blob: db7fb779d2392cea8313c318ade8219b2b8ba3d6 [file] [log] [blame]
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "row.h"
#include "libyuv/basic_types.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
void ABGRToARGBRow_C(const uint8* src_abgr, uint8* dst_argb, int pix) {
for (int x = 0; x < pix; ++x) {
// To support in-place conversion.
uint8 r = src_abgr[0];
uint8 g = src_abgr[1];
uint8 b = src_abgr[2];
uint8 a = src_abgr[3];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
dst_argb += 4;
src_abgr += 4;
}
}
void BGRAToARGBRow_C(const uint8* src_bgra, uint8* dst_argb, int pix) {
for (int x = 0; x < pix; ++x) {
// To support in-place conversion.
uint8 a = src_bgra[0];
uint8 r = src_bgra[1];
uint8 g = src_bgra[2];
uint8 b = src_bgra[3];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = a;
dst_argb += 4;
src_bgra += 4;
}
}
void RAWToARGBRow_C(const uint8* src_raw, uint8* dst_argb, int pix) {
for (int x = 0; x < pix; ++x) {
uint8 r = src_raw[0];
uint8 g = src_raw[1];
uint8 b = src_raw[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb += 4;
src_raw += 3;
}
}
void BG24ToARGBRow_C(const uint8* src_bg24, uint8* dst_argb, int pix) {
for (int x = 0; x < pix; ++x) {
uint8 b = src_bg24[0];
uint8 g = src_bg24[1];
uint8 r = src_bg24[2];
dst_argb[0] = b;
dst_argb[1] = g;
dst_argb[2] = r;
dst_argb[3] = 255u;
dst_argb[3] = 255u;
dst_argb += 4;
src_bg24 += 3;
}
}
// C versions do the same
void RGB24ToYRow_C(const uint8* src_argb, uint8* dst_y, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride]);
BG24ToARGBRow_C(src_argb, row, pix);
ARGBToYRow_C(row, dst_y, pix);
}
void RAWToYRow_C(const uint8* src_argb, uint8* dst_y, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride]);
RAWToARGBRow_C(src_argb, row, pix);
ARGBToYRow_C(row, dst_y, pix);
}
void RGB24ToUVRow_C(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
BG24ToARGBRow_C(src_argb, row, pix);
BG24ToARGBRow_C(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_C(row, kMaxStride, dst_u, dst_v, pix);
}
void RAWToUVRow_C(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
RAWToARGBRow_C(src_argb, row, pix);
RAWToARGBRow_C(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_C(row, kMaxStride, dst_u, dst_v, pix);
}
static __inline int RGBToY(uint8 r, uint8 g, uint8 b) {
return (( 66 * r + 129 * g + 25 * b + 128) >> 8) + 16;
}
static __inline int RGBToU(uint8 r, uint8 g, uint8 b) {
return ((-38 * r - 74 * g + 112 * b + 128) >> 8) + 128;
}
static __inline int RGBToV(uint8 r, uint8 g, uint8 b) {
return ((112 * r - 94 * g - 18 * b + 128) >> 8) + 128;
}
#define MAKEROWY(NAME,R,G,B) \
void NAME ## ToYRow_C(const uint8* src_argb0, uint8* dst_y, int width) { \
for (int x = 0; x < width; ++x) { \
dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \
src_argb0 += 4; \
dst_y += 1; \
} \
} \
void NAME ## ToUVRow_C(const uint8* src_rgb0, int src_stride_rgb, \
uint8* dst_u, uint8* dst_v, int width) { \
const uint8* src_rgb1 = src_rgb0 + src_stride_rgb; \
for (int x = 0; x < width - 1; x += 2) { \
uint8 ab = (src_rgb0[B] + src_rgb0[B + 4] + \
src_rgb1[B] + src_rgb1[B + 4]) >> 2; \
uint8 ag = (src_rgb0[G] + src_rgb0[G + 4] + \
src_rgb1[G] + src_rgb1[G + 4]) >> 2; \
uint8 ar = (src_rgb0[R] + src_rgb0[R + 4] + \
src_rgb1[R] + src_rgb1[R + 4]) >> 2; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
src_rgb0 += 8; \
src_rgb1 += 8; \
dst_u += 1; \
dst_v += 1; \
} \
if (width & 1) { \
uint8 ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \
uint8 ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \
uint8 ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \
dst_u[0] = RGBToU(ar, ag, ab); \
dst_v[0] = RGBToV(ar, ag, ab); \
} \
}
MAKEROWY(ARGB,2,1,0)
MAKEROWY(BGRA,1,2,3)
MAKEROWY(ABGR,0,1,2)
#if defined(HAS_RAWTOYROW_SSSE3)
void RGB24ToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride]);
BG24ToARGBRow_SSSE3(src_argb, row, pix);
ARGBToYRow_SSSE3(row, dst_y, pix);
}
void RAWToYRow_SSSE3(const uint8* src_argb, uint8* dst_y, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride]);
RAWToARGBRow_SSSE3(src_argb, row, pix);
ARGBToYRow_SSSE3(row, dst_y, pix);
}
#endif
#if defined(HAS_RAWTOUVROW_SSSE3)
#if defined(HAS_ARGBTOUVROW_SSSE3)
