blob: f1acf675f97f5de42eb5db4ac347a2bc0b2882a8 [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the splitting filter functions.
*
*/
#include "signal_processing_library.h"
// Number of samples in a low/high-band frame.
enum
{
kBandFrameLength = 160
};
// QMF filter coefficients in Q16.
static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter1[3] = {6418, 36982, 57261};
static const WebRtc_UWord16 WebRtcSpl_kAllPassFilter2[3] = {21333, 49062, 63010};
///////////////////////////////////////////////////////////////////////////////////////////////
// WebRtcSpl_AllPassQMF(...)
//
// Allpass filter used by the analysis and synthesis parts of the QMF filter.
//
// Input:
// - in_data : Input data sequence (Q10)
// - data_length : Length of data sequence (>2)
// - filter_coefficients : Filter coefficients (length 3, Q16)
//
// Input & Output:
// - filter_state : Filter state (length 6, Q10).
//
// Output:
// - out_data : Output data sequence (Q10), length equal to
// |data_length|
//
void WebRtcSpl_AllPassQMF(WebRtc_Word32* in_data, const WebRtc_Word16 data_length,
WebRtc_Word32* out_data, const WebRtc_UWord16* filter_coefficients,
WebRtc_Word32* filter_state)
{
// The procedure is to filter the input with three first order all pass filters
// (cascade operations).
//
// a_3 + q^-1 a_2 + q^-1 a_1 + q^-1
// y[n] = ----------- ----------- ----------- x[n]
// 1 + a_3q^-1 1 + a_2q^-1 1 + a_1q^-1
//
// The input vector |filter_coefficients| includes these three filter coefficients.
// The filter state contains the in_data state, in_data[-1], followed by
// the out_data state, out_data[-1]. This is repeated for each cascade.
// The first cascade filter will filter the |in_data| and store the output in
// |out_data|. The second will the take the |out_data| as input and make an
// intermediate storage in |in_data|, to save memory. The third, and final, cascade
// filter operation takes the |in_data| (which is the output from the previous cascade
// filter) and store the output in |out_data|.
// Note that the input vector values are changed during the process.
WebRtc_Word16 k;
WebRtc_Word32 diff;
// First all-pass cascade; filter from in_data to out_data.
// Let y_i[n] indicate the output of cascade filter i (with filter coefficient a_i) at
// vector position n. Then the final output will be y[n] = y_3[n]
// First loop, use the states stored in memory.
// "diff" should be safe from wrap around since max values are 2^25
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[1]); // = (x[0] - y_1[-1])
// y_1[0] = x[-1] + a_1 * (x[0] - y_1[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, filter_state[0]);
// For the remaining loops, use previous values.
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (x[n] - y_1[n-1])
// y_1[n] = x[n-1] + a_1 * (x[n] - y_1[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[0], diff, in_data[k - 1]);
}
// Update states.
filter_state[0] = in_data[data_length - 1]; // x[N-1], becomes x[-1] next time
filter_state[1] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
// Second all-pass cascade; filter from out_data to in_data.
diff = WEBRTC_SPL_SUB_SAT_W32(out_data[0], filter_state[3]); // = (y_1[0] - y_2[-1])
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, filter_state[2]);
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(out_data[k], in_data[k - 1]); // =(y_1[n] - y_2[n-1])
// y_2[0] = y_1[-1] + a_2 * (y_1[0] - y_2[-1])
in_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[1], diff, out_data[k-1]);
}
filter_state[2] = out_data[data_length - 1]; // y_1[N-1], becomes y_1[-1] next time
filter_state[3] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
// Third all-pass cascade; filter from in_data to out_data.
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[0], filter_state[5]); // = (y_2[0] - y[-1])
// y[0] = y_2[-1] + a_3 * (y_2[0] - y[-1])
out_data[0] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, filter_state[4]);
for (k = 1; k < data_length; k++)
{
diff = WEBRTC_SPL_SUB_SAT_W32(in_data[k], out_data[k - 1]); // = (y_2[n] - y[n-1])
// y[n] = y_2[n-1] + a_3 * (y_2[n] - y[n-1])
out_data[k] = WEBRTC_SPL_SCALEDIFF32(filter_coefficients[2], diff, in_data[k-1]);
}
filter_state[4] = in_data[data_length - 1]; // y_2[N-1], becomes y_2[-1] next time
filter_state[5] = out_data[data_length - 1]; // y[N-1], becomes y[-1] next time
}
void WebRtcSpl_AnalysisQMF(const WebRtc_Word16* in_data, WebRtc_Word16* low_band,
WebRtc_Word16* high_band, WebRtc_Word32* filter_state1,
WebRtc_Word32* filter_state2)
{
WebRtc_Word16 i;
WebRtc_Word16 k;
WebRtc_Word32 tmp;
WebRtc_Word32 half_in1[kBandFrameLength];
WebRtc_Word32 half_in2[kBandFrameLength];
WebRtc_Word32 filter1[kBandFrameLength];
WebRtc_Word32 filter2[kBandFrameLength];
// Split even and odd samples. Also shift them to Q10.
for (i = 0, k = 0; i < kBandFrameLength; i++, k += 2)
{
half_in2[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k], 10);
half_in1[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)in_data[k + 1], 10);
}
// All pass filter even and odd samples, independently.
WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter1,
filter_state1);
WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter2,
filter_state2);
// Take the sum and difference of filtered version of odd and even
// branches to get upper & lower band.
for (i = 0; i < kBandFrameLength; i++)
{
tmp = filter1[i] + filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
low_band[i] = WebRtcSpl_SatW32ToW16(tmp);
tmp = filter1[i] - filter2[i] + 1024;
tmp = WEBRTC_SPL_RSHIFT_W32(tmp, 11);
high_band[i] = WebRtcSpl_SatW32ToW16(tmp);
}
}
void WebRtcSpl_SynthesisQMF(const WebRtc_Word16* low_band, const WebRtc_Word16* high_band,
WebRtc_Word16* out_data, WebRtc_Word32* filter_state1,
WebRtc_Word32* filter_state2)
{
WebRtc_Word32 tmp;
WebRtc_Word32 half_in1[kBandFrameLength];
WebRtc_Word32 half_in2[kBandFrameLength];
WebRtc_Word32 filter1[kBandFrameLength];
WebRtc_Word32 filter2[kBandFrameLength];
WebRtc_Word16 i;
WebRtc_Word16 k;
// Obtain the sum and difference channels out of upper and lower-band channels.
// Also shift to Q10 domain.
for (i = 0; i < kBandFrameLength; i++)
{
tmp = (WebRtc_Word32)low_band[i] + (WebRtc_Word32)high_band[i];
half_in1[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
tmp = (WebRtc_Word32)low_band[i] - (WebRtc_Word32)high_band[i];
half_in2[i] = WEBRTC_SPL_LSHIFT_W32(tmp, 10);
}
// all-pass filter the sum and difference channels
WebRtcSpl_AllPassQMF(half_in1, kBandFrameLength, filter1, WebRtcSpl_kAllPassFilter2,
filter_state1);
WebRtcSpl_AllPassQMF(half_in2, kBandFrameLength, filter2, WebRtcSpl_kAllPassFilter1,
filter_state2);
// The filtered signals are even and odd samples of the output. Combine
// them. The signals are Q10 should shift them back to Q0 and take care of
// saturation.
for (i = 0, k = 0; i < kBandFrameLength; i++)
{
tmp = WEBRTC_SPL_RSHIFT_W32(filter2[i] + 512, 10);
out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
tmp = WEBRTC_SPL_RSHIFT_W32(filter1[i] + 512, 10);
out_data[k++] = WebRtcSpl_SatW32ToW16(tmp);
}
}