blob: 7a1442d621cbff85057334022cc2d94ef3e4751c [file] [log] [blame]
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/planar_functions.h"
#include <string.h>
#include "libyuv/cpu_id.h"
#include "row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
#if defined(__ARM_NEON__) && !defined(YUV_DISABLE_ASM)
#define HAS_SPLITUV_NEON
// Reads 16 pairs of UV and write even values to dst_u and odd to dst_v
// Alignment requirement: 16 bytes for pointers, and multiple of 16 pixels.
static void SplitUV_NEON(const uint8* src_uv,
uint8* dst_u, uint8* dst_v, int pix) {
asm volatile (
"1: \n"
"vld2.u8 {q0,q1}, [%0]! \n" // load 16 pairs of UV
"vst1.u8 {q0}, [%1]! \n" // store U
"vst1.u8 {q1}, [%2]! \n" // Store V
"subs %3, %3, #16 \n" // 16 processed per loop
"bhi 1b \n"
: "+r"(src_uv),
"+r"(dst_u),
"+r"(dst_v),
"+r"(pix) // Output registers
: // Input registers
: "memory", "cc", "q0", "q1" // Clobber List
);
}
#elif defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_SPLITUV_SSE2
__declspec(naked)
static void SplitUV_SSE2(const uint8* src_uv,
uint8* dst_u, uint8* dst_v, int pix) {
__asm {
push edi
mov eax, [esp + 4 + 4] // src_uv
mov edx, [esp + 4 + 8] // dst_u
mov edi, [esp + 4 + 12] // dst_v
mov ecx, [esp + 4 + 16] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
sub edi, edx
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
lea eax, [eax + 32]
movdqa xmm2, xmm0
movdqa xmm3, xmm1
pand xmm0, xmm5 // even bytes
pand xmm1, xmm5
packuswb xmm0, xmm1
psrlw xmm2, 8 // odd bytes
psrlw xmm3, 8
packuswb xmm2, xmm3
movdqa [edx], xmm0
movdqa [edx + edi], xmm2
lea edx, [edx + 16]
sub ecx, 16
ja convertloop
pop edi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_SPLITUV_SSE2
static void SplitUV_SSE2(const uint8* src_uv,
uint8* dst_u, uint8* dst_v, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"sub %1,%2 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"lea 0x20(%0),%0 \n"
"movdqa %%xmm0,%%xmm2 \n"
"movdqa %%xmm1,%%xmm3 \n"
"pand %%xmm5,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"psrlw $0x8,%%xmm2 \n"
"psrlw $0x8,%%xmm3 \n"
"packuswb %%xmm3,%%xmm2 \n"
"movdqa %%xmm0,(%1) \n"
"movdqa %%xmm2,(%1,%2) \n"
"lea 0x10(%1),%1 \n"
"sub $0x10,%3 \n"
"ja 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(pix) // %3
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm5"
#endif
);
}
#endif
static void SplitUV_C(const uint8* src_uv,
uint8* dst_u, uint8* dst_v, int pix) {
// Copy a row of UV.
for (int x = 0; x < pix; ++x) {
dst_u[0] = src_uv[0];
dst_v[0] = src_uv[1];
src_uv += 2;
dst_u += 1;
dst_v += 1;
}
}
// CopyRows copys 'count' bytes using a 16 byte load/store, 64 bytes at time
#if defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_COPYROW_SSE2
__declspec(naked)
void CopyRow_SSE2(const uint8* src, uint8* dst, int count) {
__asm {
mov eax, [esp + 4] // src
mov edx, [esp + 8] // dst
mov ecx, [esp + 12] // count
sub edx, eax
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
movdqa [eax + edx], xmm0
movdqa [eax + edx + 16], xmm1
lea eax, [eax + 32]
sub ecx, 32
ja convertloop
ret
}
}
#define HAS_COPYROW_X86
__declspec(naked)
void CopyRow_X86(const uint8* src, uint8* dst, int count) {
__asm {
mov eax, esi
mov edx, edi
mov esi, [esp + 4] // src
mov edi, [esp + 8] // dst
mov ecx, [esp + 12] // count
shr ecx, 2
rep movsd
mov edi, edx
mov esi, eax
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_COPYROW_SSE2
void CopyRow_SSE2(const uint8* src, uint8* dst, int count) {
asm volatile (
"sub %0,%1 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"movdqa %%xmm0,(%0,%1) \n"
"movdqa %%xmm1,0x10(%0,%1) \n"
"lea 0x20(%0),%0 \n"
"sub $0x20,%2 \n"
"ja 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(count) // %2
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1"
#endif
);
}
#define HAS_COPYROW_X86
void CopyRow_X86(const uint8* src, uint8* dst, int width) {
size_t width_tmp = static_cast<size_t>(width);
asm volatile (
"shr $0x2,%2 \n"
"rep movsl \n"
: "+S"(src), // %0
"+D"(dst), // %1
"+c"(width_tmp) // %2
:
: "memory", "cc"
);
}
#endif
void CopyRow_C(const uint8* src, uint8* dst, int count) {
memcpy(dst, src, count);
}
// Copy a plane of data
void CopyPlane(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
void (*CopyRow)(const uint8* src, uint8* dst, int width);
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
CopyRow = CopyRow_SSE2;
} else
#endif
#if defined(HAS_COPYROW_X86)
if (IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
IS_ALIGNED(dst_y, 4) && IS_ALIGNED(dst_stride_y, 4)) {
CopyRow = CopyRow_X86;
} else
#endif
{
CopyRow = CopyRow_C;
}
// Copy plane
for (int y = 0; y < height; ++y) {
CopyRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
}
// Copy I420 with optional flipping
int I420Copy(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
return 0;
}
// Copy ARGB with optional flipping
int ARGBCopy(const uint8* src_argb, int src_stride_argb,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (!src_argb ||
!dst_argb ||
width <= 0 || height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
CopyPlane(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
width * 4, height);
return 0;
}
int I420Mirror(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (!src_y || !src_u || !src_v ||
!dst_y || !dst_u || !dst_v ||
width <= 0 || height == 0) {
return -1;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
void (*ReverseRow)(const uint8* src, uint8* dst, int width);
#if defined(HAS_REVERSE_ROW_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(width, 32)) {
ReverseRow = ReverseRow_NEON;
} else
#endif
#if defined(HAS_REVERSE_ROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
ReverseRow = ReverseRow_SSSE3;
} else
#endif
#if defined(HAS_REVERSE_ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 32) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
ReverseRow = ReverseRow_SSE2;
} else
#endif
{
ReverseRow = ReverseRow_C;
}
// Y Plane
int y;
for (y = 0; y < height; ++y) {
ReverseRow(src_y, dst_y, width);
src_y += src_stride_y;
dst_y += dst_stride_y;
}
// U Plane
for (y = 0; y < halfheight; ++y) {
ReverseRow(src_u, dst_u, halfwidth);
src_u += src_stride_u;
dst_u += dst_stride_u;
}
// V Plane
for (y = 0; y < halfheight; ++y) {
ReverseRow(src_v, dst_v, halfwidth);
src_v += src_stride_v;
dst_v += dst_stride_v;
}
return 0;
}
#if defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_HALFROW_SSE2
__declspec(naked)
static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
__asm {
push edi
mov eax, [esp + 4 + 4] // src_uv
mov edx, [esp + 4 + 8] // src_uv_stride
mov edi, [esp + 4 + 12] // dst_v
mov ecx, [esp + 4 + 16] // pix
sub edi, eax
convertloop:
movdqa xmm0, [eax]
pavgb xmm0, [eax + edx]
movdqa [eax + edi], xmm0
lea eax, [eax + 16]
sub ecx, 16
ja convertloop
pop edi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_HALFROW_SSE2
static void HalfRow_SSE2(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
asm volatile (
"sub %0,%1 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"pavgb (%0,%3),%%xmm0 \n"
"movdqa %%xmm0,(%0,%1) \n"
"lea 0x10(%0),%0 \n"
"sub $0x10,%2 \n"
"ja 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_uv), // %1
"+r"(pix) // %2
: "r"(static_cast<intptr_t>(src_uv_stride)) // %3
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0"
#endif
);
}
#endif
void HalfRow_C(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix) {
for (int x = 0; x < pix; ++x) {
dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
}
}
int I422ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*HalfRow)(const uint8* src_uv, int src_uv_stride,
uint8* dst_uv, int pix);
#if defined(HAS_HALFROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
HalfRow = HalfRow_SSE2;
} else
#endif
{
HalfRow = HalfRow_C;
}
// Copy Y plane
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
// SubSample U plane.
int y;
for (y = 0; y < height - 1; y += 2) {
HalfRow(src_u, src_stride_u, dst_u, halfwidth);
src_u += src_stride_u * 2;
dst_u += dst_stride_u;
}
if (height & 1) {
HalfRow(src_u, 0, dst_u, halfwidth);
}
// SubSample V plane.
for (y = 0; y < height - 1; y += 2) {
HalfRow(src_v, src_stride_v, dst_v, halfwidth);
src_v += src_stride_v * 2;
dst_v += dst_stride_v;
}
if (height & 1) {
HalfRow(src_v, 0, dst_v, halfwidth);
}
return 0;
}
int I420ToI422(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (height - 1) * dst_stride_u;
dst_v = dst_v + (height - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
// Copy Y plane
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
int halfwidth = (width + 1) >> 1;
// UpSample U plane.
int y;
for (y = 0; y < height - 1; y += 2) {
memcpy(dst_u, src_u, halfwidth);
memcpy(dst_u + dst_stride_u, src_u, halfwidth);
src_u += src_stride_u;
dst_u += dst_stride_u * 2;
}
if (height & 1) {
memcpy(dst_u, src_u, halfwidth);
}
// UpSample V plane.
for (y = 0; y < height - 1; y += 2) {
memcpy(dst_v, src_v, halfwidth);
memcpy(dst_v + dst_stride_v, src_v, halfwidth);
src_v += src_stride_v;
dst_v += dst_stride_v * 2;
}
if (height & 1) {
memcpy(dst_v, src_v, halfwidth);
}
return 0;
}
// Blends 32x2 pixels to 16x1
// source in scale.cc
#if defined(__ARM_NEON__) && !defined(YUV_DISABLE_ASM)
#define HAS_SCALEROWDOWN2_NEON
void ScaleRowDown2Int_NEON(const uint8* src_ptr, int src_stride,
uint8* dst, int dst_width);
#elif (defined(_M_IX86) || defined(__x86_64__) || defined(__i386__)) && \
!defined(YUV_DISABLE_ASM)
void ScaleRowDown2Int_SSE2(const uint8* src_ptr, int src_stride,
uint8* dst_ptr, int dst_width);
#endif
void ScaleRowDown2Int_C(const uint8* src_ptr, int src_stride,
uint8* dst_ptr, int dst_width);
int I444ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*ScaleRowDown2)(const uint8* src_ptr, int src_stride,
uint8* dst_ptr, int dst_width);
#if defined(HAS_SCALEROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(halfwidth, 16)) {
ScaleRowDown2 = ScaleRowDown2Int_NEON;
} else
#endif
#if defined(HAS_SCALEROWDOWN2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_u, 16) && IS_ALIGNED(src_stride_u, 16) &&
IS_ALIGNED(src_v, 16) && IS_ALIGNED(src_stride_v, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
ScaleRowDown2 = ScaleRowDown2Int_SSE2;
#endif
{
ScaleRowDown2 = ScaleRowDown2Int_C;
}
// Copy Y plane
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
// SubSample U plane.
int y;
for (y = 0; y < height - 1; y += 2) {
ScaleRowDown2(src_u, src_stride_u, dst_u, halfwidth);
src_u += src_stride_u * 2;
dst_u += dst_stride_u;
}
if (height & 1) {
ScaleRowDown2(src_u, 0, dst_u, halfwidth);
}
// SubSample V plane.
for (y = 0; y < height - 1; y += 2) {
ScaleRowDown2(src_v, src_stride_v, dst_v, halfwidth);
src_v += src_stride_v * 2;
dst_v += dst_stride_v;
}
if (height & 1) {
ScaleRowDown2(src_v, 0, dst_v, halfwidth);
}
return 0;
}
// use Bilinear for upsampling chroma
void ScalePlaneBilinear(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_ptr, uint8* dst_ptr);
int I420ToI444(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (height - 1) * dst_stride_u;
dst_v = dst_v + (height - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
// Copy Y plane
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
// Upsample U plane.