void RGB24ToUVRow_SSSE3(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
BG24ToARGBRow_SSSE3(src_argb, row, pix);
BG24ToARGBRow_SSSE3(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_SSSE3(row, kMaxStride, dst_u, dst_v, pix);
}
void RAWToUVRow_SSSE3(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
RAWToARGBRow_SSSE3(src_argb, row, pix);
RAWToARGBRow_SSSE3(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_SSSE3(row, kMaxStride, dst_u, dst_v, pix);
}
#else
void RGB24ToUVRow_SSSE3(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
BG24ToARGBRow_SSSE3(src_argb, row, pix);
BG24ToARGBRow_SSSE3(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_C(row, kMaxStride, dst_u, dst_v, pix);
}
void RAWToUVRow_SSSE3(const uint8* src_argb, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int pix) {
SIMD_ALIGNED(uint8 row[kMaxStride * 2]);
RAWToARGBRow_SSSE3(src_argb, row, pix);
RAWToARGBRow_SSSE3(src_argb + src_stride_argb, row + kMaxStride, pix);
ARGBToUVRow_C(row, kMaxStride, dst_u, dst_v, pix);
}
#endif
#endif
void I400ToARGBRow_C(const uint8* src_y, uint8* dst_argb, int pix) {
// Copy a Y to RGB.
for (int x = 0; x < pix; ++x) {
uint8 y = src_y[0];
dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
dst_argb[3] = 255u;
dst_argb += 4;
++src_y;
}
}
// C reference code that mimic the YUV assembly.
#define YG 74 /* static_cast<int8>(1.164 * 64 + 0.5) */
#define UB 127 /* min(63,static_cast<int8>(2.018 * 64)) */
#define UG -25 /* static_cast<int8>(-0.391 * 64 - 0.5) */
#define UR 0
#define VB 0
#define VG -52 /* static_cast<int8>(-0.813 * 64 - 0.5) */
#define VR 102 /* static_cast<int8>(1.596 * 64 + 0.5) */
// Bias
#define BB UB * 128 + VB * 128
#define BG UG * 128 + VG * 128
#define BR UR * 128 + VR * 128
static __inline uint32 Clip(int32 val) {
if (val < 0) {
return (uint32) 0;
} else if (val > 255){
return (uint32) 255;
}
return (uint32) val;
}
static __inline void YuvPixel(uint8 y, uint8 u, uint8 v, uint8* rgb_buf,
int ashift, int rshift, int gshift, int bshift) {
int32 y1 = (static_cast<int32>(y) - 16) * YG;
uint32 b = Clip(static_cast<int32>((u * UB + v * VB) - (BB) + y1) >> 6);
uint32 g = Clip(static_cast<int32>((u * UG + v * VG) - (BG) + y1) >> 6);
uint32 r = Clip(static_cast<int32>((u * UR + v * VR) - (BR) + y1) >> 6);
*reinterpret_cast<uint32*>(rgb_buf) = (b << bshift) |
(g << gshift) |
(r << rshift) |
(255u << ashift);
}
void FastConvertYUVToARGBRow_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) {
for (int x = 0; x < width - 1; x += 2) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0);
YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 16, 8, 0);
y_buf += 2;
u_buf += 1;
v_buf += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 16, 8, 0);
}
}
void FastConvertYUVToBGRARow_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) {
for (int x = 0; x < width - 1; x += 2) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 0, 8, 16, 24);
YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 0, 8, 16, 24);
y_buf += 2;
u_buf += 1;
v_buf += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf, 0, 8, 16, 24);
}
}
void FastConvertYUVToABGRRow_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) {
for (int x = 0; x < width - 1; x += 2) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 0, 8, 16);
YuvPixel(y_buf[1], u_buf[0], v_buf[0], rgb_buf + 4, 24, 0, 8, 16);
y_buf += 2;
u_buf += 1;
v_buf += 1;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf + 0, 24, 0, 8, 16);
}
}
void FastConvertYUV444ToARGBRow_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) {
for (int x = 0; x < width; ++x) {
YuvPixel(y_buf[0], u_buf[0], v_buf[0], rgb_buf, 24, 16, 8, 0);
y_buf += 1;
u_buf += 1;
v_buf += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
void FastConvertYToARGBRow_C(const uint8* y_buf,
uint8* rgb_buf,
int width) {
for (int x = 0; x < width; ++x) {
YuvPixel(y_buf[0], 128, 128, rgb_buf, 24, 16, 8, 0);
y_buf += 1;
rgb_buf += 4; // Advance 1 pixel.
}
}
void ReverseRow_C(const uint8* src, uint8* dst, int width) {
src += width - 1;
for (int i = 0; i < width; ++i) {
dst[i] = src[0];
--src;
}
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif