| // --------------------------------------------------------------------------------------------------------------------------------- |
| // |
| // |
| // _ __ ___ _ __ ___ __ _ _ __ ___ _ __ _ __ |
| // | '_ ` _ \| '_ ` _ \ / _` | '__| / __| '_ \| '_ \ |
| // | | | | | | | | | | | (_| | | _ | (__| |_) | |_) | |
| // |_| |_| |_|_| |_| |_|\__, |_| (_) \___| .__/| .__/ |
| // __/ | | | | | |
| // |___/ |_| |_| |
| // |
| // Memory manager & tracking software |
| // |
| // Best viewed with 8-character tabs and (at least) 132 columns |
| // |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // |
| // Restrictions & freedoms pertaining to usage and redistribution of this software: |
| // |
| // * This software is 100% free |
| // * If you use this software (in part or in whole) you must credit the author. |
| // * This software may not be re-distributed (in part or in whole) in a modified |
| // form without clear documentation on how to obtain a copy of the original work. |
| // * You may not use this software to directly or indirectly cause harm to others. |
| // * This software is provided as-is and without warrantee. Use at your own risk. |
| // |
| // For more information, visit HTTP://www.FluidStudios.com |
| // |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Originally created on 12/22/2000 by Paul Nettle |
| // |
| // Copyright 2000, Fluid Studios, Inc., all rights reserved. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // |
| // !!IMPORTANT!! |
| // |
| // This software is self-documented with periodic comments. Before you start using this software, perform a search for the string |
| // "-DOC-" to locate pertinent information about how to use this software. |
| // |
| // You are also encouraged to read the comment blocks throughout this source file. They will help you understand how this memory |
| // tracking software works, so you can better utilize it within your applications. |
| // |
| // NOTES: |
| // |
| // 1. This code purposely uses no external routines that allocate RAM (other than the raw allocation routines, such as malloc). We |
| // do this because we want this to be as self-contained as possible. As an example, we don't use assert, because when running |
| // under WIN32, the assert brings up a dialog box, which allocates RAM. Doing this in the middle of an allocation would be bad. |
| // |
| // 2. When trying to override new/delete under MFC (which has its own version of global new/delete) the linker will complain. In |
| // order to fix this error, use the compiler option: /FORCE, which will force it to build an executable even with linker errors. |
| // Be sure to check those errors each time you compile, otherwise, you may miss a valid linker error. |
| // |
| // 3. If you see something that looks odd to you or seems like a strange way of going about doing something, then consider that this |
| // code was carefully thought out. If something looks odd, then just assume I've got a good reason for doing it that way (an |
| // example is the use of the class MemStaticTimeTracker.) |
| // |
| // 4. With MFC applications, you will need to comment out any occurance of "#define new DEBUG_NEW" from all source files. |
| // |
| // 5. Include file dependencies are _very_important_ for getting the MMGR to integrate nicely into your application. Be careful if |
| // you're including standard includes from within your own project inclues; that will break this very specific dependency order. |
| // It should look like this: |
| // |
| // #include <stdio.h> // Standard includes MUST come first |
| // #include <stdlib.h> // |
| // #include <streamio> // |
| // |
| // #include "mmgr.h" // mmgr.h MUST come next |
| // |
| // #include "myfile1.h" // Project includes MUST come last |
| // #include "myfile2.h" // |
| // #include "myfile3.h" // |
| // |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| //#include "stdafx.h" |
| #include <iostream> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <assert.h> |
| #include <string.h> |
| #include <time.h> |
| #include <stdarg.h> |
| #include <new> |
| |
| #ifndef WIN32 |
| #include <unistd.h> |
| #endif |
| |
| #include "mmgr.h" |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- If you're like me, it's hard to gain trust in foreign code. This memory manager will try to INDUCE your code to crash (for |
| // very good reasons... like making bugs obvious as early as possible.) Some people may be inclined to remove this memory tracking |
| // software if it causes crashes that didn't exist previously. In reality, these new crashes are the BEST reason for using this |
| // software! |
| // |
| // Whether this software causes your application to crash, or if it reports errors, you need to be able to TRUST this software. To |
| // this end, you are given some very simple debugging tools. |
| // |
| // The quickest way to locate problems is to enable the STRESS_TEST macro (below.) This should catch 95% of the crashes before they |
| // occur by validating every allocation each time this memory manager performs an allocation function. If that doesn't work, keep |
| // reading... |
| // |
| // If you enable the TEST_MEMORY_MANAGER #define (below), this memory manager will log an entry in the memory.log file each time it |
| // enters and exits one of its primary allocation handling routines. Each call that succeeds should place an "ENTER" and an "EXIT" |
| // into the log. If the program crashes within the memory manager, it will log an "ENTER", but not an "EXIT". The log will also |
| // report the name of the routine. |
| // |
| // Just because this memory manager crashes does not mean that there is a bug here! First, an application could inadvertantly damage |
| // the heap, causing malloc(), realloc() or free() to crash. Also, an application could inadvertantly damage some of the memory used |
| // by this memory tracking software, causing it to crash in much the same way that a damaged heap would affect the standard |
| // allocation routines. |
| // |
| // In the event of a crash within this code, the first thing you'll want to do is to locate the actual line of code that is |
| // crashing. You can do this by adding log() entries throughout the routine that crashes, repeating this process until you narrow |
| // in on the offending line of code. If the crash happens in a standard C allocation routine (i.e. malloc, realloc or free) don't |
| // bother contacting me, your application has damaged the heap. You can help find the culprit in your code by enabling the |
| // STRESS_TEST macro (below.) |
| // |
| // If you truely suspect a bug in this memory manager (and you had better be sure about it! :) you can contact me at |
| // midnight@FluidStudios.com. Before you do, however, check for a newer version at: |
| // |
| // http://www.FluidStudios.com/publications.html |
| // |
| // When using this debugging aid, make sure that you are NOT setting the alwaysLogAll variable on, otherwise the log could be |
| // cluttered and hard to read. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| //#define TEST_MEMORY_MANAGER |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Enable this sucker if you really want to stress-test your app's memory usage, or to help find hard-to-find bugs |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| #define STRESS_TEST |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Enable this sucker if you want to stress-test your app's error-handling. Set RANDOM_FAIL to the percentage of failures you |
| // want to test with (0 = none, >100 = all failures). |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| //#define RANDOM_FAILURE 10.0 |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Locals -- modify these flags to suit your needs |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| #ifdef STRESS_TEST |
| static const unsigned int hashBits = 12; |
| static bool randomWipe = true; |
| static bool alwaysValidateAll = true; |
| static bool alwaysLogAll = true; |
| static bool alwaysWipeAll = true; |
| static bool cleanupLogOnFirstRun = true; |
| static const unsigned int paddingSize = 1024; // An extra 8K per allocation! |
| #else |
| static const unsigned int hashBits = 12; |
| static bool randomWipe = false; |
| static bool alwaysValidateAll = false; |
| static bool alwaysLogAll = false; |
| static bool alwaysWipeAll = true; |
| static bool cleanupLogOnFirstRun = true; |
| static const unsigned int paddingSize = 4; |
| #endif |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // We define our own assert, because we don't want to bring up an assertion dialog, since that allocates RAM. Our new assert |
| // simply declares a forced breakpoint. |
| // |
| // The BEOS assert added by Arvid Norberg <arvid@iname.com>. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| #ifdef WIN32 |
| #ifdef _DEBUG |
| #define m_assert(x) if ((x) == false) __asm { int 3 } |
| #else |
| #define m_assert(x) {} |
| #endif |
| #elif defined(__BEOS__) |
| #ifdef DEBUG |
| extern void debugger(const char *message); |
| #define m_assert(x) if ((x) == false) debugger("mmgr: assert failed") |
| #else |
| #define m_assert(x) {} |
| #endif |
| #else // Linux uses assert, which we can use safely, since it doesn't bring up a dialog within the program. |
| #define m_assert(cond) assert(cond) |
| #endif |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Here, we turn off our macros because any place in this source file where the word 'new' or the word 'delete' (etc.) |
| // appear will be expanded by the macro. So to avoid problems using them within this source file, we'll just #undef them. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| #undef new |
| #undef delete |
| #undef malloc |
| #undef calloc |
| #undef realloc |
| #undef free |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Defaults for the constants & statics in the MemoryManager class |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| const unsigned int m_alloc_unknown = 0; |
| const unsigned int m_alloc_new = 1; |
| const unsigned int m_alloc_new_array = 2; |
| const unsigned int m_alloc_malloc = 3; |
| const unsigned int m_alloc_calloc = 4; |
| const unsigned int m_alloc_realloc = 5; |
| const unsigned int m_alloc_delete = 6; |
| const unsigned int m_alloc_delete_array = 7; |
| const unsigned int m_alloc_free = 8; |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Get to know these values. They represent the values that will be used to fill unused and deallocated RAM. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static unsigned int prefixPattern = 0xbaadf00d; // Fill pattern for bytes preceeding allocated blocks |
| static unsigned int postfixPattern = 0xdeadc0de; // Fill pattern for bytes following allocated blocks |
| static unsigned int unusedPattern = 0xfeedface; // Fill pattern for freshly allocated blocks |
| static unsigned int releasedPattern = 0xdeadbeef; // Fill pattern for deallocated blocks |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Other locals |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static const unsigned int hashSize = 1 << hashBits; |
| static const char *allocationTypes[] = {"Unknown", |
| "new", "new[]", "malloc", "calloc", |
| "realloc", "delete", "delete[]", "free"}; |
| static sAllocUnit *hashTable[hashSize]; |
| static sAllocUnit *reservoir; |
| static unsigned int currentAllocationCount = 0; |
| static unsigned int breakOnAllocationCount = 0; |
| static sMStats stats; |
| static const char *sourceFile = "??"; |
| static const char *sourceFunc = "??"; |
| static unsigned int sourceLine = 0; |
| static bool staticDeinitTime = false; |
| static sAllocUnit **reservoirBuffer = NULL; |
| static unsigned int reservoirBufferSize = 0; |
| const char *memoryLogFile = "memory.log"; |
| const char *memoryLeakLogFile = "memleaks.log"; |
| static void doCleanupLogOnFirstRun(); |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Local functions only |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void log(const char *format, ...) |
| { |
| // Build the buffer |
| |
| char buffer[2048]; |
| va_list ap; |
| va_start(ap, format); |
| vsprintf(buffer, format, ap); |
| va_end(ap); |
| |
| // Cleanup the log? |
| |
| if (cleanupLogOnFirstRun) doCleanupLogOnFirstRun(); |
| |
| // Open the log file |
| |
| FILE *fp = fopen(memoryLogFile, "ab"); |
| |
| // If you hit this assert, then the memory logger is unable to log information to a file (can't open the file for some |
| // reason.) You can interrogate the variable 'buffer' to see what was supposed to be logged (but won't be.) |
| m_assert(fp); |
| |
| if (!fp) return; |
| |
| // Spit out the data to the log |
| |
| fprintf(fp, "%s\r\n", buffer); |
| fclose(fp); |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void doCleanupLogOnFirstRun() |
| { |
| if (cleanupLogOnFirstRun) |
| { |
| unlink(memoryLogFile); |
| cleanupLogOnFirstRun = false; |
| |
| // Print a header for the log |
| |
| time_t t = time(NULL); |
| log("--------------------------------------------------------------------------------"); |
| log(""); |
| log(" %s - Memory logging file created on %s", memoryLogFile, asctime(localtime(&t))); |
| log("--------------------------------------------------------------------------------"); |
| log(""); |
| log("This file contains a log of all memory operations performed during the last run."); |
| log(""); |
| log("Interrogate this file to track errors or to help track down memory-related"); |
| log("issues. You can do this by tracing the allocations performed by a specific owner"); |
| log("or by tracking a specific address through a series of allocations and"); |
| log("reallocations."); |
| log(""); |
| log("There is a lot of useful information here which, when used creatively, can be"); |
| log("extremely helpful."); |
| log(""); |
| log("Note that the following guides are used throughout this file:"); |
| log(""); |
| log(" [!] - Error"); |
| log(" [+] - Allocation"); |
| log(" [~] - Reallocation"); |
| log(" [-] - Deallocation"); |
| log(" [I] - Generic information"); |
| log(" [F] - Failure induced for the purpose of stress-testing your application"); |
| log(" [D] - Information used for debugging this memory manager"); |
| log(""); |
| log("...so, to find all errors in the file, search for \"[!]\""); |
| log(""); |
| log("--------------------------------------------------------------------------------"); |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static const char *sourceFileStripper(const char *sourceFile) |
| { |
| char *ptr = strrchr(sourceFile, '\\'); |
| if (ptr) return ptr + 1; |
| ptr = strrchr(sourceFile, '/'); |
| if (ptr) return ptr + 1; |
| return sourceFile; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static const char *ownerString(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc) |
| { |
| static char str[90]; |
| memset(str, 0, sizeof(str)); |
| sprintf(str, "%s(%05d)::%s", sourceFileStripper(sourceFile), sourceLine, sourceFunc); |
| return str; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static const char *insertCommas(unsigned int value) |
| { |
| static char str[30]; |
| memset(str, 0, sizeof(str)); |
| |
| sprintf(str, "%u", value); |
| if (strlen(str) > 3) |
| { |
| memmove(&str[strlen(str)-3], &str[strlen(str)-4], 4); |
| str[strlen(str) - 4] = ','; |
| } |
| if (strlen(str) > 7) |
| { |
| memmove(&str[strlen(str)-7], &str[strlen(str)-8], 8); |
| str[strlen(str) - 8] = ','; |
| } |
| if (strlen(str) > 11) |
| { |
| memmove(&str[strlen(str)-11], &str[strlen(str)-12], 12); |
| str[strlen(str) - 12] = ','; |
| } |
| |
| return str; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static const char *memorySizeString(unsigned long size) |
| { |
| static char str[90]; |
| if (size > (1024*1024)) sprintf(str, "%10s (%7.2fM)", insertCommas(size), (float) size / (1024.0f * 1024.0f)); |
| else if (size > 1024) sprintf(str, "%10s (%7.2fK)", insertCommas(size), (float) size / 1024.0f); |
| else sprintf(str, "%10s bytes ", insertCommas(size)); |
| return str; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static sAllocUnit *findAllocUnit(const void *reportedAddress) |
| { |
| // Just in case... |
| m_assert(reportedAddress != NULL); |
| |
| // Use the address to locate the hash index. Note that we shift off the lower four bits. This is because most allocated |
| // addresses will be on four-, eight- or even sixteen-byte boundaries. If we didn't do this, the hash index would not have |
| // very good coverage. |
| |
| unsigned int hashIndex = ((unsigned int) reportedAddress >> 4) & (hashSize - 1); |
| sAllocUnit *ptr = hashTable[hashIndex]; |
| while(ptr) |
| { |
| if (ptr->reportedAddress == reportedAddress) return ptr; |
| ptr = ptr->next; |
| } |
| |
| return NULL; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static size_t calculateActualSize(const size_t reportedSize) |
| { |
| // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as |
| // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's |
| // 8 bytes, which means an int can actually be larger than a long.) |
| |
| return reportedSize + paddingSize * sizeof(long) * 2; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static size_t calculateReportedSize(const size_t actualSize) |
| { |
| // We use DWORDS as our padding, and a long is guaranteed to be 4 bytes, but an int is not (ANSI defines an int as |
| // being the standard word size for a processor; on a 32-bit machine, that's 4 bytes, but on a 64-bit machine, it's |
| // 8 bytes, which means an int can actually be larger than a long.) |
| |
| return actualSize - paddingSize * sizeof(long) * 2; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void *calculateReportedAddress(const void *actualAddress) |
| { |
| // We allow this... |
| |
| if (!actualAddress) return NULL; |
| |
| // JUst account for the padding |
| |
| return (void *) ((char *) actualAddress + sizeof(long) * paddingSize); |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void wipeWithPattern(sAllocUnit *allocUnit, unsigned long pattern, const unsigned int originalReportedSize = 0) |
| { |
| // For a serious test run, we use wipes of random a random value. However, if this causes a crash, we don't want it to |
| // crash in a differnt place each time, so we specifically DO NOT call srand. If, by chance your program calls srand(), |
| // you may wish to disable that when running with a random wipe test. This will make any crashes more consistent so they |
| // can be tracked down easier. |
| |
| if (randomWipe) |
| { |
| pattern = ((rand() & 0xff) << 24) | ((rand() & 0xff) << 16) | ((rand() & 0xff) << 8) | (rand() & 0xff); |
| } |
| |
| // -DOC- We should wipe with 0's if we're not in debug mode, so we can help hide bugs if possible when we release the |
| // product. So uncomment the following line for releases. |
| // |
| // Note that the "alwaysWipeAll" should be turned on for this to have effect, otherwise it won't do much good. But we'll |
| // leave it this way (as an option) because this does slow things down. |
| // pattern = 0; |
| |
| // This part of the operation is optional |
| |
| if (alwaysWipeAll && allocUnit->reportedSize > originalReportedSize) |
| { |
| // Fill the bulk |
| |
| long *lptr = (long *) ((char *)allocUnit->reportedAddress + originalReportedSize); |
| int length = allocUnit->reportedSize - originalReportedSize; |
| int i; |
| for (i = 0; i < (length >> 2); i++, lptr++) |
| { |
| *lptr = pattern; |
| } |
| |
| // Fill the remainder |
| |
| unsigned int shiftCount = 0; |
| char *cptr = (char *) lptr; |
| for (i = 0; i < (length & 0x3); i++, cptr++, shiftCount += 8) |
| { |
| *cptr = (pattern & (0xff << shiftCount)) >> shiftCount; |
| } |
| } |
| |
| // Write in the prefix/postfix bytes |
| |
| long *pre = (long *) allocUnit->actualAddress; |
| long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long)); |
| for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) |
| { |
| *pre = prefixPattern; |
| *post = postfixPattern; |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void dumpAllocations(FILE *fp) |
| { |
| fprintf(fp, "Alloc. Addr Size Addr Size BreakOn BreakOn \r\n"); |
| fprintf(fp, "Number Reported Reported Actual Actual Unused Method Dealloc Realloc Allocated by \r\n"); |
| fprintf(fp, "------ ---------- ---------- ---------- ---------- ---------- -------- ------- ------- --------------------------------------------------- \r\n"); |
| |
| |
| for (unsigned int i = 0; i < hashSize; i++) |
| { |
| sAllocUnit *ptr = hashTable[i]; |
| while(ptr) |
| { |
| fprintf(fp, "%06d 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X %-8s %c %c %s\r\n", |
| ptr->allocationNumber, |
| (unsigned int) ptr->reportedAddress, ptr->reportedSize, |
| (unsigned int) ptr->actualAddress, ptr->actualSize, |
| m_calcUnused(ptr), |
| allocationTypes[ptr->allocationType], |
| ptr->breakOnDealloc ? 'Y':'N', |
| ptr->breakOnRealloc ? 'Y':'N', |
| ownerString(ptr->sourceFile, ptr->sourceLine, ptr->sourceFunc)); |
| ptr = ptr->next; |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void dumpLeakReport() |
| { |
| // Open the report file |
| |
| FILE *fp = fopen(memoryLeakLogFile, "w+b"); |
| |
| // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for |
| // some reason.) |
| m_assert(fp); |
| if (!fp) return; |
| |
| // Any leaks? |
| |
| // Header |
| |
| char timeString[25]; |
| memset(timeString, 0, sizeof(timeString)); |
| time_t t = time(NULL); |
| struct tm *tme = localtime(&t); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| Memory leak report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "\r\n"); |
| fprintf(fp, "\r\n"); |
| if (stats.totalAllocUnitCount) |
| { |
| fprintf(fp, "%d memory leak%s found:\r\n", stats.totalAllocUnitCount, stats.totalAllocUnitCount == 1 ? "":"s"); |
| } |
| else |
| { |
| fprintf(fp, "Congratulations! No memory leaks found!\r\n"); |
| |
| // We can finally free up our own memory allocations |
| |
| if (reservoirBuffer) |
| { |
| for (unsigned int i = 0; i < reservoirBufferSize; i++) |
| { |
| free(reservoirBuffer[i]); |
| } |
| free(reservoirBuffer); |
| reservoirBuffer = 0; |
| reservoirBufferSize = 0; |
| reservoir = NULL; |
| } |
| } |
| fprintf(fp, "\r\n"); |
| |
| if (stats.totalAllocUnitCount) |
| { |
| dumpAllocations(fp); |
| } |
| |
| fclose(fp); |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // We use a class to let us know when we're in the midst of deinitialization |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| class MemStaticTimeTracker |
| { |
| public: |
| MemStaticTimeTracker() {doCleanupLogOnFirstRun();} |
| ~MemStaticTimeTracker() {staticDeinitTime = true; dumpLeakReport();} |
| }; |
| static MemStaticTimeTracker mstt; |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Flags & options -- Call these routines to enable/disable the following options |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_alwaysValidateAll() |
| { |
| // Force a validation of all allocation units each time we enter this software |
| return alwaysValidateAll; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_alwaysLogAll() |
| { |
| // Force a log of every allocation & deallocation into memory.log |
| return alwaysLogAll; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_alwaysWipeAll() |
| { |
| // Force this software to always wipe memory with a pattern when it is being allocated/dallocated |
| return alwaysWipeAll; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_randomeWipe() |
| { |
| // Force this software to use a random pattern when wiping memory -- good for stress testing |
| return randomWipe; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is |
| // reallocated. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_breakOnRealloc(void *reportedAddress) |
| { |
| // Locate the existing allocation unit |
| |
| sAllocUnit *au = findAllocUnit(reportedAddress); |
| |
| // If you hit this assert, you tried to set a breakpoint on reallocation for an address that doesn't exist. Interrogate the |
| // stack frame or the variable 'au' to see which allocation this is. |
| m_assert(au != NULL); |
| |
| // If you hit this assert, you tried to set a breakpoint on reallocation for an address that wasn't allocated in a way that |
| // is compatible with reallocation. |
| m_assert(au->allocationType == m_alloc_malloc || |
| au->allocationType == m_alloc_calloc || |
| au->allocationType == m_alloc_realloc); |
| |
| return au->breakOnRealloc; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Simply call this routine with the address of an allocated block of RAM, to cause it to force a breakpoint when it is |
| // deallocated. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool &m_breakOnDealloc(void *reportedAddress) |
| { |
| // Locate the existing allocation unit |
| |
| sAllocUnit *au = findAllocUnit(reportedAddress); |
| |
| // If you hit this assert, you tried to set a breakpoint on deallocation for an address that doesn't exist. Interrogate the |
| // stack frame or the variable 'au' to see which allocation this is. |
| m_assert(au != NULL); |
| |
| return au->breakOnDealloc; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- When tracking down a difficult bug, use this routine to force a breakpoint on a specific allocation count |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void m_breakOnAllocation(unsigned int count) |
| { |
| breakOnAllocationCount = count; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Used by the macros |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void m_setOwner(const char *file, const unsigned int line, const char *func) |
| { |
| // You're probably wondering about this... |
| // |
| // It's important for this memory manager to primarily work with global new/delete in their original forms (i.e. with |
| // no extra parameters.) In order to do this, we use macros that call this function prior to operators new & delete. This |
| // is fine... usually. Here's what actually happens when you use this macro to delete an object: |
| // |
| // m_setOwner(__FILE__, __LINE__, __FUNCTION__) --> object::~object() --> delete |
| // |
| // Note that the compiler inserts a call to the object's destructor just prior to calling our overridden operator delete. |
| // But what happens when we delete an object whose destructor deletes another object, whose desctuctor deletes another |
| // object? Here's a diagram (indentation follows stack depth): |
| // |
| // m_setOwner(...) -> ~obj1() // original call to delete obj1 |
| // m_setOwner(...) -> ~obj2() // obj1's destructor deletes obj2 |
| // m_setOwner(...) -> ~obj3() // obj2's destructor deletes obj3 |
| // ... // obj3's destructor just does some stuff |
| // delete // back in obj2's destructor, we call delete |
| // delete // back in obj1's destructor, we call delete |
| // delete // back to our original call, we call delete |
| // |
| // Because m_setOwner() just sets up some variables (below) it's important that each call to m_setOwner() and |
| // successive calls to new/delete alternate. However, in this case, three calls to m_setOwner() happen in succession |
| // followed by three calls to delete in succession (with a few calls to destructors mixed in for fun.) This means that |
| // only the final call to delete (in this chain of events) will have the proper reporting, and the first two in the chain |
| // will not have ANY owner-reporting information. The deletes will still work fine, we just won't know who called us. |
| // |
| // "Then build a stack, my friend!" you might think... but it's a very common thing that people will be working with third- |
| // party libraries (including MFC under Windows) which is not compiled with this memory manager's macros. In those cases, |
| // m_setOwner() is never called, and rightfully should not have the proper trace-back information. So if one of the |
| // destructors in the chain ends up being a call to a delete from a non-mmgr-compiled library, the stack will get confused. |
| // |
| // I've been unable to find a solution to this problem, but at least we can detect it and report the data before we |
| // lose it. That's what this is all about. It makes it somewhat confusing to read in the logs, but at least ALL the |
| // information is present... |
| // |
| // There's a caveat here... The compiler is not required to call operator delete if the value being deleted is NULL. |
| // In this case, any call to delete with a NULL will sill call m_setOwner(), which will make m_setOwner() think that |
| // there is a destructor chain becuase we setup the variables, but nothing gets called to clear them. Because of this |
| // we report a "Possible destructor chain". |
| // |
| // Thanks to J. Woznack (from Kodiak Interactive Software Studios -- www.kodiakgames.com) for pointing this out. |
| |
| if (sourceLine && alwaysLogAll) |
| { |
| log("[I] NOTE! Possible destructor chain: previous owner is %s", ownerString(sourceFile, sourceLine, sourceFunc)); |
| } |
| |
| // Okay... save this stuff off so we can keep track of the caller |
| |
| sourceFile = file; |
| sourceLine = line; |
| sourceFunc = func; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| static void resetGlobals() |
| { |
| sourceFile = "??"; |
| sourceLine = 0; |
| sourceFunc = "??"; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Global new/new[] |
| // |
| // These are the standard new/new[] operators. They are merely interface functions that operate like normal new/new[], but use our |
| // memory tracking routines. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *operator new(size_t reportedSize) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: new"); |
| #endif |
| |
| // Save these off... |
| |
| const char *file = sourceFile; |
| const unsigned int line = sourceLine; |
| const char *func = sourceFunc; |
| |
| // ANSI says: allocation requests of 0 bytes will still return a valid value |
| |
| if (reportedSize == 0) reportedSize = 1; |
| |
| // ANSI says: loop continuously because the error handler could possibly free up some memory |
| |
| for(;;) |
| { |
| // Try the allocation |
| |
| void *ptr = m_allocator(file, line, func, m_alloc_new, reportedSize); |
| if (ptr) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new"); |
| #endif |
| return ptr; |
| } |
| |
| // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then |
| // set it back again. |
| |
| std::new_handler nh = std::set_new_handler(0); |
| std::set_new_handler(nh); |
| |
| // If there is an error handler, call it |
| |
| if (nh) |
| { |
| (*nh)(); |
| } |
| |
| // Otherwise, throw the exception |
| |
| else |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new"); |
| #endif |
| throw std::bad_alloc(); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *operator new[](size_t reportedSize) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: new[]"); |
| #endif |
| |
| // Save these off... |
| |
| const char *file = sourceFile; |
| const unsigned int line = sourceLine; |
| const char *func = sourceFunc; |
| |
| // The ANSI standard says that allocation requests of 0 bytes will still return a valid value |
| |
| if (reportedSize == 0) reportedSize = 1; |
| |
| // ANSI says: loop continuously because the error handler could possibly free up some memory |
