blob: d9b39d8da1975fb44183549bc5260c2757e0352c [file] [log] [blame]
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/convert.h"
//#define SCALEOPT //Currently for windows only. June 2010
#ifdef SCALEOPT
#include <emmintrin.h>
#endif
#include "conversion_tables.h"
#include "libyuv/basic_types.h"
#include "libyuv/cpu_id.h"
#include "libyuv/format_conversion.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "row.h"
#include "libyuv/video_common.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
static __inline uint8 Clip(int32 val) {
if (val < 0) {
return (uint8) 0;
} else if (val > 255){
return (uint8) 255;
}
return (uint8) val;
}
// TODO(fbarchard): rewrite with row functions
int I420ToRGB24(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// TODO(fbarchard): support inversion
uint8* out = dst_frame;
uint8* out2 = out + dst_stride_frame;
int h, w;
int tmp_r, tmp_g, tmp_b;
const uint8 *y1, *y2 ,*u, *v;
y1 = src_y;
y2 = y1 + src_stride_y;
u = src_u;
v = src_v;
for (h = ((height + 1) >> 1); h > 0; h--){
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++){
// Vertical and horizontal sub-sampling
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8);
out[0] = Clip(tmp_b);
out[1] = Clip(tmp_g);
out[2] = Clip(tmp_r);
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8);
out[3] = Clip(tmp_b);
out[4] = Clip(tmp_g);
out[5] = Clip(tmp_r);
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8);
out2[0] = Clip(tmp_b);
out2[1] = Clip(tmp_g);
out2[2] = Clip(tmp_r);
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8);
out2[3] = Clip(tmp_b);
out2[4] = Clip(tmp_g);
out2[5] = Clip(tmp_r);
out += 6;
out2 += 6;
y1 += 2;
y2 += 2;
u++;
v++;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out += dst_stride_frame;
out2 += dst_stride_frame;
}
return 0;
}
// same as RGB24 but r,g,b instead of b,g,r
// TODO(fbarchard): rewrite with row functions
int I420ToRAW(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// RGB orientation - bottom up
// TODO(fbarchard): support inversion
uint8* out = dst_frame + dst_stride_frame * height - dst_stride_frame;
uint8* out2 = out - dst_stride_frame;
int h, w;
int tmp_r, tmp_g, tmp_b;
const uint8 *y1, *y2 ,*u, *v;
y1 = src_y;
y2 = y1 + src_stride_y;
u = src_u;
v = src_v;
for (h = ((height + 1) >> 1); h > 0; h--){
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++){
// Vertical and horizontal sub-sampling
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8);
out[0] = Clip(tmp_r);
out[1] = Clip(tmp_g);
out[2] = Clip(tmp_b);
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8);
out[3] = Clip(tmp_r);
out[4] = Clip(tmp_g);
out[5] = Clip(tmp_b);
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8);
out2[0] = Clip(tmp_r);
out2[1] = Clip(tmp_g);
out2[2] = Clip(tmp_b);
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8);
out2[3] = Clip(tmp_r);
out2[4] = Clip(tmp_g);
out2[5] = Clip(tmp_b);
out += 6;
out2 += 6;
y1 += 2;
y2 += 2;
u++;
v++;
}
y1 += src_stride_y + src_stride_y - width;
y2 += src_stride_y + src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out -= dst_stride_frame * 3;
out2 -= dst_stride_frame * 3;
} // end height for
return 0;
}
// Little Endian...
