blob: 4fface3a6429efaff181071c67b1afcdca3892be [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vad_sp.h"
#include <assert.h>
#include "signal_processing_library.h"
#include "typedefs.h"
#include "vad_defines.h"
// Allpass filter coefficients, upper and lower, in Q13.
// Upper: 0.64, Lower: 0.17.
static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13
// TODO(bjornv): Move this function to vad_filterbank.c.
// Downsampling filter based on splitting filter and allpass functions.
void WebRtcVad_Downsampling(int16_t* signal_in,
int16_t* signal_out,
int32_t* filter_state,
int in_length) {
int16_t tmp16_1 = 0, tmp16_2 = 0;
int32_t tmp32_1 = filter_state[0];
int32_t tmp32_2 = filter_state[1];
int n = 0;
int half_length = (in_length >> 1); // Downsampling by 2 gives half length.
// Filter coefficients in Q13, filter state in Q0.
for (n = 0; n < half_length; n++) {
// All-pass filtering upper branch.
tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14));
*signal_out = tmp16_1;
tmp32_1 = (int32_t) (*signal_in++) -
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12);
// All-pass filtering lower branch.
tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14));
*signal_out++ += tmp16_2;
tmp32_2 = (int32_t) (*signal_in++) -
WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12);
}
// Store the filter states.
filter_state[0] = tmp32_1;
filter_state[1] = tmp32_2;
}
// Inserts |feature_value| into |low_value_vector|, if it is one of the 16
// smallest values the last 100 frames. Then calculates and returns the median
// of the five smallest values.
int16_t WebRtcVad_FindMinimum(VadInstT* self,
int16_t feature_value,
int channel) {
int i = 0, j = 0;
int position = -1;
// Offset to beginning of the 16 minimum values in memory.
int offset = (channel << 4);
int16_t current_median = 1600;
int16_t alpha = 0;
int32_t tmp32 = 0;
// Pointer to memory for the 16 minimum values and the age of each value of
// the |channel|.
int16_t* age_ptr = &self->index_vector[offset];
int16_t* value_ptr = &self->low_value_vector[offset];
int16_t *p1, *p2, *p3;
assert(channel < NUM_CHANNELS);
// Each value in |low_value_vector| is getting 1 loop older.
// Update age of each value in |age_ptr|, and remove old values.
for (i = 0; i < 16; i++) {
p3 = age_ptr + i;
if (*p3 != 100) {
*p3 += 1;
} else {
p1 = value_ptr + i + 1;
p2 = p3 + 1;
for (j = i; j < 16; j++) {
*(value_ptr + j) = *p1++;
*(age_ptr + j) = *p2++;
}
*(age_ptr + 15) = 101;
*(value_ptr + 15) = 10000;
}
}
// Check if |feature_value| is smaller than any of the values in
// |low_value_vector|. If so, find the |position| where to insert the new
// value.
if (feature_value < *(value_ptr + 7)) {
if (feature_value < *(value_ptr + 3)) {
if (feature_value < *(value_ptr + 1)) {
if (feature_value < *value_ptr) {
position = 0;
} else {
position = 1;
}
} else if (feature_value < *(value_ptr + 2)) {
position = 2;
} else {
position = 3;
}
} else if (feature_value < *(value_ptr + 5)) {
if (feature_value < *(value_ptr + 4)) {
position = 4;
} else {
position = 5;
}
} else if (feature_value < *(value_ptr + 6)) {
position = 6;
} else {
position = 7;
}
} else if (feature_value < *(value_ptr + 15)) {
if (feature_value < *(value_ptr + 11)) {
if (feature_value < *(value_ptr + 9)) {
if (feature_value < *(value_ptr + 8)) {
position = 8;
} else {
position = 9;
}
} else if (feature_value < *(value_ptr + 10)) {
position = 10;
} else {
position = 11;
}
} else if (feature_value < *(value_ptr + 13)) {
if (feature_value < *(value_ptr + 12)) {
position = 12;
} else {
position = 13;
}
} else if (feature_value < *(value_ptr + 14)) {
position = 14;
} else {
position = 15;
}
}
// If we have a new small value, put it in the correct position and shift
// larger values up.
if (position > -1) {
for (i = 15; i > position; i--) {
j = i - 1;
*(value_ptr + i) = *(value_ptr + j);
*(age_ptr + i) = *(age_ptr + j);
}
*(value_ptr + position) = feature_value;
*(age_ptr + position) = 1;
}
// Get |current_median|.
if (self->frame_counter > 2) {
current_median = *(value_ptr + 2);
} else if (self->frame_counter > 0) {
current_median = *value_ptr;
}
// Smooth the median value.
if (self->frame_counter > 0) {
if (current_median < self->mean_value[channel]) {
alpha = (int16_t) ALPHA1; // 0.2 in Q15.
} else {
alpha = (int16_t) ALPHA2; // 0.99 in Q15.
}
}
tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]);
tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median);
tmp32 += 16384;
self->mean_value[channel] = (int16_t) (tmp32 >> 15);
return self->mean_value[channel];
}