blob: 0ccb3a673c68a07a0535d052ba9e93ec9322377b [file] [log] [blame]
/* Portions of this file are subject to the following copyright(s). See
* the Net-SNMP's COPYING file for more details and other copyrights
* that may apply:
*/
/*
* Portions of this file are copyrighted by:
* Copyright © 2003 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms specified in the COPYING file
* distributed with the Net-SNMP package.
*/
/*
* keytools.c
*/
#include <net-snmp/net-snmp-config.h>
#include <net-snmp/net-snmp-features.h>
#include <stdio.h>
#include <sys/types.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if HAVE_STRING_H
#include <string.h>
#else
#include <strings.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_DMALLOC_H
#include <dmalloc.h>
#endif
#include <net-snmp/types.h>
#include <net-snmp/output_api.h>
#include <net-snmp/utilities.h>
#include <net-snmp/library/snmp_api.h>
#ifdef NETSNMP_USE_OPENSSL
# include <openssl/hmac.h>
#else
#ifdef NETSNMP_USE_INTERNAL_MD5
#include <net-snmp/library/md5.h>
#endif
#endif
#ifdef NETSNMP_USE_INTERNAL_CRYPTO
#include <net-snmp/library/openssl_md5.h>
#include <net-snmp/library/openssl_sha.h>
#endif
#ifdef NETSNMP_USE_PKCS11
#include <security/cryptoki.h>
#endif
#include <net-snmp/library/scapi.h>
#include <net-snmp/library/keytools.h>
#include <net-snmp/library/transform_oids.h>
netsnmp_feature_child_of(usm_support, libnetsnmp)
netsnmp_feature_child_of(usm_keytools, usm_support)
#ifndef NETSNMP_FEATURE_REMOVE_USM_KEYTOOLS
/*******************************************************************-o-******
* generate_Ku
*
* Parameters:
* *hashtype MIB OID for the transform type for hashing.
* hashtype_len Length of OID value.
* *P Pre-allocated bytes of passpharase.
* pplen Length of passphrase.
* *Ku Buffer to contain Ku.
* *kulen Length of Ku buffer.
*
* Returns:
* SNMPERR_SUCCESS Success.
* SNMPERR_GENERR All errors.
*
*
* Convert a passphrase into a master user key, Ku, according to the
* algorithm given in RFC 2274 concerning the SNMPv3 User Security Model (USM)
* as follows:
*
* Expand the passphrase to fill the passphrase buffer space, if necessary,
* concatenation as many duplicates as possible of P to itself. If P is
* larger than the buffer space, truncate it to fit.
*
* Then hash the result with the given hashtype transform. Return
* the result as Ku.
*
* If successful, kulen contains the size of the hash written to Ku.
*
* NOTE Passphrases less than USM_LENGTH_P_MIN characters in length
* cause an error to be returned.
* (Punt this check to the cmdline apps? XXX)
*/
int
generate_Ku(const oid * hashtype, u_int hashtype_len,
const u_char * P, size_t pplen, u_char * Ku, size_t * kulen)
#if defined(NETSNMP_USE_INTERNAL_MD5) || defined(NETSNMP_USE_OPENSSL) || defined(NETSNMP_USE_INTERNAL_CRYPTO)
{
int rval = SNMPERR_SUCCESS,
nbytes = USM_LENGTH_EXPANDED_PASSPHRASE;
#if !defined(NETSNMP_USE_OPENSSL) && \
defined(NETSNMP_USE_INTERNAL_MD5) || defined(NETSNMP_USE_INTERNAL_CRYPTO)
int ret;
#endif
u_int i, pindex = 0;
u_char buf[USM_LENGTH_KU_HASHBLOCK], *bufp;
#ifdef NETSNMP_USE_OPENSSL
EVP_MD_CTX *ctx = NULL;
#elif NETSNMP_USE_INTERNAL_CRYPTO
SHA_CTX csha1;
MD5_CTX cmd5;
char cryptotype = 0;
#define TYPE_MD5 1
#define TYPE_SHA1 2
#else
MDstruct MD;
#endif
/*
* Sanity check.
*/
if (!hashtype || !P || !Ku || !kulen || (*kulen <= 0)
|| (hashtype_len != USM_LENGTH_OID_TRANSFORM)) {
QUITFUN(SNMPERR_GENERR, generate_Ku_quit);
}
if (pplen < USM_LENGTH_P_MIN) {
snmp_log(LOG_ERR, "Error: passphrase chosen is below the length "
"requirements of the USM (min=%d).\n",USM_LENGTH_P_MIN);
snmp_set_detail("The supplied password length is too short.");
QUITFUN(SNMPERR_GENERR, generate_Ku_quit);
}
/*
* Setup for the transform type.
*/
#ifdef NETSNMP_USE_OPENSSL
#ifdef HAVE_EVP_MD_CTX_CREATE
ctx = EVP_MD_CTX_create();
#else
ctx = malloc(sizeof(*ctx));
if (!EVP_MD_CTX_init(ctx))
return SNMPERR_GENERR;
#endif
#ifndef NETSNMP_DISABLE_MD5
if (ISTRANSFORM(hashtype, HMACMD5Auth)) {
if (!EVP_DigestInit(ctx, EVP_md5()))
return SNMPERR_GENERR;
} else
#endif
if (ISTRANSFORM(hashtype, HMACSHA1Auth)) {
if (!EVP_DigestInit(ctx, EVP_sha1()))
return SNMPERR_GENERR;
} else
QUITFUN(SNMPERR_GENERR, generate_Ku_quit);
#elif NETSNMP_USE_INTERNAL_CRYPTO
#ifndef NETSNMP_DISABLE_MD5
if (ISTRANSFORM(hashtype, HMACMD5Auth)) {
if (!MD5_Init(&cmd5))
return SNMPERR_GENERR;
cryptotype = TYPE_MD5;
} else
#endif
if (ISTRANSFORM(hashtype, HMACSHA1Auth)) {
if (!SHA1_Init(&csha1))
return SNMPERR_GENERR;
cryptotype = TYPE_SHA1;
} else {
return (SNMPERR_GENERR);
}
#else
MDbegin(&MD);
#endif /* NETSNMP_USE_OPENSSL */
while (nbytes > 0) {
bufp = buf;
for (i = 0; i < USM_LENGTH_KU_HASHBLOCK; i++) {
*bufp++ = P[pindex++ % pplen];
}
#ifdef NETSNMP_USE_OPENSSL
EVP_DigestUpdate(ctx, buf, USM_LENGTH_KU_HASHBLOCK);
#elif NETSNMP_USE_INTERNAL_CRYPTO
if (TYPE_SHA1 == cryptotype) {
rval = !SHA1_Update(&csha1, buf, USM_LENGTH_KU_HASHBLOCK);
} else {
rval = !MD5_Update(&cmd5, buf, USM_LENGTH_KU_HASHBLOCK);
}
if (rval != 0) {
return SNMPERR_USM_ENCRYPTIONERROR;
}
#elif NETSNMP_USE_INTERNAL_MD5
if (MDupdate(&MD, buf, USM_LENGTH_KU_HASHBLOCK * 8)) {
rval = SNMPERR_USM_ENCRYPTIONERROR;
goto md5_fin;
}
#endif /* NETSNMP_USE_OPENSSL */
nbytes -= USM_LENGTH_KU_HASHBLOCK;
}
#ifdef NETSNMP_USE_OPENSSL
{
unsigned int tmp_len;
tmp_len = *kulen;
EVP_DigestFinal(ctx, (unsigned char *) Ku, &tmp_len);
*kulen = tmp_len;
/*
* what about free()
*/
}
#elif NETSNMP_USE_INTERNAL_CRYPTO
if (TYPE_SHA1 == cryptotype) {
SHA1_Final(Ku, &csha1);
} else {
MD5_Final(Ku, &cmd5);
}
ret = sc_get_properlength(hashtype, hashtype_len);
if (ret == SNMPERR_GENERR)
return SNMPERR_GENERR;
*kulen = ret;
#elif NETSNMP_USE_INTERNAL_MD5
if (MDupdate(&MD, buf, 0)) {
rval = SNMPERR_USM_ENCRYPTIONERROR;
goto md5_fin;
}
ret = sc_get_properlength(hashtype, hashtype_len);
if (ret == SNMPERR_GENERR)
return SNMPERR_GENERR;
*kulen = ret;
MDget(&MD, Ku, *kulen);
md5_fin:
memset(&MD, 0, sizeof(MD));
#endif /* NETSNMP_USE_INTERNAL_MD5 */
#ifdef NETSNMP_ENABLE_TESTING_CODE
DEBUGMSGTL(("generate_Ku", "generating Ku (from %s): ", P));
for (i = 0; i < *kulen; i++)
DEBUGMSG(("generate_Ku", "%02x", Ku[i]));
DEBUGMSG(("generate_Ku", "\n"));
#endif /* NETSNMP_ENABLE_TESTING_CODE */
generate_Ku_quit:
memset(buf, 0, sizeof(buf));
#ifdef NETSNMP_USE_OPENSSL
if (ctx) {
#ifdef HAVE_EVP_MD_CTX_DESTROY
EVP_MD_CTX_destroy(ctx);
#else
EVP_MD_CTX_cleanup(ctx);
free(ctx);
#endif
}
#endif
return rval;
} /* end generate_Ku() */
#elif NETSNMP_USE_PKCS11
{
int rval = SNMPERR_SUCCESS;
/*
* Sanity check.
*/
if (!hashtype || !P || !Ku || !kulen || (*kulen <= 0)
|| (hashtype_len != USM_LENGTH_OID_TRANSFORM)) {
QUITFUN(SNMPERR_GENERR, generate_Ku_quit);
}
if (pplen < USM_LENGTH_P_MIN) {
snmp_log(LOG_ERR, "Error: passphrase chosen is below the length "
"requirements of the USM (min=%d).\n",USM_LENGTH_P_MIN);
snmp_set_detail("The supplied password length is too short.");
QUITFUN(SNMPERR_GENERR, generate_Ku_quit);
}
/*
* Setup for the transform type.
*/
#ifndef NETSNMP_DISABLE_MD5
if (ISTRANSFORM(hashtype, HMACMD5Auth))
return pkcs_generate_Ku(CKM_MD5, P, pplen, Ku, kulen);
else
#endif
if (ISTRANSFORM(hashtype, HMACSHA1Auth))
return pkcs_generate_Ku(CKM_SHA_1, P, pplen, Ku, kulen);
else {
return (SNMPERR_GENERR);
}
generate_Ku_quit:
return rval;
} /* end generate_Ku() */
#else
_KEYTOOLS_NOT_AVAILABLE
#endif /* internal or openssl */
/*******************************************************************-o-******
* generate_kul
*
* Parameters:
* *hashtype
* hashtype_len
* *engineID
* engineID_len
* *Ku Master key for a given user.
* ku_len Length of Ku in bytes.
* *Kul Localized key for a given user at engineID.
* *kul_len Length of Kul buffer (IN); Length of Kul key (OUT).
*
* Returns:
* SNMPERR_SUCCESS Success.
* SNMPERR_GENERR All errors.
*
*
* Ku MUST be the proper length (currently fixed) for the given hashtype.
*
* Upon successful return, Kul contains the localized form of Ku at
* engineID, and the length of the key is stored in kul_len.
*
* The localized key method is defined in RFC2274, Sections 2.6 and A.2, and
* originally documented in:
* U. Blumenthal, N. C. Hien, B. Wijnen,
* "Key Derivation for Network Management Applications",
* IEEE Network Magazine, April/May issue, 1997.
*
*
* ASSUMES SNMP_MAXBUF >= sizeof(Ku + engineID + Ku).
*
* NOTE Localized keys for privacy transforms are generated via
* the authentication transform held by the same usmUser.
*
* XXX An engineID of any length is accepted, even if larger than
* what is spec'ed for the textual convention.
*/
int
generate_kul(const oid * hashtype, u_int hashtype_len,
const u_char * engineID, size_t engineID_len,
const u_char * Ku, size_t ku_len,
u_char * Kul, size_t * kul_len)
#if defined(NETSNMP_USE_OPENSSL) || defined(NETSNMP_USE_INTERNAL_MD5) || defined(NETSNMP_USE_PKCS11) || defined(NETSNMP_USE_INTERNAL_CRYPTO)
{
int rval = SNMPERR_SUCCESS;
u_int nbytes = 0;
size_t properlength;
int iproperlength;
u_char buf[SNMP_MAXBUF];
#ifdef NETSNMP_ENABLE_TESTING_CODE
int i;
#endif
/*
* Sanity check.
*/
if (!hashtype || !engineID || !Ku || !Kul || !kul_len
|| (engineID_len <= 0) || (ku_len <= 0) || (*kul_len <= 0)
|| (hashtype_len != USM_LENGTH_OID_TRANSFORM)) {
QUITFUN(SNMPERR_GENERR, generate_kul_quit);
}
iproperlength = sc_get_properlength(hashtype, hashtype_len);
if (iproperlength == SNMPERR_GENERR)
QUITFUN(SNMPERR_GENERR, generate_kul_quit);
properlength = (size_t) iproperlength;
if ((*kul_len < properlength) || (ku_len < properlength)) {
QUITFUN(SNMPERR_GENERR, generate_kul_quit);
}
/*
* Concatenate Ku and engineID properly, then hash the result.
* Store it in Kul.
*/
nbytes = 0;
memcpy(buf, Ku, properlength);
nbytes += properlength;
memcpy(buf + nbytes, engineID, engineID_len);
nbytes += engineID_len;
memcpy(buf + nbytes, Ku, properlength);
nbytes += properlength;
rval = sc_hash(hashtype, hashtype_len, buf, nbytes, Kul, kul_len);
#ifdef NETSNMP_ENABLE_TESTING_CODE
DEBUGMSGTL(("generate_kul", "generating Kul (from Ku): "));
for (i = 0; i < *kul_len; i++)
DEBUGMSG(("generate_kul", "%02x", Kul[i]));
DEBUGMSG(("generate_kul", "keytools\n"));
#endif /* NETSNMP_ENABLE_TESTING_CODE */
QUITFUN(rval, generate_kul_quit);
generate_kul_quit:
return rval;
} /* end generate_kul() */
#else
_KEYTOOLS_NOT_AVAILABLE
#endif /* internal or openssl */
/*******************************************************************-o-******
* encode_keychange
*
* Parameters:
* *hashtype MIB OID for the hash transform type.
* hashtype_len Length of the MIB OID hash transform type.
* *oldkey Old key that is used to encodes the new key.
* oldkey_len Length of oldkey in bytes.
* *newkey New key that is encoded using the old key.
* newkey_len Length of new key in bytes.
* *kcstring Buffer to contain the KeyChange TC string.
* *kcstring_len Length of kcstring buffer.
*
* Returns:
* SNMPERR_SUCCESS Success.
* SNMPERR_GENERR All errors.
*
*
* Uses oldkey and acquired random bytes to encode newkey into kcstring
* according to the rules of the KeyChange TC described in RFC 2274, Section 5.
*
* Upon successful return, *kcstring_len contains the length of the
* encoded string.
*
* ASSUMES Old and new key are always equal to each other, although
* this may be less than the transform type hash output
* output length (eg, using KeyChange for a DESPriv key when
* the user also uses SHA1Auth). This also implies that the
* hash placed in the second 1/2 of the key change string
* will be truncated before the XOR'ing when the hash output is
* larger than that 1/2 of the key change string.
*
* *kcstring_len will be returned as exactly twice that same
* length though the input buffer may be larger.
*
* XXX FIX: Does not handle varibable length keys.
* XXX FIX: Does not handle keys larger than the hash algorithm used.
*/
int
encode_keychange(const oid * hashtype, u_int hashtype_len,
u_char * oldkey, size_t oldkey_len,
u_char * newkey, size_t newkey_len,
u_char * kcstring, size_t * kcstring_len)
#if defined(NETSNMP_USE_OPENSSL) || defined(NETSNMP_USE_INTERNAL_MD5) || defined(NETSNMP_USE_PKCS11) || defined(NETSNMP_USE_INTERNAL_CRYPTO)
{
int rval = SNMPERR_SUCCESS;
int iproperlength;
size_t properlength;
size_t nbytes = 0;
u_char *tmpbuf = NULL;
/*
* Sanity check.
*/
if (!kcstring || !kcstring_len)
return SNMPERR_GENERR;
if (!hashtype || !oldkey || !newkey || !kcstring || !kcstring_len
|| (oldkey_len <= 0) || (newkey_len <= 0) || (*kcstring_len <= 0)
|| (hashtype_len != USM_LENGTH_OID_TRANSFORM)) {
QUITFUN(SNMPERR_GENERR, encode_keychange_quit);
}
/*
* Setup for the transform type.
*/
iproperlength = sc_get_properlength(hashtype, hashtype_len);
if (iproperlength == SNMPERR_GENERR)
QUITFUN(SNMPERR_GENERR, encode_keychange_quit);
if ((oldkey_len != newkey_len) || (*kcstring_len < (2 * oldkey_len))) {
QUITFUN(SNMPERR_GENERR, encode_keychange_quit);
}
properlength = SNMP_MIN(oldkey_len, (size_t)iproperlength);
/*
* Use the old key and some random bytes to encode the new key
* in the KeyChange TC format:
* . Get random bytes (store in first half of kcstring),
* . Hash (oldkey | random_bytes) (into second half of kcstring),
* . XOR hash and newkey (into second half of kcstring).
*
* Getting the wrong number of random bytes is considered an error.
*/
nbytes = properlength;
#if defined(NETSNMP_ENABLE_TESTING_CODE) && defined(RANDOMZEROS)
memset(kcstring, 0, nbytes);
DEBUGMSG(("encode_keychange",
"** Using all zero bits for \"random\" delta of )"
"the keychange string! **\n"));
#else /* !NETSNMP_ENABLE_TESTING_CODE */
rval = sc_random(kcstring, &nbytes);
QUITFUN(rval, encode_keychange_quit);
if (nbytes != properlength) {
QUITFUN(SNMPERR_GENERR, encode_keychange_quit);
}
#endif /* !NETSNMP_ENABLE_TESTING_CODE */
tmpbuf = (u_char *) malloc(properlength * 2);
if (tmpbuf) {
memcpy(tmpbuf, oldkey, properlength);
memcpy(tmpbuf + properlength, kcstring, properlength);
*kcstring_len -= properlength;
rval = sc_hash(hashtype, hashtype_len, tmpbuf, properlength * 2,
kcstring + properlength, kcstring_len);
QUITFUN(rval, encode_keychange_quit);
*kcstring_len = (properlength * 2);
kcstring += properlength;
nbytes = 0;
while ((nbytes++) < properlength) {
*kcstring++ ^= *newkey++;
}
}
encode_keychange_quit:
if (rval != SNMPERR_SUCCESS)
memset(kcstring, 0, *kcstring_len);
SNMP_FREE(tmpbuf);
return rval;
} /* end encode_keychange() */
#else
_KEYTOOLS_NOT_AVAILABLE
#endif /* internal or openssl */
/*******************************************************************-o-******
* decode_keychange
*
* Parameters:
* *hashtype MIB OID of the hash transform to use.
* hashtype_len Length of the hash transform MIB OID.
* *oldkey Old key that is used to encode the new key.
* oldkey_len Length of oldkey in bytes.
* *kcstring Encoded KeyString buffer containing the new key.
* kcstring_len Length of kcstring in bytes.
* *newkey Buffer to hold the extracted new key.
* *newkey_len Length of newkey in bytes.
*
* Returns:
* SNMPERR_SUCCESS Success.
* SNMPERR_GENERR All errors.
*
*
* Decodes a string of bits encoded according to the KeyChange TC described
* in RFC 2274, Section 5. The new key is extracted from *kcstring with
* the aid of the old key.
*
* Upon successful return, *newkey_len contains the length of the new key.
*
*
* ASSUMES Old key is exactly 1/2 the length of the KeyChange buffer,
* although this length may be less than the hash transform
* output. Thus the new key length will be equal to the old
* key length.
*/
/*
* XXX: if the newkey is not long enough, it should be freed and remalloced
*/
int
decode_keychange(const oid * hashtype, u_int hashtype_len,
u_char * oldkey, size_t oldkey_len,
u_char * kcstring, size_t kcstring_len,
u_char * newkey, size_t * newkey_len)
#if defined(NETSNMP_USE_OPENSSL) || defined(NETSNMP_USE_INTERNAL_MD5) || defined(NETSNMP_USE_PKCS11) || defined(NETSNMP_USE_INTERNAL_CRYPTO)
{
int rval = SNMPERR_SUCCESS;
size_t properlength = 0;
int iproperlength = 0;
u_int nbytes = 0;
u_char *bufp, tmp_buf[SNMP_MAXBUF];
size_t tmp_buf_len = SNMP_MAXBUF;
u_char *tmpbuf = NULL;
/*
* Sanity check.
*/
if (!hashtype || !oldkey || !kcstring || !newkey || !newkey_len
|| (oldkey_len <= 0) || (kcstring_len <= 0) || (*newkey_len <= 0)
|| (hashtype_len != USM_LENGTH_OID_TRANSFORM)) {
QUITFUN(SNMPERR_GENERR, decode_keychange_quit);
}
/*
* Setup for the transform type.
*/
iproperlength = sc_get_properlength(hashtype, hashtype_len);
if (iproperlength == SNMPERR_GENERR)
QUITFUN(SNMPERR_GENERR, decode_keychange_quit);
properlength = (size_t) iproperlength;
if (((oldkey_len * 2) != kcstring_len) || (*newkey_len < oldkey_len)) {
QUITFUN(SNMPERR_GENERR, decode_keychange_quit);
}
properlength = oldkey_len;
*newkey_len = properlength;
/*
* Use the old key and the given KeyChange TC string to recover
* the new key:
* . Hash (oldkey | random_bytes) (into newkey),
* . XOR hash and encoded (second) half of kcstring (into newkey).
*/
tmpbuf = (u_char *) malloc(properlength * 2);
if (tmpbuf) {
memcpy(tmpbuf, oldkey, properlength);
memcpy(tmpbuf + properlength, kcstring, properlength);
rval = sc_hash(hashtype, hashtype_len, tmpbuf, properlength * 2,
tmp_buf, &tmp_buf_len);
QUITFUN(rval, decode_keychange_quit);
memcpy(newkey, tmp_buf, properlength);
bufp = kcstring + properlength;
nbytes = 0;
while ((nbytes++) < properlength) {
*newkey++ ^= *bufp++;
}
}
decode_keychange_quit:
if (rval != SNMPERR_SUCCESS) {
if (newkey)
memset(newkey, 0, properlength);
}
memset(tmp_buf, 0, SNMP_MAXBUF);
SNMP_FREE(tmpbuf);
return rval;
} /* end decode_keychange() */
#else
_KEYTOOLS_NOT_AVAILABLE
#endif /* internal or openssl */
#endif /* NETSNMP_FEATURE_REMOVE_USM_KEYTOOLS */