// TODO(fbarchard): rewrite with row functions
int I420ToARGB4444(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// RGB orientation - bottom up
uint8* out = dst_frame + dst_stride_frame * (height - 1);
uint8* out2 = out - dst_stride_frame;
int tmp_r, tmp_g, tmp_b;
const uint8 *y1,*y2, *u, *v;
y1 = src_y;
y2 = y1 + src_stride_y;
u = src_u;
v = src_v;
int h, w;
for (h = ((height + 1) >> 1); h > 0; h--) {
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++) {
// Vertical and horizontal sub-sampling
// Convert to RGB888 and re-scale to 4 bits
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8);
out[0] =(uint8)((Clip(tmp_g) & 0xf0) + (Clip(tmp_b) >> 4));
out[1] = (uint8)(0xf0 + (Clip(tmp_r) >> 4));
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8);
out[2] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4));
out[3] = (uint8)(0xf0 + (Clip(tmp_r) >> 4));
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8);
out2[0] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4));
out2[1] = (uint8) (0xf0 + (Clip(tmp_r) >> 4));
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8);
out2[2] = (uint8)((Clip(tmp_g) & 0xf0 ) + (Clip(tmp_b) >> 4));
out2[3] = (uint8)(0xf0 + (Clip(tmp_r) >> 4));
out += 4;
out2 += 4;
y1 += 2;
y2 += 2;
u++;
v++;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out -= (dst_stride_frame + width) * 2;
out2 -= (dst_stride_frame + width) * 2;
} // end height for
return 0;
}
// TODO(fbarchard): rewrite with row functions
int I420ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
uint16* out = (uint16*)(dst_frame) + dst_stride_frame * (height - 1);
uint16* out2 = out - dst_stride_frame;
int tmp_r, tmp_g, tmp_b;
const uint8* y1,* y2, * u, * v;
y1 = src_y;
y2 = y1 + src_stride_y;
u = src_u;
v = src_v;
int h, w;
for (h = ((height + 1) >> 1); h > 0; h--){
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++){
// Vertical and horizontal sub-sampling
// 1. Convert to RGB888
// 2. Shift to adequate location (in the 16 bit word) - RGB 565
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8);
out[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8);
out[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b ) >> 3);
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8);
out2[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8);
out2[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
y1 += 2;
y2 += 2;
out += 2;
out2 += 2;
u++;
v++;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out -= 2 * dst_stride_frame + width;
out2 -= 2 * dst_stride_frame + width;
}
return 0;
}
// TODO(fbarchard): rewrite with row functions
int I420ToARGB1555(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
uint16* out = (uint16*)(dst_frame) + dst_stride_frame * (height - 1);
uint16* out2 = out - dst_stride_frame ;
int32 tmp_r, tmp_g, tmp_b;
const uint8 *y1,*y2, *u, *v;
int h, w;
y1 = src_y;
y2 = y1 + src_stride_y;
u = src_u;
v = src_v;
for (h = ((height + 1) >> 1); h > 0; h--){
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++){
// Vertical and horizontal sub-sampling
// 1. Convert to RGB888
// 2. Shift to adequate location (in the 16 bit word) - RGB 555
// 3. Add 1 for alpha value
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[u[0]] + 128) >> 8);
out[0] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) +
((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3));
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[u[0]] + 128) >> 8);
out[1] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) +
((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3));
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[u[0]] + 128) >> 8);
out2[0] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) +
((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3));
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[v[0]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[u[0]] + mapVcg[v[0]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[u[0]] + 128) >> 8);
out2[1] = (uint16)(0x8000 + ((Clip(tmp_r) & 0xf8) << 10) +
((Clip(tmp_g) & 0xf8) << 3) + (Clip(tmp_b) >> 3));
y1 += 2;
y2 += 2;
out += 2;
out2 += 2;
u++;
v++;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out -= 2 * dst_stride_frame + width;
out2 -= 2 * dst_stride_frame + width;
}
return 0;
}
// YUY2 - Macro-pixel = 2 image pixels
// Y0U0Y1V0....Y2U2Y3V2...Y4U4Y5V4....
#if defined(_M_IX86) && !defined(YUV_DISABLE_ASM)
#define HAS_I42XTOYUY2ROW_SSE2
__declspec(naked)
static void I42xToYUY2Row_SSE2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_frame, int width) {
__asm {
push esi
push edi
mov eax, [esp + 8 + 4] // src_y
mov esi, [esp + 8 + 8] // src_u
mov edx, [esp + 8 + 12] // src_v
mov edi, [esp + 8 + 16] // dst_frame
mov ecx, [esp + 8 + 20] // width
sub edx, esi
convertloop:
movdqa xmm0, [eax] // Y
lea eax, [eax + 16]
movq xmm2, qword ptr [esi] // U
movq xmm3, qword ptr [esi + edx] // V
lea esi, [esi + 8]
punpcklbw xmm2, xmm3 // UV
movdqa xmm1, xmm0
punpcklbw xmm0, xmm2 // YUYV
punpckhbw xmm1, xmm2
movdqa [edi], xmm0
movdqa [edi + 16], xmm1
lea edi, [edi + 32]
sub ecx, 16
ja convertloop
pop edi
pop esi
ret
}
}
#elif (defined(__x86_64__) || defined(__i386__)) && !defined(YUV_DISABLE_ASM)
#define HAS_I42XTOYUY2ROW_SSE2
static void I42xToYUY2Row_SSE2(const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_frame, int width) {
asm volatile (
"sub %1,%2 \n"
"1: \n"
"movdqa (%0),%%xmm0 \n"
"lea 0x10(%0),%0 \n"
"movq (%1),%%xmm2 \n"
"movq (%1,%2,1),%%xmm3 \n"
"lea 0x8(%1),%1 \n"
"punpcklbw %%xmm3,%%xmm2 \n"
"movdqa %%xmm0,%%xmm1 \n"
"punpcklbw %%xmm2,%%xmm0 \n"
"punpckhbw %%xmm2,%%xmm1 \n"
"movdqa %%xmm0,(%3) \n"
"movdqa %%xmm1,0x10(%3) \n"
"lea 0x20(%3),%3 \n"
"sub $0x10,%4 \n"
"ja 1b \n"
: "+r"(src_y), // %0
"+r"(src_u), // %1
"+r"(src_v), // %2
"+r"(dst_frame), // %3
"+rm"(width) // %4
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3"
#endif
);
}
#endif
void I42xToYUY2Row_C(const uint8* src_y, const uint8* src_u, const uint8* src_v,
uint8* dst_frame, int width) {
for (int x = 0; x < width - 1; x += 2) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = src_y[1];
dst_frame[3] = src_v[0];
dst_frame += 4;
src_y += 2;
src_u += 1;
src_v += 1;
}
if (width & 1) {
dst_frame[0] = src_y[0];
dst_frame[1] = src_u[0];
dst_frame[2] = src_y[0]; // duplicate last y
dst_frame[3] = src_v[0];
}
}
int I422ToYUY2(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_frame = dst_frame + (height - 1) * dst_stride_frame;
dst_stride_frame = -dst_stride_frame;
}
void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u,
const uint8* src_v, uint8* dst_frame, int width);
#if defined(HAS_I42XTOYUY2ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) {
I42xToYUY2Row = I42xToYUY2Row_SSE2;
} else
#endif
{
I42xToYUY2Row = I42xToYUY2Row_C;
}
for (int y = 0; y < height; ++y) {
I42xToYUY2Row(src_y, src_u, src_y, dst_frame, width);
src_y += src_stride_y;
src_u += src_stride_u;
src_v += src_stride_v;
dst_frame += dst_stride_frame;
}
return 0;
}
int I420ToYUY2(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
dst_frame = dst_frame + (height - 1) * dst_stride_frame;
dst_stride_frame = -dst_stride_frame;
}
void (*I42xToYUY2Row)(const uint8* src_y, const uint8* src_u,
const uint8* src_v, uint8* dst_frame, int width);
#if defined(HAS_I42XTOYUY2ROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_y, 16) && IS_ALIGNED(src_stride_y, 16) &&
IS_ALIGNED(dst_frame, 16) && IS_ALIGNED(dst_stride_frame, 16)) {
I42xToYUY2Row = I42xToYUY2Row_SSE2;
} else
#endif
{
I42xToYUY2Row = I42xToYUY2Row_C;
}
for (int y = 0; y < height - 1; y += 2) {
I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width);
I42xToYUY2Row(src_y + src_stride_y, src_u, src_v,
dst_frame + dst_stride_frame, width);
src_y += src_stride_y * 2;
src_u += src_stride_u;
src_v += src_stride_v;
dst_frame += dst_stride_frame * 2;
}
if (height & 1) {
I42xToYUY2Row(src_y, src_u, src_v, dst_frame, width);
}
return 0;
}
int I420ToUYVY(const uint8* src_y, int src_stride_y,
const uint8* src_u, int src_stride_u,
const uint8* src_v, int src_stride_v,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_u == NULL || src_v == NULL || dst_frame == NULL) {
return -1;
}
int i = 0;
const uint8* y1 = src_y;
const uint8* y2 = y1 + src_stride_y;
const uint8* u = src_u;
const uint8* v = src_v;
uint8* out1 = dst_frame;
uint8* out2 = dst_frame + dst_stride_frame;
// Macro-pixel = 2 image pixels
// U0Y0V0Y1....U2Y2V2Y3...U4Y4V4Y5.....
#ifndef SCALEOPT
for (; i < ((height + 1) >> 1); i++) {
for (int j = 0; j < ((width + 1) >> 1); j++) {
out1[0] = *u;
out1[1] = y1[0];
out1[2] = *v;
out1[3] = y1[1];
out2[0] = *u;
out2[1] = y2[0];
out2[2] = *v;
out2[3] = y2[1];
out1 += 4;
out2 += 4;
u++;
v++;
y1 += 2;
y2 += 2;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
u += src_stride_u - ((width + 1) >> 1);
v += src_stride_v - ((width + 1) >> 1);
out1 += 2 * (dst_stride_frame - width);
out2 += 2 * (dst_stride_frame - width);
}
#else
for (; i < (height >> 1);i++) {
int32 width__ = (width >> 4);
_asm
{
;pusha
mov eax, DWORD PTR [in1] ;1939.33
mov ecx, DWORD PTR [in2] ;1939.33
mov ebx, DWORD PTR [src_u] ;1939.33
mov edx, DWORD PTR [src_v] ;1939.33
loop0:
movq xmm6, QWORD PTR [ebx] ;src_u
movq xmm0, QWORD PTR [edx] ;src_v
punpcklbw xmm6, xmm0 ;src_u, src_v mix
movdqa xmm1, xmm6
movdqa xmm2, xmm6
movdqa xmm4, xmm6
movdqu xmm3, XMMWORD PTR [eax] ;in1
punpcklbw xmm1, xmm3 ;src_u, in1, src_v
mov esi, DWORD PTR [out1]
movdqu XMMWORD PTR [esi], xmm1 ;write to out1
movdqu xmm5, XMMWORD PTR [ecx] ;in2
punpcklbw xmm2, xmm5 ;src_u, in2, src_v
mov edi, DWORD PTR [out2]
movdqu XMMWORD PTR [edi], xmm2 ;write to out2
punpckhbw xmm4, xmm3 ;src_u, in1, src_v again
movdqu XMMWORD PTR [esi+16], xmm4 ;write to out1 again
add esi, 32
mov DWORD PTR [out1], esi
punpckhbw xmm6, xmm5 ;src_u, in2, src_v again
movdqu XMMWORD PTR [edi+16], xmm6 ;write to out2 again
add edi, 32
mov DWORD PTR [out2], edi
add ebx, 8
add edx, 8
add eax, 16
add ecx, 16
mov esi, DWORD PTR [width__]
sub esi, 1
mov DWORD PTR [width__], esi
jg loop0
mov DWORD PTR [in1], eax ;1939.33
mov DWORD PTR [in2], ecx ;1939.33
mov DWORD PTR [src_u], ebx ;1939.33
mov DWORD PTR [src_v], edx ;1939.33
;popa
emms
}
in1 += width;
in2 += width;
out1 += 2 * (dst_stride_frame - width);
out2 += 2 * (dst_stride_frame - width);
}
#endif
return 0;
}
int NV12ToRGB565(const uint8* src_y, int src_stride_y,
const uint8* src_uv, int src_stride_uv,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_y == NULL || src_uv == NULL || dst_frame == NULL) {
return -1;
}
// Bi-Planar: Y plane followed by an interlaced U and V plane
const uint8* interlacedSrc = src_uv;
uint16* out = (uint16*)(src_y) + dst_stride_frame * (height - 1);
uint16* out2 = out - dst_stride_frame;
int32 tmp_r, tmp_g, tmp_b;
const uint8 *y1,*y2;
y1 = src_y;
y2 = y1 + src_stride_y;
int h, w;
for (h = ((height + 1) >> 1); h > 0; h--) {
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((width + 1) >> 1); w++) {
// Vertical and horizontal sub-sampling
// 1. Convert to RGB888
// 2. Shift to adequate location (in the 16 bit word) - RGB 565
tmp_r = (int32)((mapYc[y1[0]] + mapVcr[interlacedSrc[1]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[0]] + mapUcg[interlacedSrc[0]]
+ mapVcg[interlacedSrc[1]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[0]] + mapUcb[interlacedSrc[0]] + 128) >> 8);
out[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
tmp_r = (int32)((mapYc[y1[1]] + mapVcr[interlacedSrc[1]] + 128) >> 8);
tmp_g = (int32)((mapYc[y1[1]] + mapUcg[interlacedSrc[0]]
+ mapVcg[interlacedSrc[1]] + 128) >> 8);
tmp_b = (int32)((mapYc[y1[1]] + mapUcb[interlacedSrc[0]] + 128) >> 8);
out[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b ) >> 3);
tmp_r = (int32)((mapYc[y2[0]] + mapVcr[interlacedSrc[1]] + 128) >> 8);
tmp_g = (int32)((mapYc[y2[0]] + mapUcg[interlacedSrc[0]]
+ mapVcg[interlacedSrc[1]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[0]] + mapUcb[interlacedSrc[0]] + 128) >> 8);
out2[0] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
tmp_r = (int32)((mapYc[y2[1]] + mapVcr[interlacedSrc[1]]
+ 128) >> 8);
tmp_g = (int32)((mapYc[y2[1]] + mapUcg[interlacedSrc[0]]
+ mapVcg[interlacedSrc[1]] + 128) >> 8);
tmp_b = (int32)((mapYc[y2[1]] + mapUcb[interlacedSrc[0]] + 128) >> 8);
out2[1] = (uint16)((Clip(tmp_r) & 0xf8) << 8) + ((Clip(tmp_g)
& 0xfc) << 3) + (Clip(tmp_b) >> 3);
y1 += 2;
y2 += 2;
out += 2;
out2 += 2;
interlacedSrc += 2;
}
y1 += 2 * src_stride_y - width;
y2 += 2 * src_stride_y - width;
interlacedSrc += src_stride_uv - ((width + 1) >> 1);
out -= 3 * dst_stride_frame + dst_stride_frame - width;
out2 -= 3 * dst_stride_frame + dst_stride_frame - width;
}
return 0;
}
// TODO(fbarchard): Deprecated - this is same as BG24ToARGB with -height
int RGB24ToARGB(const uint8* src_frame, int src_stride_frame,
uint8* dst_frame, int dst_stride_frame,
int width, int height) {
if (src_frame == NULL || dst_frame == NULL) {
return -1;
}
int i, j, offset;
uint8* outFrame = dst_frame;
const uint8* inFrame = src_frame;
outFrame += dst_stride_frame * (height - 1) * 4;
for (i = 0; i < height; i++) {
for (j = 0; j < width; j++) {
offset = j * 4;
outFrame[0 + offset] = inFrame[0];
outFrame[1 + offset] = inFrame[1];
outFrame[2 + offset] = inFrame[2];
outFrame[3 + offset] = 0xff;
inFrame += 3;
}
outFrame -= 4 * (dst_stride_frame - width);
inFrame += src_stride_frame - width;
}
return 0;
}
int ARGBToI420(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (height < 0) {
height = -height;
src_frame = src_frame + (height - 1) * src_stride_frame;
src_stride_frame = -src_stride_frame;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
#if defined(HAS_ARGBTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ARGBToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = ARGBToYRow_C;
}
#if defined(HAS_ARGBTOUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
ARGBToUVRow = ARGBToUVRow_SSSE3;
} else
#endif
{
ARGBToUVRow = ARGBToUVRow_C;
}
for (int y = 0; y < (height - 1); y += 2) {
ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width);
src_frame += src_stride_frame * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_frame, 0, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
}
return 0;
}
int BGRAToI420(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (height < 0) {
height = -height;
src_frame = src_frame + (height - 1) * src_stride_frame;
src_stride_frame = -src_stride_frame;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
#if defined(HAS_BGRATOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = BGRAToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = BGRAToYRow_C;
}
#if defined(HAS_BGRATOUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
ARGBToUVRow = BGRAToUVRow_SSSE3;
} else
#endif
{
ARGBToUVRow = BGRAToUVRow_C;
}
for (int y = 0; y < (height - 1); y += 2) {
ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width);
src_frame += src_stride_frame * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_frame, 0, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
}
return 0;
}
int ABGRToI420(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (height < 0) {
height = -height;
src_frame = src_frame + (height - 1) * src_stride_frame;
src_stride_frame = -src_stride_frame;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
#if defined(HAS_ABGRTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = ABGRToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = ABGRToYRow_C;
}
#if defined(HAS_ABGRTOUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
ARGBToUVRow = ABGRToUVRow_SSSE3;
} else
#endif
{
ARGBToUVRow = ABGRToUVRow_C;
}
for (int y = 0; y < (height - 1); y += 2) {
ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width);
src_frame += src_stride_frame * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_frame, 0, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
}
return 0;
}
int RGB24ToI420(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (height < 0) {
height = -height;
src_frame = src_frame + (height - 1) * src_stride_frame;
src_stride_frame = -src_stride_frame;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
#if defined(HAS_RGB24TOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = RGB24ToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = RGB24ToYRow_C;
}
#if defined(HAS_RGB24TOUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
ARGBToUVRow = RGB24ToUVRow_SSSE3;
} else
#endif
{
ARGBToUVRow = RGB24ToUVRow_C;
}
for (int y = 0; y < (height - 1); y += 2) {
ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width);
src_frame += src_stride_frame * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_frame, 0, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
}
return 0;
}
int RAWToI420(const uint8* src_frame, int src_stride_frame,
uint8* dst_y, int dst_stride_y,
uint8* dst_u, int dst_stride_u,
uint8* dst_v, int dst_stride_v,
int width, int height) {
if (height < 0) {
height = -height;
src_frame = src_frame + (height - 1) * src_stride_frame;
src_stride_frame = -src_stride_frame;
}
void (*ARGBToYRow)(const uint8* src_argb, uint8* dst_y, int pix);
void (*ARGBToUVRow)(const uint8* src_argb0, int src_stride_argb,
uint8* dst_u, uint8* dst_v, int width);
#if defined(HAS_RAWTOYROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_y, 16) && IS_ALIGNED(dst_stride_y, 16)) {
ARGBToYRow = RAWToYRow_SSSE3;
} else
#endif
{
ARGBToYRow = RAWToYRow_C;
}
#if defined(HAS_RAWTOUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) &&
IS_ALIGNED(width, 16) &&
IS_ALIGNED(src_frame, 16) && IS_ALIGNED(src_stride_frame, 16) &&
IS_ALIGNED(dst_u, 8) && IS_ALIGNED(dst_stride_u, 8) &&
IS_ALIGNED(dst_v, 8) && IS_ALIGNED(dst_stride_v, 8)) {
ARGBToUVRow = RAWToUVRow_SSSE3;
} else
#endif
{
ARGBToUVRow = RAWToUVRow_C;
}
for (int y = 0; y < (height - 1); y += 2) {
ARGBToUVRow(src_frame, src_stride_frame, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
ARGBToYRow(src_frame + src_stride_frame, dst_y + dst_stride_y, width);
src_frame += src_stride_frame * 2;
dst_y += dst_stride_y * 2;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
if (height & 1) {
ARGBToUVRow(src_frame, 0, dst_u, dst_v, width);
ARGBToYRow(src_frame, dst_y, width);
}
return 0;
}
// Convert camera sample to I420 with cropping, rotation and vertical flip.
// src_width is used for source stride computation
// src_height is used to compute location of planes, and indicate inversion
// TODO(fbarchard): sample_size should be used to ensure the low levels do
// not read outside the buffer provided. It is measured in bytes and is the
// size of the frame. With MJPEG it is the compressed size of the frame.
int ConvertToI420(const uint8* sample, size_t sample_size,
uint8* y, int y_stride,
uint8* u, int u_stride,
uint8* v, int v_stride,
int crop_x, int crop_y,
int src_width, int src_height,
int dst_width, int dst_height,
RotationMode rotation,
uint32 format) {
if (y == NULL || u == NULL || v == NULL || sample == NULL) {
return -1;
}
int aligned_src_width = (src_width + 1) & ~1;
const uint8* src;
const uint8* src_uv;
int abs_src_height = (src_height < 0) ? -src_height : src_height;
int inv_dst_height = (dst_height < 0) ? -dst_height : dst_height;
if (src_height < 0) {
inv_dst_height = -inv_dst_height;
}
switch (format) {
// Single plane formats
case FOURCC_YUY2:
src = sample + (aligned_src_width * crop_y + crop_x) * 2 ;
YUY2ToI420(src, aligned_src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_UYVY:
src = sample + (aligned_src_width * crop_y + crop_x) * 2;
UYVYToI420(src, aligned_src_width * 2,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_24BG:
src = sample + (src_width * crop_y + crop_x) * 3;
RGB24ToI420(src, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_RAW:
src = sample + (src_width * crop_y + crop_x) * 3;
RAWToI420(src, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ARGB:
src = sample + (src_width * crop_y + crop_x) * 4;
ARGBToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_BGRA:
src = sample + (src_width * crop_y + crop_x) * 4;
BGRAToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_ABGR:
src = sample + (src_width * crop_y + crop_x) * 4;
ABGRToI420(src, src_width * 4,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_BGGR:
case FOURCC_RGGB:
case FOURCC_GRBG:
case FOURCC_GBRG:
// TODO(fbarchard): Support cropping by odd numbers by adjusting fourcc.
src = sample + (src_width * crop_y + crop_x);
BayerRGBToI420(src, src_width, format,
y, y_stride, u, u_stride, v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_I400:
src = sample + src_width * crop_y + crop_x;
I400ToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
// Biplanar formats
case FOURCC_NV12:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
NV12ToI420Rotate(src, src_width,
src_uv, aligned_src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height, rotation);
break;
case FOURCC_NV21:
src = sample + (src_width * crop_y + crop_x);
src_uv = sample + aligned_src_width * (src_height + crop_y / 2) + crop_x;
// Call NV12 but with u and v parameters swapped.
NV12ToI420Rotate(src, src_width,
src_uv, aligned_src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height, rotation);
break;
case FOURCC_M420:
src = sample + (src_width * crop_y) * 12 / 8 + crop_x;
M420ToI420(src, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
case FOURCC_Q420:
src = sample + (src_width + aligned_src_width * 2) * crop_y + crop_x;
src_uv = sample + (src_width + aligned_src_width * 2) * crop_y +
src_width + crop_x * 2;
Q420ToI420(src, src_width * 3,
src_uv, src_width * 3,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
// Triplanar formats
case FOURCC_I420:
case FOURCC_YV12: {
const uint8* src_y = sample + (src_width * crop_y + crop_x);
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
int halfheight = (abs_src_height + 1) / 2;
if (format == FOURCC_I420) {
src_u = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
} else {
src_v = sample + src_width * abs_src_height +
(halfwidth * crop_y + crop_x) / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (halfheight + crop_y / 2) + crop_x / 2;
}
I420Rotate(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height, rotation);
break;
}
case FOURCC_I422:
case FOURCC_YV16: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
int halfwidth = (src_width + 1) / 2;
if (format == FOURCC_I422) {
src_u = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_v = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
} else {
src_v = sample + src_width * abs_src_height +
halfwidth * crop_y + crop_x / 2;
src_u = sample + src_width * abs_src_height +
halfwidth * (abs_src_height + crop_y) + crop_x / 2;
}
I422ToI420(src_y, src_width,
src_u, halfwidth,
src_v, halfwidth,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
}
case FOURCC_I444:
case FOURCC_YV24: {
const uint8* src_y = sample + src_width * crop_y + crop_x;
const uint8* src_u;
const uint8* src_v;
if (format == FOURCC_I444) {
src_u = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_v = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
} else {
src_v = sample + src_width * (abs_src_height + crop_y) + crop_x;
src_u = sample + src_width * (abs_src_height * 2 + crop_y) + crop_x;
}
I444ToI420(src_y, src_width,
src_u, src_width,
src_v, src_width,
y, y_stride,
u, u_stride,
v, v_stride,
dst_width, inv_dst_height);
break;
}
// Formats not supported
case FOURCC_MJPG:
default:
return -1; // unknown fourcc - return failure code.
}
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif