blob: bc4d1e89d1207b2d995ebd1bdcb09bb32aedce96 [file] [log] [blame]
// ---------------------------------------------------------------------------------------------------------------------------------
//
//
// _ __ ___ _ __ ___ __ _ _ __ ___ _ __ _ __
// | '_ ` _ \| '_ ` _ \ / _` | '__| / __| '_ \| '_ \
// | | | | | | | | | | | (_| | | _ | (__| |_) | |_) |
// |_| |_| |_|_| |_| |_|\__, |_| (_) \___| .__/| .__/
// __/ | | | | |
// |___/ |_| |_|
//
// Memory manager & tracking software
//
// Best viewed with 8-character tabs and (at least) 132 columns
//
// ---------------------------------------------------------------------------------------------------------------------------------
//
// Restrictions & freedoms pertaining to usage and redistribution of this software:
//
// * This software is 100% free
// * If you use this software (in part or in whole) you must credit the author.
// * This software may not be re-distributed (in part or in whole) in a modified
// form without clear documentation on how to obtain a copy of the original work.
// * You may not use this software to directly or indirectly cause harm to others.
// * This software is provided as-is and without warrantee. Use at your own risk.
//
// For more information, visit HTTP://www.FluidStudios.com
//
// ---------------------------------------------------------------------------------------------------------------------------------
// Originally created on 12/22/2000 by Paul Nettle
//
// Copyright 2000, Fluid Studios, Inc., all rights reserved.
// ---------------------------------------------------------------------------------------------------------------------------------
//
// !!IMPORTANT!!
//
// This software is self-documented with periodic comments. Before you start using this software, perform a search for the string
// "-DOC-" to locate pertinent information about how to use this software.
//
// You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory
// tracking software works, so you can better utilize it within your applications.
//
// NOTES:
//
// 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We
// do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running
// under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad.
//
// 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In
// order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors.
// Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error.
//
// 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this
// code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an
// example is the use of the class MemStaticTimeTracker.)
//
// 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files.
//
// 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if
// you're including standard includes from within your own project inclues; that will break this very specific dependency order.
// It should look like this:
//
// #include <stdio.h> // Standard includes MUST come first
// #include <stdlib.h> //
// #include <streamio> //
//
// #include "mmgr.h" // mmgr.h MUST come next
//
// #include "myfile1.h" // Project includes MUST come last
// #include "myfile2.h" //
// #include "myfile3.h" //
//
// ---------------------------------------------------------------------------------------------------------------------------------
//#include "stdafx.h"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <time.h>
#include <stdarg.h>
#include <new>
#ifndef WIN32
#include <unistd.h>
#endif
#include "mmgr.h"
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for
// very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking
// software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this
// software!
//
// Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To
// this end, you are given some very simple debugging tools.
//
// The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they
// occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep
// reading...
//
// If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it
// enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT"
// into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also
// report the name of the routine.
//
// Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage
// the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used
// by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard
// allocation routines.
//
// In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is
// crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow
// in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't
// bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the
// STRESS_TEST macro (below.)
//
// If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at
// midnight@FluidStudios.com. Before you do, however, check for a newer version at:
//
// http://www.FluidStudios.com/publications.html
//
// When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be
// cluttered and hard to read.
// ---------------------------------------------------------------------------------------------------------------------------------
//#define TEST_MEMORY_MANAGER
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs
// ---------------------------------------------------------------------------------------------------------------------------------
#define STRESS_TEST
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you
// want to test with (0 = none, >100 = all failures).
// ---------------------------------------------------------------------------------------------------------------------------------
//#define RANDOM_FAILURE 10.0
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Locals -- modify these flags to suit your needs
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef STRESS_TEST
static const unsigned int hashBits = 12;
static bool randomWipe = true;
static bool alwaysValidateAll = true;
static bool alwaysLogAll = true;
static bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 1024; // An extra 8K per allocation!
#else
static const unsigned int hashBits = 12;
static bool randomWipe = false;
static bool alwaysValidateAll = false;
static bool alwaysLogAll = false;
static bool alwaysWipeAll = true;
static bool cleanupLogOnFirstRun = true;
static const unsigned int paddingSize = 4;
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert
// simply declares a forced breakpoint.
//
// The BEOS assert added by Arvid Norberg <arvid@iname.com>.