| |
| for(;;) |
| { |
| // Try the allocation |
| |
| void *ptr = m_allocator(file, line, func, m_alloc_new_array, reportedSize); |
| if (ptr) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new[]"); |
| #endif |
| return ptr; |
| } |
| |
| // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then |
| // set it back again. |
| |
| std::new_handler nh = std::set_new_handler(0); |
| std::set_new_handler(nh); |
| |
| // If there is an error handler, call it |
| |
| if (nh) |
| { |
| (*nh)(); |
| } |
| |
| // Otherwise, throw the exception |
| |
| else |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new[]"); |
| #endif |
| throw std::bad_alloc(); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Other global new/new[] |
| // |
| // These are the standard new/new[] operators as used by Microsoft's memory tracker. We don't want them interfering with our memory |
| // tracking efforts. Like the previous versions, these are merely interface functions that operate like normal new/new[], but use |
| // our memory tracking routines. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *operator new(size_t reportedSize, const char *sourceFile, int sourceLine) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: new"); |
| #endif |
| |
| // The ANSI standard says that allocation requests of 0 bytes will still return a valid value |
| |
| if (reportedSize == 0) reportedSize = 1; |
| |
| // ANSI says: loop continuously because the error handler could possibly free up some memory |
| |
| for(;;) |
| { |
| // Try the allocation |
| |
| void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new, reportedSize); |
| if (ptr) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new"); |
| #endif |
| return ptr; |
| } |
| |
| // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then |
| // set it back again. |
| |
| std::new_handler nh = std::set_new_handler(0); |
| std::set_new_handler(nh); |
| |
| // If there is an error handler, call it |
| |
| if (nh) |
| { |
| (*nh)(); |
| } |
| |
| // Otherwise, throw the exception |
| |
| else |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new"); |
| #endif |
| throw std::bad_alloc(); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *operator new[](size_t reportedSize, const char *sourceFile, int sourceLine) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: new[]"); |
| #endif |
| |
| // The ANSI standard says that allocation requests of 0 bytes will still return a valid value |
| |
| if (reportedSize == 0) reportedSize = 1; |
| |
| // ANSI says: loop continuously because the error handler could possibly free up some memory |
| |
| for(;;) |
| { |
| // Try the allocation |
| |
| void *ptr = m_allocator(sourceFile, sourceLine, "??", m_alloc_new_array, reportedSize); |
| if (ptr) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new[]"); |
| #endif |
| return ptr; |
| } |
| |
| // There isn't a way to determine the new handler, except through setting it. So we'll just set it to NULL, then |
| // set it back again. |
| |
| std::new_handler nh = std::set_new_handler(0); |
| std::set_new_handler(nh); |
| |
| // If there is an error handler, call it |
| |
| if (nh) |
| { |
| (*nh)(); |
| } |
| |
| // Otherwise, throw the exception |
| |
| else |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : new[]"); |
| #endif |
| throw std::bad_alloc(); |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Global delete/delete[] |
| // |
| // These are the standard delete/delete[] operators. They are merely interface functions that operate like normal delete/delete[], |
| // but use our memory tracking routines. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void operator delete(void *reportedAddress) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: delete"); |
| #endif |
| |
| // ANSI says: delete & delete[] allow NULL pointers (they do nothing) |
| |
| if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete, reportedAddress); |
| else if (alwaysLogAll) log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete], ownerString(sourceFile, sourceLine, sourceFunc)); |
| |
| // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown |
| // source (i.e. they didn't include our H file) then we won't think it was the last allocation. |
| |
| resetGlobals(); |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : delete"); |
| #endif |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void operator delete[](void *reportedAddress) |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: delete[]"); |
| #endif |
| |
| // ANSI says: delete & delete[] allow NULL pointers (they do nothing) |
| |
| if (reportedAddress) m_deallocator(sourceFile, sourceLine, sourceFunc, m_alloc_delete_array, reportedAddress); |
| else if (alwaysLogAll) |
| log("[-] ----- %8s of NULL by %s", allocationTypes[m_alloc_delete_array], ownerString(sourceFile, sourceLine, sourceFunc)); |
| |
| // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown |
| // source (i.e. they didn't include our H file) then we won't think it was the last allocation. |
| |
| resetGlobals(); |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : delete[]"); |
| #endif |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Allocate memory and track it |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *m_allocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int allocationType, const size_t reportedSize) |
| { |
| try |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: m_allocator()"); |
| #endif |
| |
| // Increase our allocation count |
| |
| currentAllocationCount++; |
| |
| // Log the request |
| |
| if (alwaysLogAll) log("[+] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[allocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); |
| |
| // If you hit this assert, you requested a breakpoint on a specific allocation count |
| m_assert(currentAllocationCount != breakOnAllocationCount); |
| |
| // If necessary, grow the reservoir of unused allocation units |
| |
| if (!reservoir) |
| { |
| // Allocate 256 reservoir elements |
| |
| reservoir = (sAllocUnit *) malloc(sizeof(sAllocUnit) * 256); |
| |
| // If you hit this assert, then the memory manager failed to allocate internal memory for tracking the |
| // allocations |
| m_assert(reservoir != NULL); |
| |
| // Danger Will Robinson! |
| |
| if (reservoir == NULL) throw "Unable to allocate RAM for internal memory tracking data"; |
| |
| // Build a linked-list of the elements in our reservoir |
| |
| memset(reservoir, 0, sizeof(sAllocUnit) * 256); |
| for (unsigned int i = 0; i < 256 - 1; i++) |
| { |
| reservoir[i].next = &reservoir[i+1]; |
| } |
| |
| // Add this address to our reservoirBuffer so we can free it later |
| |
| sAllocUnit **temp = (sAllocUnit **) realloc(reservoirBuffer, (reservoirBufferSize + 1) * sizeof(sAllocUnit *)); |
| m_assert(temp); |
| if (temp) |
| { |
| reservoirBuffer = temp; |
| reservoirBuffer[reservoirBufferSize++] = reservoir; |
| } |
| } |
| |
| // Logical flow says this should never happen... |
| m_assert(reservoir != NULL); |
| |
| // Grab a new allocaton unit from the front of the reservoir |
| |
| sAllocUnit *au = reservoir; |
| reservoir = au->next; |
| |
| // Populate it with some real data |
| |
| memset(au, 0, sizeof(sAllocUnit)); |
| au->actualSize = calculateActualSize(reportedSize); |
| #ifdef RANDOM_FAILURE |
| double a = rand(); |
| double b = RAND_MAX / 100.0 * RANDOM_FAILURE; |
| if (a > b) |
| { |
| au->actualAddress = malloc(au->actualSize); |
| } |
| else |
| { |
| log("[F] Random faiure"); |
| au->actualAddress = NULL; |
| } |
| #else |
| au->actualAddress = malloc(au->actualSize); |
| #endif |
| au->reportedSize = reportedSize; |
| au->reportedAddress = calculateReportedAddress(au->actualAddress); |
| au->allocationType = allocationType; |
| au->sourceLine = sourceLine; |
| au->allocationNumber = currentAllocationCount; |
| if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); |
| else strcpy (au->sourceFile, "??"); |
| if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); |
| else strcpy (au->sourceFunc, "??"); |
| |
| // We don't want to assert with random failures, because we want the application to deal with them. |
| |
| #ifndef RANDOM_FAILURE |
| // If you hit this assert, then the requested allocation simply failed (you're out of memory.) Interrogate the |
| // variable 'au' or the stack frame to see what you were trying to do. |
| m_assert(au->actualAddress != NULL); |
| #endif |
| |
| if (au->actualAddress == NULL) |
| { |
| throw "Request for allocation failed. Out of memory."; |
| } |
| |
| // If you hit this assert, then this allocation was made from a source that isn't setup to use this memory tracking |
| // software, use the stack frame to locate the source and include our H file. |
| m_assert(allocationType != m_alloc_unknown); |
| |
| // Insert the new allocation into the hash table |
| |
| unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1); |
| if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; |
| au->next = hashTable[hashIndex]; |
| au->prev = NULL; |
| hashTable[hashIndex] = au; |
| |
| // Account for the new allocatin unit in our stats |
| |
| stats.totalReportedMemory += au->reportedSize; |
| stats.totalActualMemory += au->actualSize; |
| stats.totalAllocUnitCount++; |
| if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; |
| if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; |
| if (stats.totalAllocUnitCount > stats.peakAllocUnitCount) stats.peakAllocUnitCount = stats.totalAllocUnitCount; |
| stats.accumulatedReportedMemory += au->reportedSize; |
| stats.accumulatedActualMemory += au->actualSize; |
| stats.accumulatedAllocUnitCount++; |
| |
| // Prepare the allocation unit for use (wipe it with recognizable garbage) |
| |
| wipeWithPattern(au, unusedPattern); |
| |
| // calloc() expects the reported memory address range to be filled with 0's |
| |
| if (allocationType == m_alloc_calloc) |
| { |
| memset(au->reportedAddress, 0, au->reportedSize); |
| } |
| |
| // Validate every single allocated unit in memory |
| |
| if (alwaysValidateAll) m_validateAllAllocUnits(); |
| |
| // Log the result |
| |
| if (alwaysLogAll) log("[+] ----> addr 0x%08X", (unsigned int) au->reportedAddress); |
| |
| // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown |
| // source (i.e. they didn't include our H file) then we won't think it was the last allocation. |
| |
| resetGlobals(); |
| |
| // Return the (reported) address of the new allocation unit |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : m_allocator()"); |
| #endif |
| |
| return au->reportedAddress; |
| } |
| catch(const char *err) |
| { |
| // Deal with the errors |
| |
| log("[!] %s", err); |
| resetGlobals(); |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : m_allocator()"); |
| #endif |
| |
| return NULL; |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Reallocate memory and track it |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void *m_reallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int reallocationType, const size_t reportedSize, void *reportedAddress) |
| { |
| try |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: m_reallocator()"); |
| #endif |
| |
| // Calling realloc with a NULL should force same operations as a malloc |
| |
| if (!reportedAddress) |
| { |
| return m_allocator(sourceFile, sourceLine, sourceFunc, reallocationType, reportedSize); |
| } |
| |
| // Increase our allocation count |
| |
| currentAllocationCount++; |
| |
| // If you hit this assert, you requested a breakpoint on a specific allocation count |
| m_assert(currentAllocationCount != breakOnAllocationCount); |
| |
| // Log the request |
| |
| if (alwaysLogAll) log("[~] %05d %8s of size 0x%08X(%08d) by %s", currentAllocationCount, allocationTypes[reallocationType], reportedSize, reportedSize, ownerString(sourceFile, sourceLine, sourceFunc)); |
| |
| // Locate the existing allocation unit |
| |
| sAllocUnit *au = findAllocUnit(reportedAddress); |
| |
| // If you hit this assert, you tried to reallocate RAM that wasn't allocated by this memory manager. |
| m_assert(au != NULL); |
| if (au == NULL) throw "Request to reallocate RAM that was never allocated"; |
| |
| // If you hit this assert, then the allocation unit that is about to be reallocated is damaged. But you probably |
| // already know that from a previous assert you should have seen in validateAllocUnit() :) |
| m_assert(m_validateAllocUnit(au)); |
| |
| // If you hit this assert, then this reallocation was made from a source that isn't setup to use this memory |
| // tracking software, use the stack frame to locate the source and include our H file. |
| m_assert(reallocationType != m_alloc_unknown); |
| |
| // If you hit this assert, you were trying to reallocate RAM that was not allocated in a way that is compatible with |
| // realloc. In other words, you have a allocation/reallocation mismatch. |
| m_assert(au->allocationType == m_alloc_malloc || |
| au->allocationType == m_alloc_calloc || |
| au->allocationType == m_alloc_realloc); |
| |
| // If you hit this assert, then the "break on realloc" flag for this allocation unit is set (and will continue to be |
| // set until you specifically shut it off. Interrogate the 'au' variable to determine information about this |
| // allocation unit. |
| m_assert(au->breakOnRealloc == false); |
| |
| // Keep track of the original size |
| |
| unsigned int originalReportedSize = au->reportedSize; |
| |
| if (alwaysLogAll) log("[~] ----> from 0x%08X(%08d)", originalReportedSize, originalReportedSize); |
| |
| // Do the reallocation |
| |
| void *oldReportedAddress = reportedAddress; |
| size_t newActualSize = calculateActualSize(reportedSize); |
| void *newActualAddress = NULL; |
| #ifdef RANDOM_FAILURE |
| double a = rand(); |
| double b = RAND_MAX / 100.0 * RANDOM_FAILURE; |
| if (a > b) |
| { |
| newActualAddress = realloc(au->actualAddress, newActualSize); |
| } |
| else |
| { |
| log("[F] Random faiure"); |
| } |
| #else |
| newActualAddress = realloc(au->actualAddress, newActualSize); |
| #endif |
| |
| // We don't want to assert with random failures, because we want the application to deal with them. |
| |
| #ifndef RANDOM_FAILURE |
| // If you hit this assert, then the requested allocation simply failed (you're out of memory) Interrogate the |
| // variable 'au' to see the original allocation. You can also query 'newActualSize' to see the amount of memory |
| // trying to be allocated. Finally, you can query 'reportedSize' to see how much memory was requested by the caller. |
| m_assert(newActualAddress); |
| #endif |
| |
| if (!newActualAddress) throw "Request for reallocation failed. Out of memory."; |
| |
| // Remove this allocation from our stats (we'll add the new reallocation again later) |
| |
| stats.totalReportedMemory -= au->reportedSize; |
| stats.totalActualMemory -= au->actualSize; |
| |
| // Update the allocation with the new information |
| |
| au->actualSize = newActualSize; |
| au->actualAddress = newActualAddress; |
| au->reportedSize = calculateReportedSize(newActualSize); |
| au->reportedAddress = calculateReportedAddress(newActualAddress); |
| au->allocationType = reallocationType; |
| au->sourceLine = sourceLine; |
| au->allocationNumber = currentAllocationCount; |
| if (sourceFile) strncpy(au->sourceFile, sourceFileStripper(sourceFile), sizeof(au->sourceFile) - 1); |
| else strcpy (au->sourceFile, "??"); |
| if (sourceFunc) strncpy(au->sourceFunc, sourceFunc, sizeof(au->sourceFunc) - 1); |
| else strcpy (au->sourceFunc, "??"); |
| |
| // The reallocation may cause the address to change, so we should relocate our allocation unit within the hash table |
| |
| unsigned int hashIndex = (unsigned int) -1; |
| if (oldReportedAddress != au->reportedAddress) |
| { |
| // Remove this allocation unit from the hash table |
| |
| { |
| unsigned int hashIndex = ((unsigned int) oldReportedAddress >> 4) & (hashSize - 1); |
| if (hashTable[hashIndex] == au) |
| { |
| hashTable[hashIndex] = hashTable[hashIndex]->next; |
| } |
| else |
| { |
| if (au->prev) au->prev->next = au->next; |
| if (au->next) au->next->prev = au->prev; |
| } |
| } |
| |
| // Re-insert it back into the hash table |
| |
| hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1); |
| if (hashTable[hashIndex]) hashTable[hashIndex]->prev = au; |
| au->next = hashTable[hashIndex]; |
| au->prev = NULL; |
| hashTable[hashIndex] = au; |
| } |
| |
| // Account for the new allocatin unit in our stats |
| |
| stats.totalReportedMemory += au->reportedSize; |
| stats.totalActualMemory += au->actualSize; |
| if (stats.totalReportedMemory > stats.peakReportedMemory) stats.peakReportedMemory = stats.totalReportedMemory; |
| if (stats.totalActualMemory > stats.peakActualMemory) stats.peakActualMemory = stats.totalActualMemory; |
| int deltaReportedSize = reportedSize - originalReportedSize; |
| if (deltaReportedSize > 0) |
| { |
| stats.accumulatedReportedMemory += deltaReportedSize; |
| stats.accumulatedActualMemory += deltaReportedSize; |
| } |
| |
| // Prepare the allocation unit for use (wipe it with recognizable garbage) |
| |
| wipeWithPattern(au, unusedPattern, originalReportedSize); |
| |
| // If you hit this assert, then something went wrong, because the allocation unit was properly validated PRIOR to |
| // the reallocation. This should not happen. |
| m_assert(m_validateAllocUnit(au)); |
| |
| // Validate every single allocated unit in memory |
| |
| if (alwaysValidateAll) m_validateAllAllocUnits(); |
| |
| // Log the result |
| |
| if (alwaysLogAll) log("[~] ----> addr 0x%08X", (unsigned int) au->reportedAddress); |
| |
| // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown |
| // source (i.e. they didn't include our H file) then we won't think it was the last allocation. |
| |
| resetGlobals(); |
| |
| // Return the (reported) address of the new allocation unit |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : m_reallocator()"); |
| #endif |
| |
| return au->reportedAddress; |
| } |
| catch(const char *err) |
| { |
| // Deal with the errors |
| |
| log("[!] %s", err); |
| resetGlobals(); |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : m_reallocator()"); |
| #endif |
| |
| return NULL; |
| } |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // Deallocate memory and track it |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void m_deallocator(const char *sourceFile, const unsigned int sourceLine, const char *sourceFunc, const unsigned int deallocationType, const void *reportedAddress) |
| { |
| try |
| { |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] ENTER: m_deallocator()"); |
| #endif |
| |
| // Log the request |
| |
| if (alwaysLogAll) log("[-] ----- %8s of addr 0x%08X by %s", allocationTypes[deallocationType], (unsigned int) reportedAddress, ownerString(sourceFile, sourceLine, sourceFunc)); |
| |
| // Go get the allocation unit |
| |
| sAllocUnit *au = findAllocUnit(reportedAddress); |
| |
| // If you hit this assert, you tried to deallocate RAM that wasn't allocated by this memory manager. |
| m_assert(au != NULL); |
| if (au == NULL) throw "Request to deallocate RAM that was never allocated"; |
| |
| // If you hit this assert, then the allocation unit that is about to be deallocated is damaged. But you probably |
| // already know that from a previous assert you should have seen in validateAllocUnit() :) |
| m_assert(m_validateAllocUnit(au)); |
| |
| // If you hit this assert, then this deallocation was made from a source that isn't setup to use this memory |
| // tracking software, use the stack frame to locate the source and include our H file. |
| m_assert(deallocationType != m_alloc_unknown); |
| |
| // If you hit this assert, you were trying to deallocate RAM that was not allocated in a way that is compatible with |
| // the deallocation method requested. In other words, you have a allocation/deallocation mismatch. |
| m_assert((deallocationType == m_alloc_delete && au->allocationType == m_alloc_new ) || |
| (deallocationType == m_alloc_delete_array && au->allocationType == m_alloc_new_array) || |
| (deallocationType == m_alloc_free && au->allocationType == m_alloc_malloc ) || |
| (deallocationType == m_alloc_free && au->allocationType == m_alloc_calloc ) || |
| (deallocationType == m_alloc_free && au->allocationType == m_alloc_realloc ) || |
| (deallocationType == m_alloc_unknown ) ); |
| |
| // If you hit this assert, then the "break on dealloc" flag for this allocation unit is set. Interrogate the 'au' |
| // variable to determine information about this allocation unit. |
| m_assert(au->breakOnDealloc == false); |
| |
| // Wipe the deallocated RAM with a new pattern. This doen't actually do us much good in debug mode under WIN32, |
| // because Microsoft's memory debugging & tracking utilities will wipe it right after we do. Oh well. |
| |
| wipeWithPattern(au, releasedPattern); |
| |
| // Do the deallocation |
| |
| free(au->actualAddress); |
| |
| // Remove this allocation unit from the hash table |
| |
| unsigned int hashIndex = ((unsigned int) au->reportedAddress >> 4) & (hashSize - 1); |
| if (hashTable[hashIndex] == au) |
| { |
| hashTable[hashIndex] = au->next; |
| } |
| else |
| { |
| if (au->prev) au->prev->next = au->next; |
| if (au->next) au->next->prev = au->prev; |
| } |
| |
| // Remove this allocation from our stats |
| |
| stats.totalReportedMemory -= au->reportedSize; |
| stats.totalActualMemory -= au->actualSize; |
| stats.totalAllocUnitCount--; |
| |
| // Add this allocation unit to the front of our reservoir of unused allocation units |
| |
| memset(au, 0, sizeof(sAllocUnit)); |
| au->next = reservoir; |
| reservoir = au; |
| |
| // Resetting the globals insures that if at some later time, somebody calls our memory manager from an unknown |
| // source (i.e. they didn't include our H file) then we won't think it was the last allocation. |
| |
| resetGlobals(); |
| |
| // Validate every single allocated unit in memory |
| |
| if (alwaysValidateAll) m_validateAllAllocUnits(); |
| |
| // If we're in the midst of deinitialization time, track any pending memory leaks |
| |
| if (staticDeinitTime) dumpLeakReport(); |
| } |
| catch(const char *err) |
| { |
| // Deal with errors |
| |
| log("[!] %s", err); |
| resetGlobals(); |
| } |
| |
| #ifdef TEST_MEMORY_MANAGER |
| log("[D] EXIT : m_deallocator()"); |
| #endif |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- The following utilitarian allow you to become proactive in tracking your own memory, or help you narrow in on those tough |
| // bugs. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool m_validateAddress(const void *reportedAddress) |
| { |
| // Just see if the address exists in our allocation routines |
| |
| return findAllocUnit(reportedAddress) != NULL; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool m_validateAllocUnit(const sAllocUnit *allocUnit) |
| { |
| // Make sure the padding is untouched |
| |
| long *pre = (long *) allocUnit->actualAddress; |
| long *post = (long *) ((char *)allocUnit->actualAddress + allocUnit->actualSize - paddingSize * sizeof(long)); |
| bool errorFlag = false; |
| for (unsigned int i = 0; i < paddingSize; i++, pre++, post++) |
| { |
| if (*pre != (long) prefixPattern) |
| { |
| log("[!] A memory allocation unit was corrupt because of an underrun:"); |
| m_dumpAllocUnit(allocUnit, " "); |
| errorFlag = true; |
| } |
| |
| // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the |
| // owner?) has underrun the allocation unit (modified a few bytes prior to the start). You can interrogate the |
| // variable 'allocUnit' to see statistics and information about this damaged allocation unit. |
| m_assert(*pre == (long) prefixPattern); |
| |
| if (*post != (long) postfixPattern) |
| { |
| log("[!] A memory allocation unit was corrupt because of an overrun:"); |
| m_dumpAllocUnit(allocUnit, " "); |
| errorFlag = true; |
| } |
| |
| // If you hit this assert, then you should know that this allocation unit has been damaged. Something (possibly the |
| // owner?) has overrun the allocation unit (modified a few bytes after the end). You can interrogate the variable |
| // 'allocUnit' to see statistics and information about this damaged allocation unit. |
| m_assert(*post == (long) postfixPattern); |
| } |
| |
| // Return the error status (we invert it, because a return of 'false' means error) |
| |
| return !errorFlag; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| bool m_validateAllAllocUnits() |
| { |
| // Just go through each allocation unit in the hash table and count the ones that have errors |
| |
| unsigned int errors = 0; |
| unsigned int allocCount = 0; |
| for (unsigned int i = 0; i < hashSize; i++) |
| { |
| sAllocUnit *ptr = hashTable[i]; |
| while(ptr) |
| { |
| allocCount++; |
| if (!m_validateAllocUnit(ptr)) errors++; |
| ptr = ptr->next; |
| } |
| } |
| |
| // Test for hash-table correctness |
| |
| if (allocCount != stats.totalAllocUnitCount) |
| { |
| log("[!] Memory tracking hash table corrupt!"); |
| errors++; |
| } |
| |
| // If you hit this assert, then the internal memory (hash table) used by this memory tracking software is damaged! The |
| // best way to track this down is to use the alwaysLogAll flag in conjunction with STRESS_TEST macro to narrow in on the |
| // offending code. After running the application with these settings (and hitting this assert again), interrogate the |
| // memory.log file to find the previous successful operation. The corruption will have occurred between that point and this |
| // assertion. |
| m_assert(allocCount == stats.totalAllocUnitCount); |
| |
| // If you hit this assert, then you've probably already been notified that there was a problem with a allocation unit in a |
| // prior call to validateAllocUnit(), but this assert is here just to make sure you know about it. :) |
| m_assert(errors == 0); |
| |
| // Log any errors |
| |
| if (errors) log("[!] While validting all allocation units, %d allocation unit(s) were found to have problems", errors); |
| |
| // Return the error status |
| |
| return errors != 0; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- Unused RAM calculation routines. Use these to determine how much of your RAM is unused (in bytes) |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| unsigned int m_calcUnused(const sAllocUnit *allocUnit) |
| { |
| const unsigned long *ptr = (const unsigned long *) allocUnit->reportedAddress; |
| unsigned int count = 0; |
| |
| for (unsigned int i = 0; i < allocUnit->reportedSize; i += sizeof(long), ptr++) |
| { |
| if (*ptr == unusedPattern) count += sizeof(long); |
| } |
| |
| return count; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| unsigned int m_calcAllUnused() |
| { |
| // Just go through each allocation unit in the hash table and count the unused RAM |
| |
| unsigned int total = 0; |
| for (unsigned int i = 0; i < hashSize; i++) |
| { |
| sAllocUnit *ptr = hashTable[i]; |
| while(ptr) |
| { |
| total += m_calcUnused(ptr); |
| ptr = ptr->next; |
| } |
| } |
| |
| return total; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // -DOC- The following functions are for logging and statistics reporting. |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void m_dumpAllocUnit(const sAllocUnit *allocUnit, const char *prefix) |
| { |
| log("[I] %sAddress (reported): %010p", prefix, allocUnit->reportedAddress); |
| log("[I] %sAddress (actual) : %010p", prefix, allocUnit->actualAddress); |
| log("[I] %sSize (reported) : 0x%08X (%s)", prefix, allocUnit->reportedSize, memorySizeString(allocUnit->reportedSize)); |
| log("[I] %sSize (actual) : 0x%08X (%s)", prefix, allocUnit->actualSize, memorySizeString(allocUnit->actualSize)); |
| log("[I] %sOwner : %s(%d)::%s", prefix, allocUnit->sourceFile, allocUnit->sourceLine, allocUnit->sourceFunc); |
| log("[I] %sAllocation type : %s", prefix, allocationTypes[allocUnit->allocationType]); |
| log("[I] %sAllocation number : %d", prefix, allocUnit->allocationNumber); |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| void m_dumpMemoryReport(const char *filename, const bool overwrite) |
| { |
| // Open the report file |
| |
| FILE *fp = NULL; |
| |
| if (overwrite) fp = fopen(filename, "w+b"); |
| else fp = fopen(filename, "ab"); |
| |
| // If you hit this assert, then the memory report generator is unable to log information to a file (can't open the file for |
| // some reason.) |
| m_assert(fp); |
| if (!fp) return; |
| |
| // Header |
| |
| char timeString[25]; |
| memset(timeString, 0, sizeof(timeString)); |
| time_t t = time(NULL); |
| struct tm *tme = localtime(&t); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| Memory report for: %02d/%02d/%04d %02d:%02d:%02d |\r\n", tme->tm_mon + 1, tme->tm_mday, tme->tm_year + 1900, tme->tm_hour, tme->tm_min, tme->tm_sec); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "\r\n"); |
| fprintf(fp, "\r\n"); |
| |
| // Report summary |
| |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| T O T A L S |\r\n"); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.totalAllocUnitCount)); |
| fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.totalReportedMemory)); |
| fprintf(fp, " Actual total memory in use: %s\r\n", memorySizeString(stats.totalActualMemory)); |
| fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.totalActualMemory - stats.totalReportedMemory)); |
| fprintf(fp, "\r\n"); |
| |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| P E A K S |\r\n"); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, " Allocation unit count: %10s\r\n", insertCommas(stats.peakAllocUnitCount)); |
| fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.peakReportedMemory)); |
| fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.peakActualMemory)); |
| fprintf(fp, " Memory tracking overhead: %s\r\n", memorySizeString(stats.peakActualMemory - stats.peakReportedMemory)); |
| fprintf(fp, "\r\n"); |
| |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| A C C U M U L A T E D |\r\n"); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, " Allocation unit count: %s\r\n", memorySizeString(stats.accumulatedAllocUnitCount)); |
| fprintf(fp, " Reported to application: %s\r\n", memorySizeString(stats.accumulatedReportedMemory)); |
| fprintf(fp, " Actual: %s\r\n", memorySizeString(stats.accumulatedActualMemory)); |
| fprintf(fp, "\r\n"); |
| |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, "| U N U S E D |\r\n"); |
| fprintf(fp, " ---------------------------------------------------------------------------------------------------------------------------------- \r\n"); |
| fprintf(fp, " Memory allocated but not in use: %s\r\n", memorySizeString(m_calcAllUnused())); |
| fprintf(fp, "\r\n"); |
| |
| dumpAllocations(fp); |
| |
| fclose(fp); |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| |
| sMStats m_getMemoryStatistics() |
| { |
| return stats; |
| } |
| |
| // --------------------------------------------------------------------------------------------------------------------------------- |
| // mmgr.cpp - End of file |
| // --------------------------------------------------------------------------------------------------------------------------------- |