ScalePlaneBilinear(halfwidth, halfheight,
width, height,
src_stride_u,
dst_stride_u,
src_u, dst_u);
// Upsample V plane.
ScalePlaneBilinear(halfwidth, halfheight,
width, height,
src_stride_v,
dst_stride_v,
src_v, dst_v);
return 0;
}
static void CopyPlane2(const uint8* src, int src_stride_0, int src_stride_1,
uint8* dst, int dst_stride_frame,
int width, int height) {
// Copy plane
for (int y = 0; y < height; y += 2) {
memcpy(dst, src, width);
src += src_stride_0;
dst += dst_stride_frame;
memcpy(dst, src, width);
src += src_stride_1;
dst += dst_stride_frame;
}
}
// Support converting from FOURCC_M420
// Useful for bandwidth constrained transports like USB 1.0 and 2.0 and for
// easy conversion to I420.
// M420 format description:
// M420 is row biplanar 420: 2 rows of Y and 1 row of VU.
// Chroma is half width / half height. (420)
// src_stride_m420 is row planar. Normally this will be the width in pixels.
// The UV plane is half width, but 2 values, so src_stride_m420 applies to
// this as well as the two Y planes.
static int X420ToI420(const uint8* src_y,
int src_stride_y0, int src_stride_y1,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (halfheight - 1) * dst_stride_u;
dst_v = dst_v + (halfheight - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
int halfwidth = (width + 1) >> 1;
void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix);
#if defined(HAS_SPLITUV_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
SplitUV = SplitUV_NEON;
} else
#elif defined(HAS_SPLITUV_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(halfwidth, 16) &&
IS_ALIGNED(src_uv, 16) && IS_ALIGNED(src_stride_uv, 16) &&
IS_ALIGNED(dst_u, 16) && IS_ALIGNED(dst_stride_u, 16) &&
IS_ALIGNED(dst_v, 16) && IS_ALIGNED(dst_stride_v, 16)) {
SplitUV = SplitUV_SSE2;
} else
#endif
{
SplitUV = SplitUV_C;
}
CopyPlane2(src_y, src_stride_y0, src_stride_y1, dst_y, dst_stride_y,
width, height);
int halfheight = (height + 1) >> 1;
for (int y = 0; y < halfheight; ++y) {
// Copy a row of UV.
SplitUV(src_uv, dst_u, dst_v, halfwidth);
dst_u += dst_stride_u;
dst_v += dst_stride_v;
src_uv += src_stride_uv;
}
return 0;
}
// Convert M420 to I420.
int M420ToI420(const uint8* src_m420, int src_stride_m420,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
return X420ToI420(src_m420, src_stride_m420, src_stride_m420 * 2,
src_m420 + src_stride_m420 * 2, src_stride_m420 * 3,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
}
// Convert NV12 to I420.
int NV12ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
return X420ToI420(src_y, src_stride_y, src_stride_y,
src_uv, src_stride_uv,
dst_y, dst_stride_y,
dst_u, dst_stride_u,
dst_v, dst_stride_v,
width, height);
}
#if defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_SPLITYUY2_SSE2
__declspec(naked)
static void SplitYUY2_SSE2(const uint8* src_yuy2,
uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix) {
__asm {
push esi
push edi
mov eax, [esp + 8 + 4] // src_yuy2
mov edx, [esp + 8 + 8] // dst_y
mov esi, [esp + 8 + 12] // dst_u
mov edi, [esp + 8 + 16] // dst_v
mov ecx, [esp + 8 + 20] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
lea eax, [eax + 32]
movdqa xmm2, xmm0
movdqa xmm3, xmm1
pand xmm2, xmm5 // even bytes are Y
pand xmm3, xmm5
packuswb xmm2, xmm3
movdqa [edx], xmm2
lea edx, [edx + 16]
psrlw xmm0, 8 // YUYV -> UVUV
psrlw xmm1, 8
packuswb xmm0, xmm1
movdqa xmm1, xmm0
pand xmm0, xmm5 // U
packuswb xmm0, xmm0
movq qword ptr [esi], xmm0
lea esi, [esi + 8]
psrlw xmm1, 8 // V
packuswb xmm1, xmm1
movq qword ptr [edi], xmm1
lea edi, [edi + 8]
sub ecx, 16
ja convertloop
pop edi
pop esi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_SPLITYUY2_SSE2
static void SplitYUY2_SSE2(const uint8* src_yuy2, uint8* dst_y,
uint8* dst_u, uint8* dst_v, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"lea 0x20(%0),%0 \n"
"movdqa %%xmm0,%%xmm2 \n"
"movdqa %%xmm1,%%xmm3 \n"
"pand %%xmm5,%%xmm2 \n"
"pand %%xmm5,%%xmm3 \n"
"packuswb %%xmm3,%%xmm2 \n"
"movdqa %%xmm2,(%1) \n"
"lea 0x10(%1),%1 \n"
"psrlw $0x8,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,%%xmm1 \n"
"pand %%xmm5,%%xmm0 \n"
"packuswb %%xmm0,%%xmm0 \n"
"movq %%xmm0,(%2) \n"
"lea 0x8(%2),%2 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm1 \n"
"movq %%xmm1,(%3) \n"
"lea 0x8(%3),%3 \n"
"sub $0x10,%4 \n"
"ja 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_y), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(pix) // %4
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm5"
#endif
);
}
#endif
static void SplitYUY2_C(const uint8* src_yuy2,
uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix) {
// Copy a row of YUY2.
for (int x = 0; x < pix; x += 2) {
dst_y[0] = src_yuy2[0];
dst_y[1] = src_yuy2[2];
dst_u[0] = src_yuy2[1];
dst_v[0] = src_yuy2[3];
src_yuy2 += 4;
dst_y += 2;
dst_u += 1;
dst_v += 1;
}
}
// Convert Q420 to I420.
// Format is rows of YY/YUYV
int Q420ToI420(const uint8* src_y, int src_stride_y,
const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
int halfheight = (height + 1) >> 1;
dst_y = dst_y + (height - 1) * dst_stride_y;
dst_u = dst_u + (halfheight - 1) * dst_stride_u;
dst_v = dst_v + (halfheight - 1) * dst_stride_v;
dst_stride_y = -dst_stride_y;
dst_stride_u = -dst_stride_u;
dst_stride_v = -dst_stride_v;
}
void (*SplitYUY2)(const uint8* src_yuy2,
uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix);
#if defined(HAS_SPLITYUY2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
SplitYUY2 = SplitYUY2_SSE2;
} else
#endif
{
SplitYUY2 = SplitYUY2_C;
}
for (int y = 0; y < height; y += 2) {
memcpy(dst_y, src_y, width);
dst_y += dst_stride_y;
src_y += src_stride_y;
// Copy a row of YUY2.
SplitYUY2(src_yuy2, dst_y, dst_u, dst_v, width);
dst_y += dst_stride_y;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
src_yuy2 += src_stride_yuy2;
}
return 0;
}
#if defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_YUY2TOI420ROW_SSE2
__declspec(naked)
void YUY2ToI420RowY_SSE2(const uint8* src_yuy2,
uint8* dst_y, int pix) {
__asm {
mov eax, [esp + 4] // src_yuy2
mov edx, [esp + 8] // dst_y
mov ecx, [esp + 12] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
lea eax, [eax + 32]
pand xmm0, xmm5 // even bytes are Y
pand xmm1, xmm5
packuswb xmm0, xmm1
movdqa [edx], xmm0
lea edx, [edx + 16]
sub ecx, 16
ja convertloop
ret
}
}
__declspec(naked)
void YUY2ToI420RowUV_SSE2(const uint8* src_yuy2, int stride_yuy2,
uint8* dst_u, uint8* dst_y, int pix) {
__asm {
push esi
push edi
mov eax, [esp + 8 + 4] // src_yuy2
mov esi, [esp + 8 + 8] // stride_yuy2
mov edx, [esp + 8 + 12] // dst_u
mov edi, [esp + 8 + 16] // dst_v
mov ecx, [esp + 8 + 20] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
sub edi, edx
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
movdqa xmm2, [eax + esi]
movdqa xmm3, [eax + esi + 16]
lea eax, [eax + 32]
pavgb xmm0, xmm2
pavgb xmm1, xmm3
psrlw xmm0, 8 // YUYV -> UVUV
psrlw xmm1, 8
packuswb xmm0, xmm1
movdqa xmm1, xmm0
pand xmm0, xmm5 // U
packuswb xmm0, xmm0
psrlw xmm1, 8 // V
packuswb xmm1, xmm1
movq qword ptr [edx], xmm0
movq qword ptr [edx + edi], xmm1
lea edx, [edx + 8]
sub ecx, 16
ja convertloop
pop edi
pop esi
ret
}
}
__declspec(naked)
void YUY2ToI420RowY_Unaligned_SSE2(const uint8* src_yuy2,
uint8* dst_y, int pix) {
__asm {
mov eax, [esp + 4] // src_yuy2
mov edx, [esp + 8] // dst_y
mov ecx, [esp + 12] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
convertloop:
movdqu xmm0, [eax]
movdqu xmm1, [eax + 16]
lea eax, [eax + 32]
pand xmm0, xmm5 // even bytes are Y
pand xmm1, xmm5
packuswb xmm0, xmm1
movdqu [edx], xmm0
lea edx, [edx + 16]
sub ecx, 16
ja convertloop
ret
}
}
__declspec(naked)
void YUY2ToI420RowUV_Unaligned_SSE2(const uint8* src_yuy2, int stride_yuy2,
uint8* dst_u, uint8* dst_y, int pix) {
__asm {
push esi
push edi
mov eax, [esp + 8 + 4] // src_yuy2
mov esi, [esp + 8 + 8] // stride_yuy2
mov edx, [esp + 8 + 12] // dst_u
mov edi, [esp + 8 + 16] // dst_v
mov ecx, [esp + 8 + 20] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
sub edi, edx
convertloop:
movdqu xmm0, [eax]
movdqu xmm1, [eax + 16]
movdqu xmm2, [eax + esi]
movdqu xmm3, [eax + esi + 16]
lea eax, [eax + 32]
pavgb xmm0, xmm2
pavgb xmm1, xmm3
psrlw xmm0, 8 // YUYV -> UVUV
psrlw xmm1, 8
packuswb xmm0, xmm1
movdqa xmm1, xmm0
pand xmm0, xmm5 // U
packuswb xmm0, xmm0
psrlw xmm1, 8 // V
packuswb xmm1, xmm1
movq qword ptr [edx], xmm0
movq qword ptr [edx + edi], xmm1
lea edx, [edx + 8]
sub ecx, 16
ja convertloop
pop edi
pop esi
ret
}
}
#define HAS_UYVYTOI420ROW_SSE2
__declspec(naked)
void UYVYToI420RowY_SSE2(const uint8* src_uyvy,
uint8* dst_y, int pix) {
__asm {
mov eax, [esp + 4] // src_uyvy
mov edx, [esp + 8] // dst_y
mov ecx, [esp + 12] // pix
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
lea eax, [eax + 32]
psrlw xmm0, 8 // odd bytes are Y
psrlw xmm1, 8
packuswb xmm0, xmm1
movdqa [edx], xmm0
lea edx, [edx + 16]
sub ecx, 16
ja convertloop
ret
}
}
__declspec(naked)
void UYVYToI420RowUV_SSE2(const uint8* src_uyvy, int stride_uyvy,
uint8* dst_u, uint8* dst_y, int pix) {
__asm {
push esi
push edi
mov eax, [esp + 8 + 4] // src_yuy2
mov esi, [esp + 8 + 8] // stride_yuy2
mov edx, [esp + 8 + 12] // dst_u
mov edi, [esp + 8 + 16] // dst_v
mov ecx, [esp + 8 + 20] // pix
pcmpeqb xmm5, xmm5 // generate mask 0x00ff00ff
psrlw xmm5, 8
sub edi, edx
convertloop:
movdqa xmm0, [eax]
movdqa xmm1, [eax + 16]
movdqa xmm2, [eax + esi]
movdqa xmm3, [eax + esi + 16]
lea eax, [eax + 32]
pavgb xmm0, xmm2
pavgb xmm1, xmm3
pand xmm0, xmm5 // UYVY -> UVUV
pand xmm1, xmm5
packuswb xmm0, xmm1
movdqa xmm1, xmm0
pand xmm0, xmm5 // U
packuswb xmm0, xmm0
psrlw xmm1, 8 // V
packuswb xmm1, xmm1
movq qword ptr [edx], xmm0
movq qword ptr [edx + edi], xmm1
lea edx, [edx + 8]
sub ecx, 16
ja convertloop
pop edi
pop esi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_YUY2TOI420ROW_SSE2
static void YUY2ToI420RowY_SSE2(const uint8* src_yuy2,
uint8* dst_y, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"lea 0x20(%0),%0 \n"
"pand %%xmm5,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,(%1) \n"
"lea 0x10(%1),%1 \n"
"sub $0x10,%2 \n"
"ja 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_y), // %1
"+r"(pix) // %2
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm5"
#endif
);
}
static void YUY2ToI420RowUV_SSE2(const uint8* src_yuy2, int stride_yuy2,
uint8* dst_u, uint8* dst_y, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"sub %1,%2 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"movdqa (%0,%4,1),%%xmm2 \n"
"movdqa 0x10(%0,%4,1),%%xmm3 \n"
"lea 0x20(%0),%0 \n"
"pavgb %%xmm2,%%xmm0 \n"
"pavgb %%xmm3,%%xmm1 \n"
"psrlw $0x8,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,%%xmm1 \n"
"pand %%xmm5,%%xmm0 \n"
"packuswb %%xmm0,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm1 \n"
"movq %%xmm0,(%1) \n"
"movq %%xmm1,(%1,%2) \n"
"lea 0x8(%1),%1 \n"
"sub $0x10,%3 \n"
"ja 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_u), // %1
"+r"(dst_y), // %2
"+r"(pix) // %3
: "r"(static_cast<intptr_t>(stride_yuy2)) // %4
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm5"
#endif
);
}
static void YUY2ToI420RowY_Unaligned_SSE2(const uint8* src_yuy2,
uint8* dst_y, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"1: \n"
"movdqu (%0),%%xmm0 \n"
"movdqu 0x10(%0),%%xmm1 \n"
"lea 0x20(%0),%0 \n"
"pand %%xmm5,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqu %%xmm0,(%1) \n"
"lea 0x10(%1),%1 \n"
"sub $0x10,%2 \n"
"ja 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_y), // %1
"+r"(pix) // %2
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm5"
#endif
);
}
static void YUY2ToI420RowUV_Unaligned_SSE2(const uint8* src_yuy2,
int stride_yuy2,
uint8* dst_u, uint8* dst_y,
int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"sub %1,%2 \n"
"1: \n"
"movdqu (%0),%%xmm0 \n"
"movdqu 0x10(%0),%%xmm1 \n"
"movdqu (%0,%4,1),%%xmm2 \n"
"movdqu 0x10(%0,%4,1),%%xmm3 \n"
"lea 0x20(%0),%0 \n"
"pavgb %%xmm2,%%xmm0 \n"
"pavgb %%xmm3,%%xmm1 \n"
"psrlw $0x8,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,%%xmm1 \n"
"pand %%xmm5,%%xmm0 \n"
"packuswb %%xmm0,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm1 \n"
"movq %%xmm0,(%1) \n"
"movq %%xmm1,(%1,%2) \n"
"lea 0x8(%1),%1 \n"
"sub $0x10,%3 \n"
"ja 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_u), // %1
"+r"(dst_y), // %2
"+r"(pix) // %3
: "r"(static_cast<intptr_t>(stride_yuy2)) // %4
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm5"
#endif
);
}
#define HAS_UYVYTOI420ROW_SSE2
static void UYVYToI420RowY_SSE2(const uint8* src_uyvy,
uint8* dst_y, int pix) {
asm volatile (
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"lea 0x20(%0),%0 \n"
"psrlw $0x8,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,(%1) \n"
"lea 0x10(%1),%1 \n"
"sub $0x10,%2 \n"
"ja 1b \n"
: "+r"(src_uyvy), // %0
"+r"(dst_y), // %1
"+r"(pix) // %2
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1"
#endif
);
}
static void UYVYToI420RowUV_SSE2(const uint8* src_uyvy, int stride_uyvy,
uint8* dst_u, uint8* dst_y, int pix) {
asm volatile (
"pcmpeqb %%xmm5,%%xmm5 \n"
"psrlw $0x8,%%xmm5 \n"
"sub %1,%2 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"movdqa 0x10(%0),%%xmm1 \n"
"movdqa (%0,%4,1),%%xmm2 \n"
"movdqa 0x10(%0,%4,1),%%xmm3 \n"
"lea 0x20(%0),%0 \n"
"pavgb %%xmm2,%%xmm0 \n"
"pavgb %%xmm3,%%xmm1 \n"
"pand %%xmm5,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"packuswb %%xmm1,%%xmm0 \n"
"movdqa %%xmm0,%%xmm1 \n"
"pand %%xmm5,%%xmm0 \n"
"packuswb %%xmm0,%%xmm0 \n"
"psrlw $0x8,%%xmm1 \n"
"packuswb %%xmm1,%%xmm1 \n"
"movq %%xmm0,(%1) \n"
"movq %%xmm1,(%1,%2) \n"
"lea 0x8(%1),%1 \n"
"sub $0x10,%3 \n"
"ja 1b \n"
: "+r"(src_uyvy), // %0
"+r"(dst_u), // %1
"+r"(dst_y), // %2
"+r"(pix) // %3
: "r"(static_cast<intptr_t>(stride_uyvy)) // %4
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm5"
#endif
);
}
#endif
// Filter 2 rows of YUY2 UV's (422) into U and V (420)
void YUY2ToI420RowUV_C(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_u, uint8* dst_v, int pix) {
// Output a row of UV values, filtering 2 rows of YUY2
for (int x = 0; x < pix; x += 2) {
dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
src_yuy2 += 4;
dst_u += 1;
dst_v += 1;
}
}
void YUY2ToI420RowY_C(const uint8* src_yuy2,
uint8* dst_y, int pix) {
// Copy a row of yuy2 Y values
for (int x = 0; x < pix; ++x) {
dst_y[0] = src_yuy2[0];
src_yuy2 += 2;
dst_y += 1;
}
}
void UYVYToI420RowUV_C(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_u, uint8* dst_v, int pix) {
// Copy a row of uyvy UV values
for (int x = 0; x < pix; x += 2) {
dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1;
dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1;
src_uyvy += 4;
dst_u += 1;
dst_v += 1;
}
}
void UYVYToI420RowY_C(const uint8* src_uyvy,
uint8* dst_y, int pix) {
// Copy a row of uyvy Y values
for (int x = 0; x < pix; ++x) {
dst_y[0] = src_uyvy[1];
src_uyvy += 2;
dst_y += 1;
}
}
// Convert YUY2 to I420.
int YUY2ToI420(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
src_stride_yuy2 = -src_stride_yuy2;
}
void (*YUY2ToI420RowUV)(const uint8* src_yuy2, int src_stride_yuy2,
uint8* dst_u, uint8* dst_v, int pix);
void (*YUY2ToI420RowY)(const uint8* src_yuy2,
uint8* dst_y, int pix);
#if defined(HAS_YUY2TOI420ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 16)) {
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16)) {
YUY2ToI420RowUV = YUY2ToI420RowUV_SSE2;
} else {
YUY2ToI420RowUV = YUY2ToI420RowUV_Unaligned_SSE2;
}
if (IS_ALIGNED(src_yuy2, 16) && IS_ALIGNED(src_stride_yuy2, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
YUY2ToI420RowY = YUY2ToI420RowY_SSE2;
} else {
YUY2ToI420RowY = YUY2ToI420RowY_Unaligned_SSE2;
}
} else
#endif
{
YUY2ToI420RowY = YUY2ToI420RowY_C;
YUY2ToI420RowUV = YUY2ToI420RowUV_C;
}
for (int y = 0; y < height - 1; y += 2) {
YUY2ToI420RowUV(src_yuy2, src_stride_yuy2, dst_u, dst_v, width);
dst_u += dst_stride_u;
dst_v += dst_stride_v;
YUY2ToI420RowY(src_yuy2, dst_y, width);
YUY2ToI420RowY(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width);
dst_y += dst_stride_y * 2;
src_yuy2 += src_stride_yuy2 * 2;
}
if (height & 1) {
YUY2ToI420RowUV(src_yuy2, 0, dst_u, dst_v, width);
YUY2ToI420RowY(src_yuy2, dst_y, width);
}
return 0;
}
// Convert UYVY to I420.
int UYVYToI420(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
src_stride_uyvy = -src_stride_uyvy;
}
void (*UYVYToI420RowUV)(const uint8* src_uyvy, int src_stride_uyvy,
uint8* dst_u, uint8* dst_v, int pix);
void (*UYVYToI420RowY)(const uint8* src_uyvy,
uint8* dst_y, int pix);
#if defined(HAS_UYVYTOI420ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_uyvy, 16) && IS_ALIGNED(src_stride_uyvy, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
UYVYToI420RowY = UYVYToI420RowY_SSE2;
UYVYToI420RowUV = UYVYToI420RowUV_SSE2;
} else
#endif
{
UYVYToI420RowY = UYVYToI420RowY_C;
UYVYToI420RowUV = UYVYToI420RowUV_C;
}
for (int y = 0; y < height - 1; y += 2) {
UYVYToI420RowUV(src_uyvy, src_stride_uyvy, dst_u, dst_v, width);
dst_u += dst_stride_u;
dst_v += dst_stride_v;
UYVYToI420RowY(src_uyvy, dst_y, width);
UYVYToI420RowY(src_uyvy + src_stride_uyvy, dst_y + dst_stride_y, width);
dst_y += dst_stride_y * 2;
src_uyvy += src_stride_uyvy * 2;
}
if (height & 1) {
UYVYToI420RowUV(src_uyvy, 0, dst_u, dst_v, width);
UYVYToI420RowY(src_uyvy, dst_y, width);
}
return 0;
}
// Convert I420 to ARGB.
int I420ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYUVToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYUVTOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
FastConvertYUVToARGBRow = FastConvertYUVToARGBRow_NEON;
} else
#elif defined(HAS_FASTCONVERTYUVTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYUVToARGBRow = FastConvertYUVToARGBRow_SSSE3;
} else
#endif
{
FastConvertYUVToARGBRow = FastConvertYUVToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYUVToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
if (y & 1) {
src_u += src_stride_u;
src_v += src_stride_v;
}
}
return 0;
}
// Convert I420 to BGRA.
