Taking the address of a variable that has been declared
\&\fBregister\fR.
.IP "\(bu" 4
(\*(C+ only) A base class is not initialized in a derived class's copy
constructor.
.RE
.RS 4
.RE
.IP "\fB\-Wchar\-subscripts\fR" 4
.IX Item "-Wchar-subscripts"
Warn if an array subscript has type \f(CW\*(C`char\*(C'\fR. This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wcomment\fR" 4
.IX Item "-Wcomment"
Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
comment, or whenever a Backslash-Newline appears in a \fB//\fR comment.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wno\-coverage\-mismatch\fR" 4
.IX Item "-Wno-coverage-mismatch"
Warn if feedback profiles do not match when using the
\&\fB\-fprofile\-use\fR option.
If a source file is changed between compiling with \fB\-fprofile\-gen\fR and
with \fB\-fprofile\-use\fR, the files with the profile feedback can fail
to match the source file and \s-1GCC\s0 cannot use the profile feedback
information. By default, this warning is enabled and is treated as an
error. \fB\-Wno\-coverage\-mismatch\fR can be used to disable the
warning or \fB\-Wno\-error=coverage\-mismatch\fR can be used to
disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the
case of very minor changes such as bug fixes to an existing code-base.
Completely disabling the warning is not recommended.
.IP "\fB\-Wno\-cpp\fR" 4
.IX Item "-Wno-cpp"
(C, Objective-C, \*(C+, Objective\-\*(C+ and Fortran only)
.Sp
Suppress warning messages emitted by \f(CW\*(C`#warning\*(C'\fR directives.
.IP "\fB\-Wdouble\-promotion\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wdouble-promotion (C, , Objective-C and Objective- only)"
Give a warning when a value of type \f(CW\*(C`float\*(C'\fR is implicitly
promoted to \f(CW\*(C`double\*(C'\fR. CPUs with a 32\-bit \*(L"single-precision\*(R"
floating-point unit implement \f(CW\*(C`float\*(C'\fR in hardware, but emulate
\&\f(CW\*(C`double\*(C'\fR in software. On such a machine, doing computations
using \f(CW\*(C`double\*(C'\fR values is much more expensive because of the
overhead required for software emulation.
.Sp
It is easy to accidentally do computations with \f(CW\*(C`double\*(C'\fR because
floating-point literals are implicitly of type \f(CW\*(C`double\*(C'\fR. For
example, in:
.Sp
.Vb 4
\& float area(float radius)
\& {
\& return 3.14159 * radius * radius;
\& }
.Ve
.Sp
the compiler performs the entire computation with \f(CW\*(C`double\*(C'\fR
because the floating-point literal is a \f(CW\*(C`double\*(C'\fR.
.IP "\fB\-Wformat\fR" 4
.IX Item "-Wformat"
.PD 0
.IP "\fB\-Wformat=\fR\fIn\fR" 4
.IX Item "-Wformat=n"
.PD
Check calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense. This includes standard functions, and others specified by format
attributes, in the \f(CW\*(C`printf\*(C'\fR,
\&\f(CW\*(C`scanf\*(C'\fR, \f(CW\*(C`strftime\*(C'\fR and \f(CW\*(C`strfmon\*(C'\fR (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
\&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR.
.Sp
The formats are checked against the format features supported by \s-1GNU\s0
libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well
as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0
extensions. Other library implementations may not support all these
features; \s-1GCC\s0 does not support warning about features that go beyond a
particular library's limitations. However, if \fB\-Wpedantic\fR is used
with \fB\-Wformat\fR, warnings are given about format features not
in the selected standard version (but not for \f(CW\*(C`strfmon\*(C'\fR formats,
since those are not in any version of the C standard).
