| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "vad_sp.h" |
| |
| #include <assert.h> |
| |
| #include "signal_processing_library.h" |
| #include "typedefs.h" |
| #include "vad_defines.h" |
| |
| // Allpass filter coefficients, upper and lower, in Q13. |
| // Upper: 0.64, Lower: 0.17. |
| static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13 |
| |
| // TODO(bjornv): Move this function to vad_filterbank.c. |
| // Downsampling filter based on splitting filter and allpass functions. |
| void WebRtcVad_Downsampling(int16_t* signal_in, |
| int16_t* signal_out, |
| int32_t* filter_state, |
| int in_length) { |
| int16_t tmp16_1 = 0, tmp16_2 = 0; |
| int32_t tmp32_1 = filter_state[0]; |
| int32_t tmp32_2 = filter_state[1]; |
| int n = 0; |
| int half_length = (in_length >> 1); // Downsampling by 2 gives half length. |
| |
| // Filter coefficients in Q13, filter state in Q0. |
| for (n = 0; n < half_length; n++) { |
| // All-pass filtering upper branch. |
| tmp16_1 = (int16_t) ((tmp32_1 >> 1) + |
| WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], *signal_in, 14)); |
| *signal_out = tmp16_1; |
| tmp32_1 = (int32_t) (*signal_in++) - |
| WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[0], tmp16_1, 12); |
| |
| // All-pass filtering lower branch. |
| tmp16_2 = (int16_t) ((tmp32_2 >> 1) + |
| WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], *signal_in, 14)); |
| *signal_out++ += tmp16_2; |
| tmp32_2 = (int32_t) (*signal_in++) - |
| WEBRTC_SPL_MUL_16_16_RSFT(kAllPassCoefsQ13[1], tmp16_2, 12); |
| } |
| // Store the filter states. |
| filter_state[0] = tmp32_1; |
| filter_state[1] = tmp32_2; |
| } |
| |
| // Inserts |feature_value| into |low_value_vector|, if it is one of the 16 |
| // smallest values the last 100 frames. Then calculates and returns the median |
| // of the five smallest values. |
| int16_t WebRtcVad_FindMinimum(VadInstT* self, |
| int16_t feature_value, |
| int channel) { |
| int i = 0, j = 0; |
| int position = -1; |
| // Offset to beginning of the 16 minimum values in memory. |
| int offset = (channel << 4); |
| int16_t current_median = 1600; |
| int16_t alpha = 0; |
| int32_t tmp32 = 0; |
| // Pointer to memory for the 16 minimum values and the age of each value of |
| // the |channel|. |
| int16_t* age_ptr = &self->index_vector[offset]; |
| int16_t* value_ptr = &self->low_value_vector[offset]; |
| int16_t *p1, *p2, *p3; |
| |
| assert(channel < NUM_CHANNELS); |
| |
| // Each value in |low_value_vector| is getting 1 loop older. |
| // Update age of each value in |age_ptr|, and remove old values. |
| for (i = 0; i < 16; i++) { |
| p3 = age_ptr + i; |
| if (*p3 != 100) { |
| *p3 += 1; |
| } else { |
| p1 = value_ptr + i + 1; |
| p2 = p3 + 1; |
| for (j = i; j < 16; j++) { |
| *(value_ptr + j) = *p1++; |
| *(age_ptr + j) = *p2++; |
| } |
| *(age_ptr + 15) = 101; |
| *(value_ptr + 15) = 10000; |
| } |
| } |
| |
| // Check if |feature_value| is smaller than any of the values in |
| // |low_value_vector|. If so, find the |position| where to insert the new |
| // value. |
| if (feature_value < *(value_ptr + 7)) { |
| if (feature_value < *(value_ptr + 3)) { |
| if (feature_value < *(value_ptr + 1)) { |
| if (feature_value < *value_ptr) { |
| position = 0; |
| } else { |
| position = 1; |
| } |
| } else if (feature_value < *(value_ptr + 2)) { |
| position = 2; |
| } else { |
| position = 3; |
| } |
| } else if (feature_value < *(value_ptr + 5)) { |
| if (feature_value < *(value_ptr + 4)) { |
| position = 4; |
| } else { |
| position = 5; |
| } |
| } else if (feature_value < *(value_ptr + 6)) { |
| position = 6; |
| } else { |
| position = 7; |
| } |
| } else if (feature_value < *(value_ptr + 15)) { |
| if (feature_value < *(value_ptr + 11)) { |
| if (feature_value < *(value_ptr + 9)) { |
| if (feature_value < *(value_ptr + 8)) { |
| position = 8; |
| } else { |
| position = 9; |
| } |
| } else if (feature_value < *(value_ptr + 10)) { |
| position = 10; |
| } else { |
| position = 11; |
| } |
| } else if (feature_value < *(value_ptr + 13)) { |
| if (feature_value < *(value_ptr + 12)) { |
| position = 12; |
| } else { |
| position = 13; |
| } |
| } else if (feature_value < *(value_ptr + 14)) { |
| position = 14; |
| } else { |
| position = 15; |
| } |
| } |
| |
| // If we have a new small value, put it in the correct position and shift |
| // larger values up. |
| if (position > -1) { |
| for (i = 15; i > position; i--) { |
| j = i - 1; |
| *(value_ptr + i) = *(value_ptr + j); |
| *(age_ptr + i) = *(age_ptr + j); |
| } |
| *(value_ptr + position) = feature_value; |
| *(age_ptr + position) = 1; |
| } |
| |
| // Get |current_median|. |
| if (self->frame_counter > 2) { |
| current_median = *(value_ptr + 2); |
| } else if (self->frame_counter > 0) { |
| current_median = *value_ptr; |
| } |
| |
| // Smooth the median value. |
| if (self->frame_counter > 0) { |
| if (current_median < self->mean_value[channel]) { |
| alpha = (int16_t) ALPHA1; // 0.2 in Q15. |
| } else { |
| alpha = (int16_t) ALPHA2; // 0.99 in Q15. |
| } |
| } |
| tmp32 = WEBRTC_SPL_MUL_16_16(alpha + 1, self->mean_value[channel]); |
| tmp32 += WEBRTC_SPL_MUL_16_16(WEBRTC_SPL_WORD16_MAX - alpha, current_median); |
| tmp32 += 16384; |
| self->mean_value[channel] = (int16_t) (tmp32 >> 15); |
| |
| return self->mean_value[channel]; |
| } |