// ---------------------------------------------------------------------------------------------------------------------------------
#ifdef WIN32
#ifdef _DEBUG
#define m_assert(x) if ((x) == false) __asm { int 3 }
#else
#define m_assert(x) {}
#endif
#elif defined(__BEOS__)
#ifdef DEBUG
extern void debugger(const char *message);
#define m_assert(x) if ((x) == false) debugger("mmgr: assert failed")
#else
#define m_assert(x) {}
#endif
#else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program.
#define m_assert(cond) assert(cond)
#endif
// ---------------------------------------------------------------------------------------------------------------------------------
// Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.)
// appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them.
// ---------------------------------------------------------------------------------------------------------------------------------
#undef new
#undef delete
#undef malloc
#undef calloc
#undef realloc
#undef free
// ---------------------------------------------------------------------------------------------------------------------------------
// Defaults for the constants & statics in the MemoryManager class
// ---------------------------------------------------------------------------------------------------------------------------------
const unsigned int m_alloc_unknown = 0;
const unsigned int m_alloc_new = 1;
const unsigned int m_alloc_new_array = 2;
const unsigned int m_alloc_malloc = 3;
const unsigned int m_alloc_calloc = 4;
const unsigned int m_alloc_realloc = 5;
const unsigned int m_alloc_delete = 6;
const unsigned int m_alloc_delete_array = 7;
const unsigned int m_alloc_free = 8;
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM.
// ---------------------------------------------------------------------------------------------------------------------------------
static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks
static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks
static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks
static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks
// ---------------------------------------------------------------------------------------------------------------------------------
// Other locals
// ---------------------------------------------------------------------------------------------------------------------------------
static const unsigned int hashSize = 1 << hashBits;
static const char *allocationTypes[] = {"Unknown",
"new", "new[]", "malloc", "calloc",
"realloc", "delete", "delete[]", "free"};
static sAllocUnit *hashTable[hashSize];
static sAllocUnit *reservoir;
static unsigned int currentAllocationCount = 0;
static unsigned int breakOnAllocationCount = 0;
static sMStats stats;
static const char *sourceFile = "??";
static const char *sourceFunc = "??";
static unsigned int sourceLine = 0;
static bool staticDeinitTime = false;
static sAllocUnit **reservoirBuffer = NULL;
static unsigned int reservoirBufferSize = 0;
const char *memoryLogFile = "memory.log";
const char *memoryLeakLogFile = "memleaks.log";
static void doCleanupLogOnFirstRun();
// ---------------------------------------------------------------------------------------------------------------------------------
// Local functions only
// ---------------------------------------------------------------------------------------------------------------------------------
static void log(const char *format, ...)
{
// Build the buffer
char buffer[2048];
va_list ap;
va_start(ap, format);
vsprintf(buffer, format, ap);
va_end(ap);
// Cleanup the log?
if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun();
// Open the log file
FILE *fp = fopen(memoryLogFile, "ab");
// If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some
// reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.)
m_assert(fp);
if (!fp) return;
// Spit out the data to the log
fprintf(fp, "%s\r\n", buffer);
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void doCleanupLogOnFirstRun()
{
if (cleanupLogOnFirstRun)
{
unlink(memoryLogFile);
cleanupLogOnFirstRun = false;
// Print a header for the log
time_t t = time(NULL);
log("--------------------------------------------------------------------------------");
log("");
log(" %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t)));
log("--------------------------------------------------------------------------------");
log("");
log("This file contains a log of all memory operations performed during the last run.");
log("");
log("Interrogate this file to track errors or to help track down memory-related");
log("issues. You can do this by tracing the allocations performed by a specific owner");
log("or by tracking a specific address through a series of allocations and");
log("reallocations.");
log("");
log("There is a lot of useful information here which, when used creatively, can be");
log("extremely helpful.");
log("");
log("Note that the following guides are used throughout this file:");
log("");
log(" [!] - Error");
log(" [+] - Allocation");
log(" [~] - Reallocation");
log(" [-] - Deallocation");
log(" [I] - Generic information");
log(" [F] - Failure induced for the purpose of stress-testing your application");
log(" [D] - Information used for debugging this memory manager");
log("");
log("...so, to find all errors in the file, search for \"[!]\"");
log("");
log("--------------------------------------------------------------------------------");
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *sourceFileStripper(const char *sourceFile)
{
char *ptr = strrchr(sourceFile, '\\');
if (ptr) return ptr + 1;
ptr = strrchr(sourceFile, '/');
if (ptr) return ptr + 1;
return sourceFile;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc)
{
static char str[90];
memset(str, 0, sizeof(str));
sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc);
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *insertCommas(unsigned int value)
{
static char str[30];
memset(str, 0, sizeof(str));
sprintf(str, "%u", value);
if (strlen(str) > 3)
{
memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4);
str[strlen(str) - 4] = ',';
}
if (strlen(str) > 7)
{
memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8);
str[strlen(str) - 8] = ',';
}
if (strlen(str) > 11)
{
memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12);
str[strlen(str) - 12] = ',';
}
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static const char *memorySizeString(unsigned long size)
{
static char str[90];
if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f));
else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f);
else sprintf(str, "%10s bytes ", insertCommas(size));
return str;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static sAllocUnit *findAllocUnit(const void *reportedAddress)
{
// Just in case...
m_assert(reportedAddress != NULL);
// Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated
// addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have
// very good coverage.
unsigned int hashIndex = ((unsigned int) reportedAddress >> 4) & (hashSize - 1);
sAllocUnit *ptr = hashTable[hashIndex];
while(ptr)
{
if (ptr->reportedAddress == reportedAddress) return ptr;
ptr = ptr->next;
}
return NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateActualSize(const size_t reportedSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
return reportedSize + paddingSize * sizeof(long) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static size_t calculateReportedSize(const size_t actualSize)
{
// We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as
// being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's
// 8 bytes, which means an int can actually be larger than a long.)
return actualSize - paddingSize * sizeof(long) * 2;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void *calculateReportedAddress(const void *actualAddress)
{
// We allow this...
if (!actualAddress) return NULL;
// JUst account for the padding
return (void *) ((char *) actualAddress + sizeof(long) * paddingSize);
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0)
{
// For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to
// crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(),
// you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they
// can be tracked down easier.
if (randomWipe)
{
pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff);
}
// -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the
// product. So uncomment the following line for releases.
//
// Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll
// leave it this way (as an option) because this does slow things down.
// pattern = 0;
// This part of the operation is optional
if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize)
{
// Fill the bulk
long *lptr = (long *) ((char *)allocUnit->reportedAddress + originalReportedSize);
int length = allocUnit->reportedSize - originalReportedSize;
int i;
for (i = 0; i < (length >> 2); i++, lptr++)
{
*lptr = pattern;
}
// Fill the remainder
unsigned int shiftCount = 0;
char *cptr = (char *) lptr;
for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8)
{
*cptr = (pattern & (0xff << shiftCount)) >> shiftCount;
}
}
// Write in the prefix/postfix bytes
long *pre = (long *) allocUnit->actualAddress;
long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
*pre = prefixPattern;
*post = postfixPattern;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpAllocations(FILE *fp)
{
fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n");
fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n");
fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n");
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n",
ptr->allocationNumber,
(unsigned int) ptr->reportedAddress, ptr->reportedSize,
(unsigned int) ptr->actualAddress, ptr->actualSize,
m_calcUnused(ptr),
allocationTypes[ptr->allocationType],
ptr->breakOnDealloc ? 'Y':'N',
ptr->breakOnRealloc ? 'Y':'N',
ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc));
ptr = ptr->next;
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void dumpLeakReport()
{
// Open the report file
FILE *fp = fopen(memoryLeakLogFile, "w+b");
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Any leaks?
// Header
char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "\r\n");
fprintf(fp, "\r\n");
if (stats.totalAllocUnitCount)
{
fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s");
}
else
{
fprintf(fp, "Congratulations! No memory leaks found!\r\n");
// We can finally free up our own memory allocations
if (reservoirBuffer)
{
for (unsigned int i = 0; i < reservoirBufferSize; i++)
{
free(reservoirBuffer[i]);
}
free(reservoirBuffer);
reservoirBuffer = 0;
reservoirBufferSize = 0;
reservoir = NULL;
}
}
fprintf(fp, "\r\n");
if (stats.totalAllocUnitCount)
{
dumpAllocations(fp);
}
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
// We use a class to let us know when we're in the midst of deinitialization
// ---------------------------------------------------------------------------------------------------------------------------------
class MemStaticTimeTracker
{
public:
MemStaticTimeTracker() {doCleanupLogOnFirstRun();}
~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();}
};
static MemStaticTimeTracker mstt;
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Flags & options -- Call these routines to enable/disable the following options
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysValidateAll()
{
// Force a validation of all allocation units each time we enter this software
return alwaysValidateAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysLogAll()
{
// Force a log of every allocation & deallocation into memory.log
return alwaysLogAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_alwaysWipeAll()
{
// Force this software to always wipe memory with a pattern when it is being allocated/dallocated
return alwaysWipeAll;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_randomeWipe()
{
// Force this software to use a random pattern when wiping memory -- good for stress testing
return randomWipe;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// reallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnRealloc(void *reportedAddress)
{
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
// If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that
// is compatible with reallocation.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
return au->breakOnRealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is
// deallocated.
// ---------------------------------------------------------------------------------------------------------------------------------
bool &m_breakOnDealloc(void *reportedAddress)
{
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the
// stack frame or the variable 'au' to see which allocation this is.
m_assert(au != NULL);
return au->breakOnDealloc;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count
// ---------------------------------------------------------------------------------------------------------------------------------
void m_breakOnAllocation(unsigned int count)
{
breakOnAllocationCount = count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Used by the macros
// ---------------------------------------------------------------------------------------------------------------------------------
void m_setOwner(const char *file, const unsigned int line, const char *func)
{
// You're probably wondering about this...
//
// It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with
// no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This
// is fine... usually. Here's what actually happens when you use this macro to delete an object:
//
// m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete
//
// Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete.
// But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another
// object? Here's a diagram (indentation follows stack depth):
//
// m_setOwner(...) -> ~obj1() // original call to delete obj1
// m_setOwner(...) -> ~obj2() // obj1's destructor deletes obj2
// m_setOwner(...) -> ~obj3() // obj2's destructor deletes obj3
// ... // obj3's destructor just does some stuff
// delete // back in obj2's destructor, we call delete
// delete // back in obj1's destructor, we call delete
// delete // back to our original call, we call delete
//
// Because m_setOwner() just sets up some variables (below) it's important that each call to m_setOwner() and
// successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession
// followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that
// only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain
// will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us.
//
// "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third-
// party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases,
// m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the
// destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused.
//
// I've been unable to find a solution to this problem, but at least we can detect it and report the data before we
// lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the
// information is present...
//
// There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL.
// In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that
// there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this
// we report a "Possible destructor chain".
//
// Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out.
if (sourceLine && alwaysLogAll)
{
log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc));
}
// Okay... save this stuff off so we can keep track of the caller
sourceFile = file;
sourceLine = line;
sourceFunc = func;
}
// ---------------------------------------------------------------------------------------------------------------------------------
static void resetGlobals()
{
sourceFile = "??";
sourceLine = 0;
sourceFunc = "??";
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global new/new[]
//
// These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our
// memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new(size_t reportedSize)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: new");
#endif
// Save these off...
const char *file = sourceFile;
const unsigned int line = sourceLine;
const char *func = sourceFunc;
// ANSI says: allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
std::new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: new[]");
#endif
// Save these off...
const char *file = sourceFile;
const unsigned int line = sourceLine;
const char *func = sourceFunc;
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
std::new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Other global new/new[]
//
// These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory
// tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use
// our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: new");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
std::new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: new[]");
#endif
// The ANSI standard says that allocation requests of 0 bytes will still return a valid value
if (reportedSize == 0) reportedSize = 1;
// ANSI says: loop continuously because the error handler could possibly free up some memory
for(;;)
{
// Try the allocation
void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize);
if (ptr)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new[]");
#endif
return ptr;
}
// There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then
// set it back again.
std::new_handler nh = std::set_new_handler(0);
std::set_new_handler(nh);
// If there is an error handler, call it
if (nh)
{
(*nh)();
}
// Otherwise, throw the exception
else
{
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : new[]");
#endif
throw std::bad_alloc();
}
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Global delete/delete[]
//
// These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[],
// but use our memory tracking routines.
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete(void *reportedAddress)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: delete");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress);
else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc));
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : delete");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
void operator delete[](void *reportedAddress)
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: delete[]");
#endif
// ANSI says: delete & delete[] allow NULL pointers (they do nothing)
if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress);
else if (alwaysLogAll)
log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc));
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : delete[]");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Allocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: m_allocator()");
#endif
// Increase our allocation count
currentAllocationCount++;
// Log the request
if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// If necessary, grow the reservoir of unused allocation units
if (!reservoir)
{
// Allocate 256 reservoir elements
reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256);
// If you hit this assert, then the memory manager failed to allocate internal memory for tracking the
// allocations
m_assert(reservoir != NULL);
// Danger Will Robinson!
if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data";
// Build a linked-list of the elements in our reservoir
memset(reservoir, 0, sizeof(sAllocUnit) * 256);
for (unsigned int i = 0; i < 256 - 1; i++)
{
reservoir[i].next = &reservoir[i+1];
}
// Add this address to our reservoirBuffer so we can free it later
sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *));
m_assert(temp);
if (temp)
{
reservoirBuffer = temp;
reservoirBuffer[reservoirBufferSize++] = reservoir;
}
}
// Logical flow says this should never happen...
m_assert(reservoir != NULL);
// Grab a new allocaton unit from the front of the reservoir
sAllocUnit *au = reservoir;
reservoir = au->next;
// Populate it with some real data
memset(au, 0, sizeof(sAllocUnit));
au->actualSize = calculateActualSize(reportedSize);
#ifdef RANDOM_FAILURE
double a = rand();
double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
au->actualAddress = malloc(au->actualSize);
}
else
{
log("[F] Random faiure");
au->actualAddress = NULL;
}
#else
au->actualAddress = malloc(au->actualSize);
#endif
au->reportedSize = reportedSize;
au->reportedAddress = calculateReportedAddress(au->actualAddress);
au->allocationType = allocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
else strcpy (au->sourceFunc, "??");
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the
// variable 'au' or the stack frame to see what you were trying to do.
m_assert(au->actualAddress != NULL);
#endif
if (au->actualAddress == NULL)
{
throw "Request for allocation failed. Out of memory.";
}
// If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking
// software, use the stack frame to locate the source and include our H file.
m_assert(allocationType != m_alloc_unknown);
// Insert the new allocation into the hash table
unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
stats.totalAllocUnitCount++;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount;
stats.accumulatedReportedMemory += au->reportedSize;
stats.accumulatedActualMemory += au->actualSize;
stats.accumulatedAllocUnitCount++;
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern);
// calloc() expects the reported memory address range to be filled with 0's
if (allocationType == m_alloc_calloc)
{
memset(au->reportedAddress, 0, au->reportedSize);
}
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log("[+] ----> addr 0x%08X", (unsigned int) au->reportedAddress);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : m_allocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log("[!] %s", err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : m_allocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Reallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: m_reallocator()");
#endif
// Calling realloc with a NULL should force same operations as a malloc
if (!reportedAddress)
{
return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize);
}
// Increase our allocation count
currentAllocationCount++;
// If you hit this assert, you requested a breakpoint on a specific allocation count
m_assert(currentAllocationCount != breakOnAllocationCount);
// Log the request
if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc));
// Locate the existing allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to reallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(reallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with
// realloc. In other words, you have a allocation/reallocation mismatch.
m_assert(au->allocationType == m_alloc_malloc ||
au->allocationType == m_alloc_calloc ||
au->allocationType == m_alloc_realloc);
// If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be
// set until you specifically shut it off. Interrogate the 'au' variable to determine information about this
// allocation unit.
m_assert(au->breakOnRealloc == false);
// Keep track of the original size
unsigned int originalReportedSize = au->reportedSize;
if (alwaysLogAll) log("[~] ----> from 0x%08X(%08d)", originalReportedSize, originalReportedSize);
// Do the reallocation
void *oldReportedAddress = reportedAddress;
size_t newActualSize = calculateActualSize(reportedSize);
void *newActualAddress = NULL;
#ifdef RANDOM_FAILURE
double a = rand();
double b = RAND_MAX / 100.0 * RANDOM_FAILURE;
if (a > b)
{
newActualAddress = realloc(au->actualAddress, newActualSize);
}
else
{
log("[F] Random faiure");
}
#else
newActualAddress = realloc(au->actualAddress, newActualSize);
#endif
// We don't want to assert with random failures, because we want the application to deal with them.
#ifndef RANDOM_FAILURE
// If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the
// variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory
// trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller.
m_assert(newActualAddress);
#endif
if (!newActualAddress) throw "Request for reallocation failed. Out of memory.";
// Remove this allocation from our stats (we'll add the new reallocation again later)
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
// Update the allocation with the new information
au->actualSize = newActualSize;
au->actualAddress = newActualAddress;
au->reportedSize = calculateReportedSize(newActualSize);
au->reportedAddress = calculateReportedAddress(newActualAddress);
au->allocationType = reallocationType;
au->sourceLine = sourceLine;
au->allocationNumber = currentAllocationCount;
if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1);
else strcpy (au->sourceFile, "??");
if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1);
else strcpy (au->sourceFunc, "??");
// The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table
unsigned int hashIndex = (unsigned int) -1;
if (oldReportedAddress != au->reportedAddress)
{
// Remove this allocation unit from the hash table
{
unsigned int hashIndex = ((unsigned int) oldReportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = hashTable[hashIndex]->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
}
// Re-insert it back into the hash table
hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au;
au->next = hashTable[hashIndex];
au->prev = NULL;
hashTable[hashIndex] = au;
}
// Account for the new allocatin unit in our stats
stats.totalReportedMemory += au->reportedSize;
stats.totalActualMemory += au->actualSize;
if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory;
if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory;
int deltaReportedSize = reportedSize - originalReportedSize;
if (deltaReportedSize > 0)
{
stats.accumulatedReportedMemory += deltaReportedSize;
stats.accumulatedActualMemory += deltaReportedSize;
}
// Prepare the allocation unit for use (wipe it with recognizable garbage)
wipeWithPattern(au, unusedPattern, originalReportedSize);
// If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to
// the reallocation. This should not happen.
m_assert(m_validateAllocUnit(au));
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// Log the result
if (alwaysLogAll) log("[~] ----> addr 0x%08X", (unsigned int) au->reportedAddress);
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Return the (reported) address of the new allocation unit
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : m_reallocator()");
#endif
return au->reportedAddress;
}
catch(const char *err)
{
// Deal with the errors
log("[!] %s", err);
resetGlobals();
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : m_reallocator()");
#endif
return NULL;
}
}
// ---------------------------------------------------------------------------------------------------------------------------------
// Deallocate memory and track it
// ---------------------------------------------------------------------------------------------------------------------------------
void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress)
{
try
{
#ifdef TEST_MEMORY_MANAGER
log("[D] ENTER: m_deallocator()");
#endif
// Log the request
if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X by %s", allocationTypes[deallocationType], (unsigned int) reportedAddress, ownerString(sourceFile, sourceLine, sourceFunc));
// Go get the allocation unit
sAllocUnit *au = findAllocUnit(reportedAddress);
// If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager.
m_assert(au != NULL);
if (au == NULL) throw "Request to deallocate RAM that was never allocated";
// If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably
// already know that from a previous assert you should have seen in validateAllocUnit() :)
m_assert(m_validateAllocUnit(au));
// If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory
// tracking software, use the stack frame to locate the source and include our H file.
m_assert(deallocationType != m_alloc_unknown);
// If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with
// the deallocation method requested. In other words, you have a allocation/deallocation mismatch.
m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) ||
(deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) ||
(deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) ||
(deallocationType == m_alloc_unknown ) );
// If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au'
// variable to determine information about this allocation unit.
m_assert(au->breakOnDealloc == false);
// Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32,
// because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well.
wipeWithPattern(au, releasedPattern);
// Do the deallocation
free(au->actualAddress);
// Remove this allocation unit from the hash table
unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1);
if (hashTable[hashIndex] == au)
{
hashTable[hashIndex] = au->next;
}
else
{
if (au->prev) au->prev->next = au->next;
if (au->next) au->next->prev = au->prev;
}
// Remove this allocation from our stats
stats.totalReportedMemory -= au->reportedSize;
stats.totalActualMemory -= au->actualSize;
stats.totalAllocUnitCount--;
// Add this allocation unit to the front of our reservoir of unused allocation units
memset(au, 0, sizeof(sAllocUnit));
au->next = reservoir;
reservoir = au;
// Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown
// source (i.e. they didn't include our H file) then we won't think it was the last allocation.
resetGlobals();
// Validate every single allocated unit in memory
if (alwaysValidateAll) m_validateAllAllocUnits();
// If we're in the midst of deinitialization time, track any pending memory leaks
if (staticDeinitTime) dumpLeakReport();
}
catch(const char *err)
{
// Deal with errors
log("[!] %s", err);
resetGlobals();
}
#ifdef TEST_MEMORY_MANAGER
log("[D] EXIT : m_deallocator()");
#endif
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough
// bugs.
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAddress(const void *reportedAddress)
{
// Just see if the address exists in our allocation routines
return findAllocUnit(reportedAddress) != NULL;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllocUnit(const sAllocUnit *allocUnit)
{
// Make sure the padding is untouched
long *pre = (long *) allocUnit->actualAddress;
long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long));
bool errorFlag = false;
for (unsigned int i = 0; i < paddingSize; i++, pre++, post++)
{
if (*pre != (long) prefixPattern)
{
log("[!] A memory allocation unit was corrupt because of an underrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the
// variable 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*pre == (long) prefixPattern);
if (*post != (long) postfixPattern)
{
log("[!] A memory allocation unit was corrupt because of an overrun:");
m_dumpAllocUnit(allocUnit, " ");
errorFlag = true;
}
// If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the
// owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable
// 'allocUnit' to see statistics and information about this damaged allocation unit.
m_assert(*post == (long) postfixPattern);
}
// Return the error status (we invert it, because a return of 'false' means error)
return !errorFlag;
}
// ---------------------------------------------------------------------------------------------------------------------------------
bool m_validateAllAllocUnits()
{
// Just go through each allocation unit in the hash table and count the ones that have errors
unsigned int errors = 0;
unsigned int allocCount = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
allocCount++;
if (!m_validateAllocUnit(ptr)) errors++;
ptr = ptr->next;
}
}
// Test for hash-table correctness
if (allocCount != stats.totalAllocUnitCount)
{
log("[!] Memory tracking hash table corrupt!");
errors++;
}
// If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The
// best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the
// offending code. After running the application with these settings (and hitting this assert again), interrogate the
// memory.log file to find the previous successful operation. The corruption will have occurred between that point and this
// assertion.
m_assert(allocCount == stats.totalAllocUnitCount);
// If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a
// prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :)
m_assert(errors == 0);
// Log any errors
if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors);
// Return the error status
return errors != 0;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes)
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcUnused(const sAllocUnit *allocUnit)
{
const unsigned long *ptr = (const unsigned long *) allocUnit->reportedAddress;
unsigned int count = 0;
for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++)
{
if (*ptr == unusedPattern) count += sizeof(long);
}
return count;
}
// ---------------------------------------------------------------------------------------------------------------------------------
unsigned int m_calcAllUnused()
{
// Just go through each allocation unit in the hash table and count the unused RAM
unsigned int total = 0;
for (unsigned int i = 0; i < hashSize; i++)
{
sAllocUnit *ptr = hashTable[i];
while(ptr)
{
total += m_calcUnused(ptr);
ptr = ptr->next;
}
}
return total;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// -DOC- The following functions are for logging and statistics reporting.
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix)
{
log("[I] %sAddress (reported): %010p", prefix, allocUnit->reportedAddress);
log("[I] %sAddress (actual) : %010p", prefix, allocUnit->actualAddress);
log("[I] %sSize (reported) : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize));
log("[I] %sSize (actual) : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize));
log("[I] %sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc);
log("[I] %sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]);
log("[I] %sAllocation number : %d", prefix, allocUnit->allocationNumber);
}
// ---------------------------------------------------------------------------------------------------------------------------------
void m_dumpMemoryReport(const char *filename, const bool overwrite)
{
// Open the report file
FILE *fp = NULL;
if (overwrite) fp = fopen(filename, "w+b");
else fp = fopen(filename, "ab");
// If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for
// some reason.)
m_assert(fp);
if (!fp) return;
// Header
char timeString[25];
memset(timeString, 0, sizeof(timeString));
time_t t = time(NULL);
struct tm *tme = localtime(&t);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec);
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "\r\n");
fprintf(fp, "\r\n");
// Report summary
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| T O T A L S |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory));
fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory));
fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| P E A K S |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory));
fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory));
fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| A C C U M U L A T E D |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount));
fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory));
fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory));
fprintf(fp, "\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, "| U N U S E D |\r\n");
fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n");
fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused()));
fprintf(fp, "\r\n");
dumpAllocations(fp);
fclose(fp);
}
// ---------------------------------------------------------------------------------------------------------------------------------
sMStats m_getMemoryStatistics()
{
return stats;
}
// ---------------------------------------------------------------------------------------------------------------------------------
// mmgr.cpp - End of file
// ---------------------------------------------------------------------------------------------------------------------------------