.RS 4
.IP "\fB\-Wformat=1\fR" 4
.IX Item "-Wformat=1"
.PD 0
.IP "\fB\-Wformat\fR" 4
.IX Item "-Wformat"
.PD
Option \fB\-Wformat\fR is equivalent to \fB\-Wformat=1\fR, and
\&\fB\-Wno\-format\fR is equivalent to \fB\-Wformat=0\fR. Since
\&\fB\-Wformat\fR also checks for null format arguments for several
functions, \fB\-Wformat\fR also implies \fB\-Wnonnull\fR. Some
aspects of this level of format checking can be disabled by the
options: \fB\-Wno\-format\-contains\-nul\fR,
\&\fB\-Wno\-format\-extra\-args\fR, and \fB\-Wno\-format\-zero\-length\fR.
\&\fB\-Wformat\fR is enabled by \fB\-Wall\fR.
.IP "\fB\-Wno\-format\-contains\-nul\fR" 4
.IX Item "-Wno-format-contains-nul"
If \fB\-Wformat\fR is specified, do not warn about format strings that
contain \s-1NUL\s0 bytes.
.IP "\fB\-Wno\-format\-extra\-args\fR" 4
.IX Item "-Wno-format-extra-args"
If \fB\-Wformat\fR is specified, do not warn about excess arguments to a
\&\f(CW\*(C`printf\*(C'\fR or \f(CW\*(C`scanf\*(C'\fR format function. The C standard specifies
that such arguments are ignored.
.Sp
Where the unused arguments lie between used arguments that are
specified with \fB$\fR operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to \f(CW\*(C`va_arg\*(C'\fR to skip the unused arguments. However,
in the case of \f(CW\*(C`scanf\*(C'\fR formats, this option suppresses the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.
.IP "\fB\-Wno\-format\-zero\-length\fR" 4
.IX Item "-Wno-format-zero-length"
If \fB\-Wformat\fR is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
.IP "\fB\-Wformat=2\fR" 4
.IX Item "-Wformat=2"
Enable \fB\-Wformat\fR plus additional format checks. Currently
equivalent to \fB\-Wformat \-Wformat\-nonliteral \-Wformat\-security
\&\-Wformat\-y2k\fR.
.IP "\fB\-Wformat\-nonliteral\fR" 4
.IX Item "-Wformat-nonliteral"
If \fB\-Wformat\fR is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a \f(CW\*(C`va_list\*(C'\fR.
.IP "\fB\-Wformat\-security\fR" 4
.IX Item "-Wformat-security"
If \fB\-Wformat\fR is specified, also warn about uses of format
functions that represent possible security problems. At present, this
warns about calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR functions where the
format string is not a string literal and there are no format arguments,
as in \f(CW\*(C`printf (foo);\*(C'\fR. This may be a security hole if the format
string came from untrusted input and contains \fB\f(CB%n\fB\fR. (This is
currently a subset of what \fB\-Wformat\-nonliteral\fR warns about, but
in future warnings may be added to \fB\-Wformat\-security\fR that are not
included in \fB\-Wformat\-nonliteral\fR.)
.IP "\fB\-Wformat\-y2k\fR" 4
.IX Item "-Wformat-y2k"
If \fB\-Wformat\fR is specified, also warn about \f(CW\*(C`strftime\*(C'\fR
formats that may yield only a two-digit year.
.RE
.RS 4
.RE
.IP "\fB\-Wnonnull\fR" 4
.IX Item "-Wnonnull"
Warn about passing a null pointer for arguments marked as
requiring a non-null value by the \f(CW\*(C`nonnull\*(C'\fR function attribute.
.Sp
\&\fB\-Wnonnull\fR is included in \fB\-Wall\fR and \fB\-Wformat\fR. It
can be disabled with the \fB\-Wno\-nonnull\fR option.
.IP "\fB\-Winit\-self\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Winit-self (C, , Objective-C and Objective- only)"
Warn about uninitialized variables that are initialized with themselves.
Note this option can only be used with the \fB\-Wuninitialized\fR option.
.Sp
For example, \s-1GCC\s0 warns about \f(CW\*(C`i\*(C'\fR being uninitialized in the
following snippet only when \fB\-Winit\-self\fR has been specified:
.Sp
.Vb 5
\& int f()
\& {
\& int i = i;
\& return i;
\& }
.Ve
.Sp
This warning is enabled by \fB\-Wall\fR in \*(C+.