int I420ToBGRA(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYUVToBGRARow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYUVTOBGRAROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
FastConvertYUVToBGRARow = FastConvertYUVToBGRARow_NEON;
} else
#elif defined(HAS_FASTCONVERTYUVTOBGRAROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYUVToBGRARow = FastConvertYUVToBGRARow_SSSE3;
} else
#endif
{
FastConvertYUVToBGRARow = FastConvertYUVToBGRARow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYUVToBGRARow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
if (y & 1) {
src_u += src_stride_u;
src_v += src_stride_v;
}
}
return 0;
}
// Convert I420 to ABGR.
int I420ToABGR(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYUVToABGRRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYUVTOABGRROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
FastConvertYUVToABGRRow = FastConvertYUVToABGRRow_NEON;
} else
#elif defined(HAS_FASTCONVERTYUVTOABGRROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYUVToABGRRow = FastConvertYUVToABGRRow_SSSE3;
} else
#endif
{
FastConvertYUVToABGRRow = FastConvertYUVToABGRRow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYUVToABGRRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
if (y & 1) {
src_u += src_stride_u;
src_v += src_stride_v;
}
}
return 0;
}
// Convert I422 to ARGB.
int I422ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYUVToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYUVTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYUVToARGBRow = FastConvertYUVToARGBRow_SSSE3;
} else
#endif
{
FastConvertYUVToARGBRow = FastConvertYUVToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYUVToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I444 to ARGB.
int I444ToARGB(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYUV444ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYUV444TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYUV444ToARGBRow = FastConvertYUV444ToARGBRow_SSSE3;
} else
#endif
{
FastConvertYUV444ToARGBRow = FastConvertYUV444ToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYUV444ToARGBRow(src_y, src_u, src_v, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB_Reference(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_argb = dst_argb + (height - 1) * dst_stride_argb;
dst_stride_argb = -dst_stride_argb;
}
void (*FastConvertYToARGBRow)(const uint8* y_buf,
uint8* rgb_buf,
int width);
#if defined(HAS_FASTCONVERTYTOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
FastConvertYToARGBRow = FastConvertYToARGBRow_SSE2;
} else
#endif
{
FastConvertYToARGBRow = FastConvertYToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
FastConvertYToARGBRow(src_y, dst_argb, width);
dst_argb += dst_stride_argb;
src_y += src_stride_y;
}
return 0;
}
// Convert I400 to ARGB.
int I400ToARGB(const uint8* src_y, int src_stride_y,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix);
#if defined(HAS_I400TOARGBROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 8) &&
IS_ALIGNED(src_y, 8) && IS_ALIGNED(src_stride_y, 8) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I400ToARGBRow = I400ToARGBRow_SSE2;
} else
#endif
{
I400ToARGBRow = I400ToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
I400ToARGBRow(src_y, dst_argb, width);
src_y += src_stride_y;
dst_argb += dst_stride_argb;
}
return 0;
}
int ABGRToARGB(const uint8* src_abgr, int src_stride_abgr,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_abgr = src_abgr + (height - 1) * src_stride_abgr;
src_stride_abgr = -src_stride_abgr;
}
void (*ABGRToARGBRow)(const uint8* src_abgr, uint8* dst_argb, int pix);
#if defined(HAS_ABGRTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_abgr, 16) && IS_ALIGNED(src_stride_abgr, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ABGRToARGBRow = ABGRToARGBRow_SSSE3;
} else
#endif
{
ABGRToARGBRow = ABGRToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
ABGRToARGBRow(src_abgr, dst_argb, width);
src_abgr += src_stride_abgr;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert BGRA to ARGB.
int BGRAToARGB(const uint8* src_bgra, int src_stride_bgra,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_bgra = src_bgra + (height - 1) * src_stride_bgra;
src_stride_bgra = -src_stride_bgra;
}
void (*BGRAToARGBRow)(const uint8* src_bgra, uint8* dst_argb, int pix);
#if defined(HAS_BGRATOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_bgra, 16) && IS_ALIGNED(src_stride_bgra, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
BGRAToARGBRow = BGRAToARGBRow_SSSE3;
} else
#endif
{
BGRAToARGBRow = BGRAToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
BGRAToARGBRow(src_bgra, dst_argb, width);
src_bgra += src_stride_bgra;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert ARGB to I400.
int ARGBToI400(const uint8* src_argb, int src_stride_argb,
uint8* dst_y, int dst_stride_y,
int width, int height) {
if (height < 0) {
height = -height;
src_argb = src_argb + (height - 1) * src_stride_argb;
src_stride_argb = -src_stride_argb;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride_argb, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = ARGBToYRow_C;
}
for (int y = 0; y < height; ++y) {
ARGBToYRow(src_argb, dst_y, width);
src_argb += src_stride_argb;
dst_y += dst_stride_y;
}
return 0;
}
// Convert RAW to ARGB.
int RAWToARGB(const uint8* src_raw, int src_stride_raw,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_raw = src_raw + (height - 1) * src_stride_raw;
src_stride_raw = -src_stride_raw;
}
void (*RAWToARGBRow)(const uint8* src_raw, uint8* dst_argb, int pix);
#if defined(HAS_RAWTOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_raw, 16) && IS_ALIGNED(src_stride_raw, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
RAWToARGBRow = RAWToARGBRow_SSSE3;
} else
#endif
{
RAWToARGBRow = RAWToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
RAWToARGBRow(src_raw, dst_argb, width);
src_raw += src_stride_raw;
dst_argb += dst_stride_argb;
}
return 0;
}
// Convert BG24 to ARGB.
