| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| /* |
| * The core AEC algorithm, SSE2 version of speed-critical functions. |
| */ |
| |
| #include "aec_core.h" |
| |
| #include <emmintrin.h> |
| #include <math.h> |
| #include <string.h> // memset |
| |
| #include "aec_rdft.h" |
| |
| __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) |
| { |
| return aRe * bRe - aIm * bIm; |
| } |
| |
| __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) |
| { |
| return aRe * bIm + aIm * bRe; |
| } |
| |
| static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1]) |
| { |
| int i; |
| for (i = 0; i < NR_PART; i++) { |
| int j; |
| int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; |
| int pos = i * PART_LEN1; |
| // Check for wrap |
| if (i + aec->xfBufBlockPos >= NR_PART) { |
| xPos -= NR_PART*(PART_LEN1); |
| } |
| |
| // vectorized code (four at once) |
| for (j = 0; j + 3 < PART_LEN1; j += 4) { |
| const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); |
| const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); |
| const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); |
| const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); |
| const __m128 yf_re = _mm_loadu_ps(&yf[0][j]); |
| const __m128 yf_im = _mm_loadu_ps(&yf[1][j]); |
| const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re); |
| const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im); |
| const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im); |
| const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re); |
| const __m128 e = _mm_sub_ps(a, b); |
| const __m128 f = _mm_add_ps(c, d); |
| const __m128 g = _mm_add_ps(yf_re, e); |
| const __m128 h = _mm_add_ps(yf_im, f); |
| _mm_storeu_ps(&yf[0][j], g); |
| _mm_storeu_ps(&yf[1][j], h); |
| } |
| // scalar code for the remaining items. |
| for (; j < PART_LEN1; j++) { |
| yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], |
| aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); |
| yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], |
| aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]); |
| } |
| } |
| } |
| |
| static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1]) |
| { |
| const __m128 k1e_10f = _mm_set1_ps(1e-10f); |
| const __m128 kThresh = _mm_set1_ps(aec->errThresh); |
| const __m128 kMu = _mm_set1_ps(aec->mu); |
| |
| int i; |
| // vectorized code (four at once) |
| for (i = 0; i + 3 < PART_LEN1; i += 4) { |
| const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]); |
| const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]); |
| const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]); |
| |
| const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f); |
| __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus); |
| __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus); |
| const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re); |
| const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im); |
| const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2); |
| const __m128 absEf = _mm_sqrt_ps(ef_sum2); |
| const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh); |
| __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f); |
| const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus); |
| __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv); |
| __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv); |
| ef_re_if = _mm_and_ps(bigger, ef_re_if); |
| ef_im_if = _mm_and_ps(bigger, ef_im_if); |
| ef_re = _mm_andnot_ps(bigger, ef_re); |
| ef_im = _mm_andnot_ps(bigger, ef_im); |
| ef_re = _mm_or_ps(ef_re, ef_re_if); |
| ef_im = _mm_or_ps(ef_im, ef_im_if); |
| ef_re = _mm_mul_ps(ef_re, kMu); |
| ef_im = _mm_mul_ps(ef_im, kMu); |
| |
| _mm_storeu_ps(&ef[0][i], ef_re); |
| _mm_storeu_ps(&ef[1][i], ef_im); |
| } |
| // scalar code for the remaining items. |
| for (; i < (PART_LEN1); i++) { |
| float absEf; |
| ef[0][i] /= (aec->xPow[i] + 1e-10f); |
| ef[1][i] /= (aec->xPow[i] + 1e-10f); |
| absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); |
| |
| if (absEf > aec->errThresh) { |
| absEf = aec->errThresh / (absEf + 1e-10f); |
| ef[0][i] *= absEf; |
| ef[1][i] *= absEf; |
| } |
| |
| // Stepsize factor |
| ef[0][i] *= aec->mu; |
| ef[1][i] *= aec->mu; |
| } |
| } |
| |
| static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) { |
| int i, j; |
| for (i = 0; i < NR_PART; i++) { |
| int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1); |
| int pos = i * PART_LEN1; |
| // Check for wrap |
| if (i + aec->xfBufBlockPos >= NR_PART) { |
| xPos -= NR_PART * PART_LEN1; |
| } |
| |
| // Process the whole array... |
| for (j = 0; j < PART_LEN; j+= 4) { |
| // Load xfBuf and ef. |
| const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); |
| const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); |
| const __m128 ef_re = _mm_loadu_ps(&ef[0][j]); |
| const __m128 ef_im = _mm_loadu_ps(&ef[1][j]); |
| // Calculate the product of conjugate(xfBuf) by ef. |
| // re(conjugate(a) * b) = aRe * bRe + aIm * bIm |
| // im(conjugate(a) * b)= aRe * bIm - aIm * bRe |
| const __m128 a = _mm_mul_ps(xfBuf_re, ef_re); |
| const __m128 b = _mm_mul_ps(xfBuf_im, ef_im); |
| const __m128 c = _mm_mul_ps(xfBuf_re, ef_im); |
| const __m128 d = _mm_mul_ps(xfBuf_im, ef_re); |
| const __m128 e = _mm_add_ps(a, b); |
| const __m128 f = _mm_sub_ps(c, d); |
| // Interleave real and imaginary parts. |
| const __m128 g = _mm_unpacklo_ps(e, f); |
| const __m128 h = _mm_unpackhi_ps(e, f); |
| // Store |
| _mm_storeu_ps(&fft[2*j + 0], g); |
| _mm_storeu_ps(&fft[2*j + 4], h); |
| } |
| // ... and fixup the first imaginary entry. |
| fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], |
| -aec->xfBuf[1][xPos + PART_LEN], |
| ef[0][PART_LEN], ef[1][PART_LEN]); |
| |
| aec_rdft_inverse_128(fft); |
| memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN); |
| |
| // fft scaling |
| { |
| float scale = 2.0f / PART_LEN2; |
| const __m128 scale_ps = _mm_load_ps1(&scale); |
| for (j = 0; j < PART_LEN; j+=4) { |
| const __m128 fft_ps = _mm_loadu_ps(&fft[j]); |
| const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); |
| _mm_storeu_ps(&fft[j], fft_scale); |
| } |
| } |
| aec_rdft_forward_128(fft); |
| |
| { |
| float wt1 = aec->wfBuf[1][pos]; |
| aec->wfBuf[0][pos + PART_LEN] += fft[1]; |
| for (j = 0; j < PART_LEN; j+= 4) { |
| __m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); |
| __m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); |
| const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); |
| const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); |
| const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0)); |
| const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1)); |
| wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); |
| wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); |
| _mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re); |
| _mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im); |
| } |
| aec->wfBuf[1][pos] = wt1; |
| } |
| } |
| } |
| |
| static __m128 mm_pow_ps(__m128 a, __m128 b) |
| { |
| // a^b = exp2(b * log2(a)) |
| // exp2(x) and log2(x) are calculated using polynomial approximations. |
| __m128 log2_a, b_log2_a, a_exp_b; |
| |
| // Calculate log2(x), x = a. |
| { |
| // To calculate log2(x), we decompose x like this: |
| // x = y * 2^n |
| // n is an integer |
| // y is in the [1.0, 2.0) range |
| // |
| // log2(x) = log2(y) + n |
| // n can be evaluated by playing with float representation. |
| // log2(y) in a small range can be approximated, this code uses an order |
| // five polynomial approximation. The coefficients have been |
| // estimated with the Remez algorithm and the resulting |
| // polynomial has a maximum relative error of 0.00086%. |
| |
| // Compute n. |
| // This is done by masking the exponent, shifting it into the top bit of |
| // the mantissa, putting eight into the biased exponent (to shift/ |
| // compensate the fact that the exponent has been shifted in the top/ |
| // fractional part and finally getting rid of the implicit leading one |
| // from the mantissa by substracting it out. |
| static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = |
| {0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; |
| static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = |
| {0x43800000, 0x43800000, 0x43800000, 0x43800000}; |
| static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = |
| {0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000}; |
| static const int shift_exponent_into_top_mantissa = 8; |
| const __m128 two_n = _mm_and_ps(a, *((__m128 *)float_exponent_mask)); |
| const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(_mm_castps_si128(two_n), |
| shift_exponent_into_top_mantissa)); |
| const __m128 n_0 = _mm_or_ps(n_1, *((__m128 *)eight_biased_exponent)); |
| const __m128 n = _mm_sub_ps(n_0, *((__m128 *)implicit_leading_one)); |
| |
| // Compute y. |
| static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = |
| {0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; |
| static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = |
| {0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000}; |
| const __m128 mantissa = _mm_and_ps(a, *((__m128 *)mantissa_mask)); |
| const __m128 y = _mm_or_ps( |
| mantissa, *((__m128 *)zero_biased_exponent_is_one)); |
| |
| // Approximate log2(y) ~= (y - 1) * pol5(y). |
| // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 |
| static const ALIGN16_BEG float ALIGN16_END C5[4] = |
| {-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f}; |
| static const ALIGN16_BEG float ALIGN16_END C4[4] = |
| {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f}; |
| static const ALIGN16_BEG float ALIGN16_END C3[4] = |
| {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f}; |
| static const ALIGN16_BEG float ALIGN16_END C2[4] = |
| {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f}; |
| static const ALIGN16_BEG float ALIGN16_END C1[4] = |
| {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f}; |
| static const ALIGN16_BEG float ALIGN16_END C0[4] = |
| {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f}; |
| const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128 *)C5)); |
| const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128 *)C4)); |
| const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y); |
| const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128 *)C3)); |
| const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y); |
| const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128 *)C2)); |
| const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y); |
| const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128 *)C1)); |
| const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y); |
| const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128 *)C0)); |
| const __m128 y_minus_one = _mm_sub_ps( |
| y, *((__m128 *)zero_biased_exponent_is_one)); |
| const __m128 log2_y = _mm_mul_ps(y_minus_one , pol5_y); |
| |
| // Combine parts. |
| log2_a = _mm_add_ps(n, log2_y); |
| } |
| |
| // b * log2(a) |
| b_log2_a = _mm_mul_ps(b, log2_a); |
| |
| // Calculate exp2(x), x = b * log2(a). |
| { |
| // To calculate 2^x, we decompose x like this: |
| // x = n + y |
| // n is an integer, the value of x - 0.5 rounded down, therefore |
| // y is in the [0.5, 1.5) range |
| // |
| // 2^x = 2^n * 2^y |
| // 2^n can be evaluated by playing with float representation. |
| // 2^y in a small range can be approximated, this code uses an order two |
| // polynomial approximation. The coefficients have been estimated |
| // with the Remez algorithm and the resulting polynomial has a |
| // maximum relative error of 0.17%. |
| |
| // To avoid over/underflow, we reduce the range of input to ]-127, 129]. |
| static const ALIGN16_BEG float max_input[4] ALIGN16_END = |
| {129.f, 129.f, 129.f, 129.f}; |
| static const ALIGN16_BEG float min_input[4] ALIGN16_END = |
| {-126.99999f, -126.99999f, -126.99999f, -126.99999f}; |
| const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128 *)max_input)); |
| const __m128 x_max = _mm_max_ps(x_min, *((__m128 *)min_input)); |
| // Compute n. |
| static const ALIGN16_BEG float half[4] ALIGN16_END = |
| {0.5f, 0.5f, 0.5f, 0.5f}; |
| const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128 *)half)); |
| const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half); |
| // Compute 2^n. |
| static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = |
| {127, 127, 127, 127}; |
| static const int float_exponent_shift = 23; |
| const __m128i two_n_exponent = _mm_add_epi32( |
| x_minus_half_floor, *((__m128i *)float_exponent_bias)); |
| const __m128 two_n = _mm_castsi128_ps(_mm_slli_epi32( |
| two_n_exponent, float_exponent_shift)); |
| // Compute y. |
| const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor)); |
| // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. |
| static const ALIGN16_BEG float C2[4] ALIGN16_END = |
| {3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f}; |
| static const ALIGN16_BEG float C1[4] ALIGN16_END = |
| {6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f}; |
| static const ALIGN16_BEG float C0[4] ALIGN16_END = |
| {1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f}; |
| const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128 *)C2)); |
| const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128 *)C1)); |
| const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y); |
| const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128 *)C0)); |
| |
| // Combine parts. |
| a_exp_b = _mm_mul_ps(exp2_y, two_n); |
| } |
| return a_exp_b; |
| } |
| |
| extern const float WebRtcAec_weightCurve[65]; |
| extern const float WebRtcAec_overDriveCurve[65]; |
| |
| static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1], |
| const float hNlFb, |
| float efw[2][PART_LEN1]) { |
| int i; |
| const __m128 vec_hNlFb = _mm_set1_ps(hNlFb); |
| const __m128 vec_one = _mm_set1_ps(1.0f); |
| const __m128 vec_minus_one = _mm_set1_ps(-1.0f); |
| const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm); |
| // vectorized code (four at once) |
| for (i = 0; i + 3 < PART_LEN1; i+=4) { |
| // Weight subbands |
| __m128 vec_hNl = _mm_loadu_ps(&hNl[i]); |
| const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]); |
| const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb); |
| const __m128 vec_weightCurve_hNlFb = _mm_mul_ps( |
| vec_weightCurve, vec_hNlFb); |
| const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve); |
| const __m128 vec_one_weightCurve_hNl = _mm_mul_ps( |
| vec_one_weightCurve, vec_hNl); |
| const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl); |
| const __m128 vec_if1 = _mm_and_ps( |
| bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl)); |
| vec_hNl = _mm_or_ps(vec_if0, vec_if1); |
| |
| { |
| const __m128 vec_overDriveCurve = _mm_loadu_ps( |
| &WebRtcAec_overDriveCurve[i]); |
| const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps( |
| vec_overDriveSm, vec_overDriveCurve); |
| vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve); |
| _mm_storeu_ps(&hNl[i], vec_hNl); |
| } |
| |
| // Suppress error signal |
| { |
| __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]); |
| __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]); |
| vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl); |
| vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl); |
| |
| // Ooura fft returns incorrect sign on imaginary component. It matters |
| // here because we are making an additive change with comfort noise. |
| vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one); |
| _mm_storeu_ps(&efw[0][i], vec_efw_re); |
| _mm_storeu_ps(&efw[1][i], vec_efw_im); |
| } |
| } |
| // scalar code for the remaining items. |
| for (; i < PART_LEN1; i++) { |
| // Weight subbands |
| if (hNl[i] > hNlFb) { |
| hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + |
| (1 - WebRtcAec_weightCurve[i]) * hNl[i]; |
| } |
| hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); |
| |
| // Suppress error signal |
| efw[0][i] *= hNl[i]; |
| efw[1][i] *= hNl[i]; |
| |
| // Ooura fft returns incorrect sign on imaginary component. It matters |
| // here because we are making an additive change with comfort noise. |
| efw[1][i] *= -1; |
| } |
| } |
| |
| void WebRtcAec_InitAec_SSE2(void) { |
| WebRtcAec_FilterFar = FilterFarSSE2; |
| WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2; |
| WebRtcAec_FilterAdaptation = FilterAdaptationSSE2; |
| WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2; |
| } |
| |