.IP "\fB\-Wimplicit\-int\fR (C and Objective-C only)" 4
.IX Item "-Wimplicit-int (C and Objective-C only)"
Warn when a declaration does not specify a type.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wimplicit\-function\-declaration\fR (C and Objective-C only)" 4
.IX Item "-Wimplicit-function-declaration (C and Objective-C only)"
Give a warning whenever a function is used before being declared. In
C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this warning is
enabled by default and it is made into an error by
\&\fB\-pedantic\-errors\fR. This warning is also enabled by
\&\fB\-Wall\fR.
.IP "\fB\-Wimplicit\fR (C and Objective-C only)" 4
.IX Item "-Wimplicit (C and Objective-C only)"
Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4
.IX Item "-Wignored-qualifiers (C and only)"
Warn if the return type of a function has a type qualifier
such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR.
\&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function
definitions, so such return types always receive a warning
even without this option.
.Sp
This warning is also enabled by \fB\-Wextra\fR.
.IP "\fB\-Wmain\fR" 4
.IX Item "-Wmain"
Warn if the type of \fBmain\fR is suspicious. \fBmain\fR should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning
is enabled by default in \*(C+ and is enabled by either \fB\-Wall\fR
or \fB\-Wpedantic\fR.
.IP "\fB\-Wmissing\-braces\fR" 4
.IX Item "-Wmissing-braces"
Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for \fBa\fR is not fully
bracketed, but that for \fBb\fR is fully bracketed. This warning is
enabled by \fB\-Wall\fR in C.
.Sp
.Vb 2
\& int a[2][2] = { 0, 1, 2, 3 };
\& int b[2][2] = { { 0, 1 }, { 2, 3 } };
.Ve
.Sp
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wmissing\-include\-dirs\fR (C, \*(C+, Objective-C and Objective\-\*(C+ only)" 4
.IX Item "-Wmissing-include-dirs (C, , Objective-C and Objective- only)"
Warn if a user-supplied include directory does not exist.
.IP "\fB\-Wparentheses\fR" 4
.IX Item "-Wparentheses"
Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
.Sp
Also warn if a comparison like \fBx<=y<=z\fR appears; this is
equivalent to \fB(x<=y ? 1 : 0) <= z\fR, which is a different
interpretation from that of ordinary mathematical notation.
.Sp
Also warn about constructions where there may be confusion to which
\&\f(CW\*(C`if\*(C'\fR statement an \f(CW\*(C`else\*(C'\fR branch belongs. Here is an example of
such a case:
.Sp
.Vb 7
\& {
\& if (a)
\& if (b)
\& foo ();
\& else
\& bar ();
\& }
.Ve
.Sp
In C/\*(C+, every \f(CW\*(C`else\*(C'\fR branch belongs to the innermost possible
\&\f(CW\*(C`if\*(C'\fR statement, which in this example is \f(CW\*(C`if (b)\*(C'\fR. This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose. When there is the
potential for this confusion, \s-1GCC\s0 issues a warning when this flag
is specified. To eliminate the warning, add explicit braces around
the innermost \f(CW\*(C`if\*(C'\fR statement so there is no way the \f(CW\*(C`else\*(C'\fR
can belong to the enclosing \f(CW\*(C`if\*(C'\fR. The resulting code
looks like this:
.Sp
.Vb 9
\& {
\& if (a)
\& {
\& if (b)
\& foo ();
\& else
\& bar ();
\& }
\& }
.Ve
.Sp
Also warn for dangerous uses of the \s-1GNU\s0 extension to
\&\f(CW\*(C`?:\*(C'\fR with omitted middle operand. When the condition
in the \f(CW\*(C`?\*(C'\fR: operator is a boolean expression, the omitted value is
always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.
.Sp
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wsequence\-point\fR" 4
.IX Item "-Wsequence-point"
Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and \*(C+ standards.
.Sp
The C and \*(C+ standards define the order in which expressions in a C/\*(C+
program are evaluated in terms of \fIsequence points\fR, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it. These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
\&\f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, \f(CW\*(C`? :\*(C'\fR or \f(CW\*(C`,\*(C'\fR (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified. All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified. However, the standards committee have
ruled that function calls do not overlap.
.Sp
It is not specified when between sequence points modifications to the
values of objects take effect. Programs whose behavior depends on this
have undefined behavior; the C and \*(C+ standards specify that \*(L"Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.\*(R". If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.
.Sp
Examples of code with undefined behavior are \f(CW\*(C`a = a++;\*(C'\fR, \f(CW\*(C`a[n]
= b[n++]\*(C'\fR and \f(CW\*(C`a[i++] = i;\*(C'\fR. Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.
.Sp
The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the \s-1GCC\s0 readings page, at
<\fBhttp://gcc.gnu.org/readings.html\fR>.
.Sp
This warning is enabled by \fB\-Wall\fR for C and \*(C+.
.IP "\fB\-Wno\-return\-local\-addr\fR" 4
.IX Item "-Wno-return-local-addr"
Do not warn about returning a pointer (or in \*(C+, a reference) to a
variable that goes out of scope after the function returns.
.IP "\fB\-Wreturn\-type\fR" 4
.IX Item "-Wreturn-type"
Warn whenever a function is defined with a return type that defaults
to \f(CW\*(C`int\*(C'\fR. Also warn about any \f(CW\*(C`return\*(C'\fR statement with no
return value in a function whose return type is not \f(CW\*(C`void\*(C'\fR
(falling off the end of the function body is considered returning
without a value), and about a \f(CW\*(C`return\*(C'\fR statement with an
expression in a function whose return type is \f(CW\*(C`void\*(C'\fR.
.Sp
For \*(C+, a function without return type always produces a diagnostic
message, even when \fB\-Wno\-return\-type\fR is specified. The only
exceptions are \fBmain\fR and functions defined in system headers.
.Sp
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wswitch\fR" 4
.IX Item "-Wswitch"
Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
enumeration. (The presence of a \f(CW\*(C`default\*(C'\fR label prevents this
warning.) \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
provoke warnings when this option is used (even if there is a
\&\f(CW\*(C`default\*(C'\fR label).
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wswitch\-default\fR" 4
.IX Item "-Wswitch-default"
Warn whenever a \f(CW\*(C`switch\*(C'\fR statement does not have a \f(CW\*(C`default\*(C'\fR
case.
.IP "\fB\-Wswitch\-enum\fR" 4
.IX Item "-Wswitch-enum"
Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
enumeration. \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
provoke warnings when this option is used. The only difference
between \fB\-Wswitch\fR and this option is that this option gives a
warning about an omitted enumeration code even if there is a
\&\f(CW\*(C`default\*(C'\fR label.
.IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4
.IX Item "-Wsync-nand (C and only)"
Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR
built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0
.IP "\fB\-Wtrigraphs\fR" 4
.IX Item "-Wtrigraphs"
Warn if any trigraphs are encountered that might change the meaning of
the program (trigraphs within comments are not warned about).
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wunused\-but\-set\-parameter\fR" 4
.IX Item "-Wunused-but-set-parameter"
Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).
.Sp
To suppress this warning use the \fBunused\fR attribute.
.Sp
This warning is also enabled by \fB\-Wunused\fR together with
\&\fB\-Wextra\fR.
.IP "\fB\-Wunused\-but\-set\-variable\fR" 4
.IX Item "-Wunused-but-set-variable"
Warn whenever a local variable is assigned to, but otherwise unused
(aside from its declaration).
This warning is enabled by \fB\-Wall\fR.
.Sp
To suppress this warning use the \fBunused\fR attribute.
.Sp
This warning is also enabled by \fB\-Wunused\fR, which is enabled
by \fB\-Wall\fR.
.IP "\fB\-Wunused\-function\fR" 4
.IX Item "-Wunused-function"
Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wunused\-label\fR" 4
.IX Item "-Wunused-label"
Warn whenever a label is declared but not used.
This warning is enabled by \fB\-Wall\fR.
.Sp
To suppress this warning use the \fBunused\fR attribute.
.IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4
.IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)"
Warn when a typedef locally defined in a function is not used.
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wunused\-parameter\fR" 4
.IX Item "-Wunused-parameter"
Warn whenever a function parameter is unused aside from its declaration.
.Sp
To suppress this warning use the \fBunused\fR attribute.
.IP "\fB\-Wno\-unused\-result\fR" 4
.IX Item "-Wno-unused-result"
Do not warn if a caller of a function marked with attribute
\&\f(CW\*(C`warn_unused_result\*(C'\fR does not use
its return value. The default is \fB\-Wunused\-result\fR.
.IP "\fB\-Wunused\-variable\fR" 4
.IX Item "-Wunused-variable"
Warn whenever a local variable or non-constant static variable is unused
aside from its declaration.
This warning is enabled by \fB\-Wall\fR.
.Sp
To suppress this warning use the \fBunused\fR attribute.
.IP "\fB\-Wunused\-value\fR" 4
.IX Item "-Wunused-value"
Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
\&\fBvoid\fR. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as \fBx[i,j]\fR causes a warning, while
\&\fBx[(void)i,j]\fR does not.
.Sp
This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wunused\fR" 4
.IX Item "-Wunused"
All the above \fB\-Wunused\fR options combined.
.Sp
In order to get a warning about an unused function parameter, you must
either specify \fB\-Wextra \-Wunused\fR (note that \fB\-Wall\fR implies
\&\fB\-Wunused\fR), or separately specify \fB\-Wunused\-parameter\fR.
.IP "\fB\-Wuninitialized\fR" 4
.IX Item "-Wuninitialized"
Warn if an automatic variable is used without first being initialized
or if a variable may be clobbered by a \f(CW\*(C`setjmp\*(C'\fR call. In \*(C+,
warn if a non-static reference or non-static \fBconst\fR member
appears in a class without constructors.
.Sp
If you want to warn about code that uses the uninitialized value of the
variable in its own initializer, use the \fB\-Winit\-self\fR option.
.Sp
These warnings occur for individual uninitialized or clobbered
elements of structure, union or array variables as well as for
variables that are uninitialized or clobbered as a whole. They do
not occur for variables or elements declared \f(CW\*(C`volatile\*(C'\fR. Because
these warnings depend on optimization, the exact variables or elements
for which there are warnings depends on the precise optimization
options and version of \s-1GCC\s0 used.
.Sp
Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
.IP "\fB\-Wmaybe\-uninitialized\fR" 4
.IX Item "-Wmaybe-uninitialized"
For an automatic variable, if there exists a path from the function
entry to a use of the variable that is initialized, but there exist
some other paths for which the variable is not initialized, the compiler
emits a warning if it cannot prove the uninitialized paths are not
executed at run time. These warnings are made optional because \s-1GCC\s0 is
not smart enough to see all the reasons why the code might be correct
in spite of appearing to have an error. Here is one example of how
this can happen:
.Sp
.Vb 12
\& {
\& int x;
\& switch (y)
\& {
\& case 1: x = 1;
\& break;
\& case 2: x = 4;
\& break;
\& case 3: x = 5;
\& }
\& foo (x);
\& }
.Ve
.Sp
If the value of \f(CW\*(C`y\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`x\*(C'\fR is
always initialized, but \s-1GCC\s0 doesn't know this. To suppress the
warning, you need to provide a default case with \fIassert\fR\|(0) or
similar code.
.Sp
This option also warns when a non-volatile automatic variable might be
changed by a call to \f(CW\*(C`longjmp\*(C'\fR. These warnings as well are possible
only in optimizing compilation.
.Sp
The compiler sees only the calls to \f(CW\*(C`setjmp\*(C'\fR. It cannot know
where \f(CW\*(C`longjmp\*(C'\fR will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a warning
even when there is in fact no problem because \f(CW\*(C`longjmp\*(C'\fR cannot
in fact be called at the place that would cause a problem.
.Sp
Some spurious warnings can be avoided if you declare all the functions
you use that never return as \f(CW\*(C`noreturn\*(C'\fR.
.Sp
This warning is enabled by \fB\-Wall\fR or \fB\-Wextra\fR.
.IP "\fB\-Wunknown\-pragmas\fR" 4
.IX Item "-Wunknown-pragmas"
Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by
\&\s-1GCC. \s0 If this command-line option is used, warnings are even issued
for unknown pragmas in system header files. This is not the case if
the warnings are only enabled by the \fB\-Wall\fR command-line option.
.IP "\fB\-Wno\-pragmas\fR" 4
.IX Item "-Wno-pragmas"
Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
\&\fB\-Wunknown\-pragmas\fR.
.IP "\fB\-Wstrict\-aliasing\fR" 4
.IX Item "-Wstrict-aliasing"
This option is only active when \fB\-fstrict\-aliasing\fR is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all
cases, but does attempt to catch the more common pitfalls. It is
included in \fB\-Wall\fR.
It is equivalent to \fB\-Wstrict\-aliasing=3\fR
.IP "\fB\-Wstrict\-aliasing=n\fR" 4
.IX Item "-Wstrict-aliasing=n"
This option is only active when \fB\-fstrict\-aliasing\fR is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way \fB\-O\fR
works.
\&\fB\-Wstrict\-aliasing\fR is equivalent to \fB\-Wstrict\-aliasing=3\fR.
.Sp
Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but \fB\-fstrict\-aliasing\fR still breaks the code, as it has very few
false negatives. However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced. Runs in the front end only.
.Sp
Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken. Warns about
incomplete types. Runs in the front end only.
.Sp
Level 3 (default for \fB\-Wstrict\-aliasing\fR):
Should have very few false positives and few false
negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common pun+dereference pattern in the front end:
\&\f(CW\*(C`*(int*)&some_float\*(C'\fR.
If optimization is enabled, it also runs in the back end, where it deals
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.
.IP "\fB\-Wstrict\-overflow\fR" 4
.IX Item "-Wstrict-overflow"
.PD 0
.IP "\fB\-Wstrict\-overflow=\fR\fIn\fR" 4
.IX Item "-Wstrict-overflow=n"
.PD
This option is only active when \fB\-fstrict\-overflow\fR is active.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur. Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization. Thus
this warning depends on the optimization level.
.Sp
An optimization that assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code that is not
actually a problem. To help focus on important issues, several
warning levels are defined. No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
requires, in particular when determining whether a loop will be
executed at all.
.RS 4
.IP "\fB\-Wstrict\-overflow=1\fR" 4
.IX Item "-Wstrict-overflow=1"
Warn about cases that are both questionable and easy to avoid. For
example, with \fB\-fstrict\-overflow\fR, the compiler simplifies
\&\f(CW\*(C`x + 1 > x\*(C'\fR to \f(CW1\fR. This level of
\&\fB\-Wstrict\-overflow\fR is enabled by \fB\-Wall\fR; higher levels
are not, and must be explicitly requested.
.IP "\fB\-Wstrict\-overflow=2\fR" 4
.IX Item "-Wstrict-overflow=2"
Also warn about other cases where a comparison is simplified to a
constant. For example: \f(CW\*(C`abs (x) >= 0\*(C'\fR. This can only be
simplified when \fB\-fstrict\-overflow\fR is in effect, because
\&\f(CW\*(C`abs (INT_MIN)\*(C'\fR overflows to \f(CW\*(C`INT_MIN\*(C'\fR, which is less than
zero. \fB\-Wstrict\-overflow\fR (with no level) is the same as
\&\fB\-Wstrict\-overflow=2\fR.
.IP "\fB\-Wstrict\-overflow=3\fR" 4
.IX Item "-Wstrict-overflow=3"
Also warn about other cases where a comparison is simplified. For
example: \f(CW\*(C`x + 1 > 1\*(C'\fR is simplified to \f(CW\*(C`x > 0\*(C'\fR.
.IP "\fB\-Wstrict\-overflow=4\fR" 4
.IX Item "-Wstrict-overflow=4"
Also warn about other simplifications not covered by the above cases.
For example: \f(CW\*(C`(x * 10) / 5\*(C'\fR is simplified to \f(CW\*(C`x * 2\*(C'\fR.
.IP "\fB\-Wstrict\-overflow=5\fR" 4
.IX Item "-Wstrict-overflow=5"
Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: \f(CW\*(C`x + 2 > y\*(C'\fR is
simplified to \f(CW\*(C`x + 1 >= y\*(C'\fR. This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level gives a very large number of
false positives.
.RE
.RS 4
.RE
.IP "\fB\-Wsuggest\-attribute=\fR[\fBpure\fR|\fBconst\fR|\fBnoreturn\fR|\fBformat\fR]" 4
.IX Item "-Wsuggest-attribute=[pure|const|noreturn|format]"
Warn for cases where adding an attribute may be beneficial. The
attributes currently supported are listed below.
.RS 4
.IP "\fB\-Wsuggest\-attribute=pure\fR" 4
.IX Item "-Wsuggest-attribute=pure"
.PD 0
.IP "\fB\-Wsuggest\-attribute=const\fR" 4
.IX Item "-Wsuggest-attribute=const"
.IP "\fB\-Wsuggest\-attribute=noreturn\fR" 4
.IX Item "-Wsuggest-attribute=noreturn"
.PD
Warn about functions that might be candidates for attributes
\&\f(CW\*(C`pure\*(C'\fR, \f(CW\*(C`const\*(C'\fR or \f(CW\*(C`noreturn\*(C'\fR. The compiler only warns for
functions visible in other compilation units or (in the case of \f(CW\*(C`pure\*(C'\fR and
\&\f(CW\*(C`const\*(C'\fR) if it cannot prove that the function returns normally. A function
returns normally if it doesn't contain an infinite loop or return abnormally
by throwing, calling \f(CW\*(C`abort()\*(C'\fR or trapping. This analysis requires option
\&\fB\-fipa\-pure\-const\fR, which is enabled by default at \fB\-O\fR and
higher. Higher optimization levels improve the accuracy of the analysis.
.IP "\fB\-Wsuggest\-attribute=format\fR" 4
.IX Item "-Wsuggest-attribute=format"
.PD 0
.IP "\fB\-Wmissing\-format\-attribute\fR" 4
.IX Item "-Wmissing-format-attribute"
.PD
Warn about function pointers that might be candidates for \f(CW\*(C`format\*(C'\fR
attributes. Note these are only possible candidates, not absolute ones.
\&\s-1GCC\s0 guesses that function pointers with \f(CW\*(C`format\*(C'\fR attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding \f(CW\*(C`format\*(C'\fR attribute in the
resulting type. I.e. the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a \f(CW\*(C`format\*(C'\fR
attribute to avoid the warning.
.Sp
\&\s-1GCC\s0 also warns about function definitions that might be
candidates for \f(CW\*(C`format\*(C'\fR attributes. Again, these are only
possible candidates. \s-1GCC\s0 guesses that \f(CW\*(C`format\*(C'\fR attributes
might be appropriate for any function that calls a function like
\&\f(CW\*(C`vprintf\*(C'\fR or \f(CW\*(C`vscanf\*(C'\fR, but this might not always be the
case, and some functions for which \f(CW\*(C`format\*(C'\fR attributes are
appropriate may not be detected.
.RE
.RS 4
.RE
.IP "\fB\-Warray\-bounds\fR" 4
.IX Item "-Warray-bounds"
This option is only active when \fB\-ftree\-vrp\fR is active
(default for \fB\-O2\fR and above). It warns about subscripts to arrays
that are always out of bounds. This warning is enabled by \fB\-Wall\fR.
.IP "\fB\-Wno\-div\-by\-zero\fR" 4
.IX Item "-Wno-div-by-zero"
Do not warn about compile-time integer division by zero. Floating-point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
.IP "\fB\-Wsystem\-headers\fR" 4
.IX Item "-Wsystem-headers"
Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command-line option tells
\&\s-1GCC\s0 to emit warnings from system headers as if they occurred in user
code. However, note that using \fB\-Wall\fR in conjunction with this
option does \fInot\fR warn about unknown pragmas in system
headers\-\-\-for that, \fB\-Wunknown\-pragmas\fR must also be used.
.IP "\fB\-Wtrampolines\fR" 4
.IX Item "-Wtrampolines"
.Vb 1
\& Warn about trampolines generated for pointers to nested functions.
\&
\& A trampoline is a small piece of data or code that is created at run
\& time on the stack when the address of a nested function is taken, and
\& is used to call the nested function indirectly. For some targets, it
\& is made up of data only and thus requires no special treatment. But,
\& for most targets, it is made up of code and thus requires the stack
\& to be made executable in order for the program to work properly.
.Ve
.IP "\fB\-Wfloat\-equal\fR" 4
.IX Item "-Wfloat-equal"
Warn if floating-point values are used in equality comparisons.
.Sp
The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem). In particular, instead of testing for equality, you
should check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
.IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4
.IX Item "-Wtraditional (C and Objective-C only)"
Warn about certain constructs that behave differently in traditional and
\&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C
equivalent, and/or problematic constructs that should be avoided.
.RS 4
.IP "\(bu" 4
Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but in \s-1ISO C\s0 it does not.
.IP "\(bu" 4
In traditional C, some preprocessor directives did not exist.
Traditional preprocessors only considered a line to be a directive
if the \fB#\fR appeared in column 1 on the line. Therefore
\&\fB\-Wtraditional\fR warns about directives that traditional C
understands but ignores because the \fB#\fR does not appear as the
first character on the line. It also suggests you hide directives like
\&\fB#pragma\fR not understood by traditional C by indenting them. Some
traditional implementations do not recognize \fB#elif\fR, so this option
suggests avoiding it altogether.
.IP "\(bu" 4
A function-like macro that appears without arguments.
.IP "\(bu" 4
The unary plus operator.
.IP "\(bu" 4
The \fBU\fR integer constant suffix, or the \fBF\fR or \fBL\fR floating-point
constant suffixes. (Traditional C does support the \fBL\fR suffix on integer
constants.) Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g. the \fB_MIN\fR/\fB_MAX\fR macros in \f(CW\*(C`<limits.h>\*(C'\fR.
Use of these macros in user code might normally lead to spurious
warnings, however \s-1GCC\s0's integrated preprocessor has enough context to
avoid warning in these cases.
.IP "\(bu" 4
A function declared external in one block and then used after the end of
the block.
.IP "\(bu" 4
A \f(CW\*(C`switch\*(C'\fR statement has an operand of type \f(CW\*(C`long\*(C'\fR.
.IP "\(bu" 4
A non\-\f(CW\*(C`static\*(C'\fR function declaration follows a \f(CW\*(C`static\*(C'\fR one.
This construct is not accepted by some traditional C compilers.
.IP "\(bu" 4
The \s-1ISO\s0 type of an integer constant has a different width or
signedness from its traditional type. This warning is only issued if
the base of the constant is ten. I.e. hexadecimal or octal values, which
typically represent bit patterns, are not warned about.
.IP "\(bu" 4
Usage of \s-1ISO\s0 string concatenation is detected.
.IP "\(bu" 4
Initialization of automatic aggregates.
.IP "\(bu" 4
Identifier conflicts with labels. Traditional C lacks a separate
namespace for labels.
.IP "\(bu" 4
Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g. \f(CW\*(C`_\|_STDC_\|_\*(C'\fR to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.
.IP "\(bu" 4
Conversions by prototypes between fixed/floating\-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible
conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR.
.IP "\(bu" 4
Use of \s-1ISO C\s0 style function definitions. This warning intentionally is