int BG24ToARGB(const uint8* src_bg24, int src_stride_bg24,
uint8* dst_argb, int dst_stride_argb,
int width, int height) {
if (height < 0) {
height = -height;
src_bg24 = src_bg24 + (height - 1) * src_stride_bg24;
src_stride_bg24 = -src_stride_bg24;
}
void (*BG24ToARGBRow)(const uint8* src_bg24, uint8* dst_argb, int pix);
#if defined(HAS_BG24TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_bg24, 16) && IS_ALIGNED(src_stride_bg24, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
BG24ToARGBRow = BG24ToARGBRow_SSSE3;
} else
#endif
{
BG24ToARGBRow = BG24ToARGBRow_C;
}
for (int y = 0; y < height; ++y) {
BG24ToARGBRow(src_bg24, dst_argb, width);
src_bg24 += src_stride_bg24;
dst_argb += dst_stride_argb;
}
return 0;
}
// SetRow8 writes 'count' bytes using a 32 bit value repeated
// SetRow32 writes 'count' words using a 32 bit value repeated
#if defined(__ARM_NEON__) && !defined(YUV_DISABLE_ASM)
#define HAS_SETROW_NEON
static void SetRow8_NEON(uint8* dst, uint32 v32, int count) {
asm volatile (
"vdup.u32 q0, %2 \n" // duplicate 4 ints
"1: \n"
"vst1.u32 {q0}, [%0]! \n" // store
"subs %1, %1, #16 \n" // 16 bytes per loop
"bhi 1b \n"
: "+r"(dst), // %0
"+r"(count) // %1
: "r"(v32) // %2
: "q0", "memory", "cc"
);
}
// TODO(fbarchard): Make fully assembler
static void SetRows32_NEON(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
SetRow8_NEON(dst, v32, width << 2);
dst += dst_stride;
}
}
#elif defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_SETROW_X86
__declspec(naked)
static void SetRow8_X86(uint8* dst, uint32 v32, int count) {
__asm {
mov edx, edi
mov edi, [esp + 4] // dst
mov eax, [esp + 8] // v32
mov ecx, [esp + 12] // count
shr ecx, 2
rep stosd
mov edi, edx
ret
}
}
__declspec(naked)
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
__asm {
push edi
push ebp
mov edi, [esp + 8 + 4] // dst
mov eax, [esp + 8 + 8] // v32
mov ebp, [esp + 8 + 12] // width
mov edx, [esp + 8 + 16] // dst_stride
mov ebx, [esp + 8 + 20] // height
lea ecx, [ebp * 4]
sub edx, ecx // stride - width * 4
convertloop:
mov ecx, ebp
rep stosd
add edi, edx
sub ebx, 1
ja convertloop
pop ebp
pop edi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_SETROW_X86
static void SetRow8_X86(uint8* dst, uint32 v32, int width) {
size_t width_tmp = static_cast<size_t>(width);
asm volatile (
"shr $0x2,%1 \n"
"rep stosl \n"
: "+D"(dst), // %0
"+c"(width_tmp) // %1
: "a"(v32) // %2
: "memory", "cc"
);
}
static void SetRows32_X86(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
size_t width_tmp = static_cast<size_t>(width);
uint32* d = reinterpret_cast<uint32*>(dst);
asm volatile (
"rep stosl \n"
: "+D"(d), // %0
"+c"(width_tmp) // %1
: "a"(v32) // %2
: "memory", "cc"
);
dst += dst_stride;
}
}
#endif
#if !defined(HAS_SETROW_X86)
static void SetRow8_C(uint8* dst, uint32 v8, int count) {
#ifdef _MSC_VER
for (int x = 0; x < count; ++x) {
dst[x] = v8;
}
#else
memset(dst, v8, count);
#endif
}
static void SetRows32_C(uint8* dst, uint32 v32, int width,
int dst_stride, int height) {
for (int y = 0; y < height; ++y) {
uint32* d = reinterpret_cast<uint32*>(dst);
for (int x = 0; x < width; ++x) {
d[x] = v32;
}
dst += dst_stride;
}
}
#endif
static void SetPlane(uint8* dst_y, int dst_stride_y,
int width, int height,
uint32 value) {
void (*SetRow)(uint8* dst, uint32 value, int pix);
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
SetRow = SetRow8_NEON;
} else
#elif defined(HAS_SETROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
SetRow = SetRow8_SSE2;
} else
#endif
{
#if defined(HAS_SETROW_X86)
SetRow = SetRow8_X86;
#else
SetRow = SetRow8_C;
#endif
}
uint32 v32 = value | (value << 8) | (value << 16) | (value << 24);
// Set plane
for (int y = 0; y < height; ++y) {
SetRow(dst_y, v32, width);
dst_y += dst_stride_y;
}
}
// Draw a rectangle into I420
int I420Rect(uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int x, int y,
int width, int height,
int value_y, int value_u, int value_v) {
if (!dst_y || !dst_u || !dst_v ||
width <= 0 || height <= 0 ||
x < 0 || y < 0 ||
value_y < 0 || value_y > 255 ||
value_u < 0 || value_u > 255 ||
value_v < 0 || value_v > 255) {
return -1;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
uint8* start_y = dst_y + y * dst_stride_y + x;
uint8* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
uint8* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
SetPlane(start_y, dst_stride_y, width, height, value_y);
SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
return 0;
}
// Draw a rectangle into ARGB
int ARGBRect(uint8* dst_argb, int dst_stride_argb,
int dst_x, int dst_y,
int width, int height,
uint32 value) {
if (!dst_argb ||
width <= 0 || height <= 0 ||
dst_x < 0 || dst_y < 0) {
return -1;
}
uint8* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
void (*SetRows)(uint8* dst, uint32 value, int width,
int dst_stride, int height);
#if defined(HAS_SETROW_NEON)
if (TestCpuFlag(kCpuHasNEON) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(dst, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
SetRows = SetRows32_NEON;
} else
#endif
{
#if defined(HAS_SETROW_X86)
SetRows = SetRows32_X86;
#else
SetRows = SetRows32_C;
#endif
}
SetRows(dst, value, width, dst_stride_argb, height);
return 0;
}
// I400 is greyscale typically used in MJPG
int I400ToI420(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
SetPlane(dst_u, dst_stride_u, halfwidth, halfheight, 128);
SetPlane(dst_v, dst_stride_v, halfwidth, halfheight, 128);
return 0;
}
// Copy to I400. Source can be I420,422,444,400,NV12,NV21
int I400Copy(const uint8* src_y, int src_stride_y,
uint8* dst_y, int dst_stride_y,
int width, int height) {
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_stride_y = -src_stride_y;
}
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif