blob: 9cdacdfae8bbfd2c7982228b62069060fdbab8fa [file] [log] [blame]
/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(_MSC_VER) && _MSC_VER < 1300
#pragma warning(disable:4786)
#endif
#include <cassert>
#ifdef POSIX
extern "C" {
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/time.h>
#include <unistd.h>
}
#endif
#ifdef WIN32
#include <winsock2.h>
#include <ws2tcpip.h>
#define _WINSOCKAPI_
#include <windows.h>
#undef SetPort
#endif
#include <algorithm>
#include <iostream>
#include "talk/base/basictypes.h"
#include "talk/base/byteorder.h"
#include "talk/base/common.h"
#include "talk/base/logging.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/time.h"
#include "talk/base/winping.h"
#ifdef __linux
#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
#endif // __linux
#ifdef WIN32
class WinsockInitializer {
public:
WinsockInitializer() {
WSADATA wsaData;
WORD wVersionRequested = MAKEWORD(1, 0);
err_ = WSAStartup(wVersionRequested, &wsaData);
}
~WinsockInitializer() {
WSACleanup();
}
int error() {
return err_;
}
private:
int err_;
};
WinsockInitializer g_winsockinit;
#endif
namespace talk_base {
const int kfRead = 0x0001;
const int kfWrite = 0x0002;
const int kfConnect = 0x0004;
const int kfClose = 0x0008;
// Standard MTUs
const uint16 PACKET_MAXIMUMS[] = {
65535, // Theoretical maximum, Hyperchannel
32000, // Nothing
17914, // 16Mb IBM Token Ring
8166, // IEEE 802.4
//4464, // IEEE 802.5 (4Mb max)
4352, // FDDI
//2048, // Wideband Network
2002, // IEEE 802.5 (4Mb recommended)
//1536, // Expermental Ethernet Networks
//1500, // Ethernet, Point-to-Point (default)
1492, // IEEE 802.3
1006, // SLIP, ARPANET
//576, // X.25 Networks
//544, // DEC IP Portal
//512, // NETBIOS
508, // IEEE 802/Source-Rt Bridge, ARCNET
296, // Point-to-Point (low delay)
68, // Official minimum
0, // End of list marker
};
const uint32 IP_HEADER_SIZE = 20;
const uint32 ICMP_HEADER_SIZE = 8;
class PhysicalSocket : public AsyncSocket {
public:
PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
: ss_(ss), s_(s), enabled_events_(0), error_(0),
state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED) {
if (s != INVALID_SOCKET)
enabled_events_ = kfRead | kfWrite;
}
virtual ~PhysicalSocket() {
Close();
}
// Creates the underlying OS socket (same as the "socket" function).
virtual bool Create(int type) {
Close();
s_ = ::socket(AF_INET, type, 0);
UpdateLastError();
if (type != SOCK_STREAM)
enabled_events_ = kfRead | kfWrite;
return s_ != INVALID_SOCKET;
}
SocketAddress GetLocalAddress() const {
sockaddr_in addr;
socklen_t addrlen = sizeof(addr);
int result = ::getsockname(s_, (sockaddr*)&addr, &addrlen);
ASSERT(addrlen == sizeof(addr));
talk_base::SocketAddress address;
if (result >= 0) {
address.FromSockAddr(addr);
} else {
ASSERT(result >= 0);
}
return address;
}
SocketAddress GetRemoteAddress() const {
sockaddr_in addr;
socklen_t addrlen = sizeof(addr);
int result = ::getpeername(s_, (sockaddr*)&addr, &addrlen);
ASSERT(addrlen == sizeof(addr));
talk_base::SocketAddress address;
if (result >= 0) {
address.FromSockAddr(addr);
} else {
ASSERT(errno == ENOTCONN);
}
return address;
}
int Bind(const SocketAddress& addr) {
sockaddr_in saddr;
addr.ToSockAddr(&saddr);
int err = ::bind(s_, (sockaddr*)&saddr, sizeof(saddr));
UpdateLastError();
return err;
}
int Connect(const SocketAddress& addr) {
// TODO: Implicit creation is required to reconnect...
// ...but should we make it more explicit?
if ((s_ == INVALID_SOCKET) && !Create(SOCK_STREAM))
return SOCKET_ERROR;
SocketAddress addr2(addr);
if (addr2.IsUnresolved()) {
LOG(INFO) << "Resolving addr in PhysicalSocket::Connect";
addr2.Resolve(); // TODO: Do this async later?
}
sockaddr_in saddr;
addr2.ToSockAddr(&saddr);
int err = ::connect(s_, (sockaddr*)&saddr, sizeof(saddr));
UpdateLastError();
//LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Connect(" << addr2.ToString() << ") Ret: " << err << " Error: " << error_;
if (err == 0) {
state_ = CS_CONNECTED;
} else if (IsBlockingError(error_)) {
state_ = CS_CONNECTING;
enabled_events_ |= kfConnect;
}
enabled_events_ |= kfRead | kfWrite;
return err;
}
int GetError() const {
return error_;
}
void SetError(int error) {
error_ = error;
}
ConnState GetState() const {
return state_;
}
int SetOption(Option opt, int value) {
assert(opt == OPT_DONTFRAGMENT);
#ifdef WIN32
value = (value == 0) ? 0 : 1;
return ::setsockopt(
s_, IPPROTO_IP, IP_DONTFRAGMENT, reinterpret_cast<char*>(&value),
sizeof(value));
#endif
#ifdef __linux
value = (value == 0) ? IP_PMTUDISC_DONT : IP_PMTUDISC_DO;
return ::setsockopt(
s_, IPPROTO_IP, IP_MTU_DISCOVER, &value, sizeof(value));
#endif
#ifdef OSX
// This is not possible on OSX.
return -1;
#endif
}
int Send(const void *pv, size_t cb) {
int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb, 0);
UpdateLastError();
//LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Send(" << cb << ") Ret: " << sent << " Error: " << error_;
ASSERT(sent <= static_cast<int>(cb)); // We have seen minidumps where this may be false
if ((sent < 0) && IsBlockingError(error_)) {
enabled_events_ |= kfWrite;
}
return sent;
}
int SendTo(const void *pv, size_t cb, const SocketAddress& addr) {
sockaddr_in saddr;
addr.ToSockAddr(&saddr);
int sent = ::sendto(
s_, (const char *)pv, (int)cb, 0, (sockaddr*)&saddr,
sizeof(saddr));
UpdateLastError();
ASSERT(sent <= static_cast<int>(cb)); // We have seen minidumps where this may be false
if ((sent < 0) && IsBlockingError(error_)) {
enabled_events_ |= kfWrite;
}
return sent;
}
int Recv(void *pv, size_t cb) {
int received = ::recv(s_, (char *)pv, (int)cb, 0);
if ((received == 0) && (cb != 0)) {
// Note: on graceful shutdown, recv can return 0. In this case, we
// pretend it is blocking, and then signal close, so that simplifying
// assumptions can be made about Recv.
error_ = EWOULDBLOCK;
return SOCKET_ERROR;
}
UpdateLastError();
if ((received >= 0) || IsBlockingError(error_)) {
enabled_events_ |= kfRead;
}
return received;
}
int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) {
sockaddr_in saddr;
socklen_t cbAddr = sizeof(saddr);
int received = ::recvfrom(s_, (char *)pv, (int)cb, 0, (sockaddr*)&saddr,
&cbAddr);
UpdateLastError();
if ((received >= 0) && (paddr != NULL))
paddr->FromSockAddr(saddr);
if ((received >= 0) || IsBlockingError(error_)) {
enabled_events_ |= kfRead;
}
return received;
}
int Listen(int backlog) {
int err = ::listen(s_, backlog);
UpdateLastError();
if (err == 0)
state_ = CS_CONNECTING;
enabled_events_ |= kfRead;
return err;
}
Socket* Accept(SocketAddress *paddr) {
sockaddr_in saddr;
socklen_t cbAddr = sizeof(saddr);
SOCKET s = ::accept(s_, (sockaddr*)&saddr, &cbAddr);
UpdateLastError();
if (s == INVALID_SOCKET)
return NULL;
if (paddr != NULL)
paddr->FromSockAddr(saddr);
enabled_events_ |= kfRead | kfWrite;
return ss_->WrapSocket(s);
}
int Close() {
if (s_ == INVALID_SOCKET)
return 0;
int err = ::closesocket(s_);
UpdateLastError();
//LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] Close() Ret: " << err << " Error: " << error_;
s_ = INVALID_SOCKET;
state_ = CS_CLOSED;
enabled_events_ = 0;
return err;
}
int EstimateMTU(uint16* mtu) {
SocketAddress addr = GetRemoteAddress();
if (addr.IsAny()) {
error_ = ENOTCONN;
return -1;
}
#ifdef WIN32
WinPing ping;
if (!ping.IsValid()) {
error_ = EINVAL; // can't think of a better error ID
return -1;
}
for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
int32 size = PACKET_MAXIMUMS[level] - IP_HEADER_SIZE - ICMP_HEADER_SIZE;
WinPing::PingResult result = ping.Ping(addr.ip(), size, 0, 1, false);
if (result == WinPing::PING_FAIL) {
error_ = EINVAL; // can't think of a better error ID
return -1;
}
if (result != WinPing::PING_TOO_LARGE) {
*mtu = PACKET_MAXIMUMS[level];
return 0;
}
}
assert(false);
return 0;
#endif // WIN32
#ifdef __linux
int value;
socklen_t vlen = sizeof(value);
int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
if (err < 0) {
UpdateLastError();
return err;
}
assert((0 <= value) && (value <= 65536));
*mtu = uint16(value);
return 0;
#endif // __linux
// TODO: OSX support
}
SocketServer* socketserver() { return ss_; }
protected:
PhysicalSocketServer* ss_;
SOCKET s_;
uint32 enabled_events_;
int error_;
ConnState state_;
void UpdateLastError() {
#ifdef WIN32
error_ = WSAGetLastError();
#endif
#ifdef POSIX
error_ = errno;
#endif
}
};
#ifdef POSIX
class Dispatcher {
public:
virtual uint32 GetRequestedEvents() = 0;
virtual void OnPreEvent(uint32 ff) = 0;
virtual void OnEvent(uint32 ff, int err) = 0;
virtual int GetDescriptor() = 0;
};
class EventDispatcher : public Dispatcher {
public:
EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
if (pipe(afd_) < 0)
LOG(LERROR) << "pipe failed";
ss_->Add(this);
}
virtual ~EventDispatcher() {
ss_->Remove(this);
close(afd_[0]);
close(afd_[1]);
}
virtual void Signal() {
CritScope cs(&crit_);
if (!fSignaled_) {
uint8 b = 0;
if (write(afd_[1], &b, sizeof(b)) < 0)
LOG(LERROR) << "write failed";
fSignaled_ = true;
}
}
virtual uint32 GetRequestedEvents() {
return kfRead;
}
virtual void OnPreEvent(uint32 ff) {
// It is not possible to perfectly emulate an auto-resetting event with
// pipes. This simulates it by resetting before the event is handled.
CritScope cs(&crit_);
if (fSignaled_) {
uint8 b;
read(afd_[0], &b, sizeof(b));
fSignaled_ = false;
}
}
virtual void OnEvent(uint32 ff, int err) {
assert(false);
}
virtual int GetDescriptor() {
return afd_[0];
}
private:
PhysicalSocketServer *ss_;
int afd_[2];
bool fSignaled_;
CriticalSection crit_;
};
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
ss_->Add(this);
}
SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
ss_->Add(this);
}
virtual ~SocketDispatcher() {
Close();
}
bool Initialize() {
ss_->Add(this);
fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
return true;
}
virtual bool Create(int type) {
// Change the socket to be non-blocking.
if (!PhysicalSocket::Create(type))
return false;
return Initialize();
}
virtual int GetDescriptor() {
return s_;
}
virtual uint32 GetRequestedEvents() {
return enabled_events_;
}
virtual void OnPreEvent(uint32 ff) {
if ((ff & kfConnect) != 0)
state_ = CS_CONNECTED;
}
virtual void OnEvent(uint32 ff, int err) {
if ((ff & kfRead) != 0) {
enabled_events_ &= ~kfRead;
SignalReadEvent(this);
}
if ((ff & kfWrite) != 0) {
enabled_events_ &= ~kfWrite;
SignalWriteEvent(this);
}
if ((ff & kfConnect) != 0) {
enabled_events_ &= ~kfConnect;
SignalConnectEvent(this);
}
if ((ff & kfClose) != 0)
SignalCloseEvent(this, err);
}
virtual int Close() {
if (s_ == INVALID_SOCKET)
return 0;
ss_->Remove(this);
return PhysicalSocket::Close();
}
};
class FileDispatcher: public Dispatcher, public AsyncFile {
public:
FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
set_readable(true);
ss_->Add(this);
fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
}
virtual ~FileDispatcher() {
ss_->Remove(this);
}
SocketServer* socketserver() { return ss_; }
virtual int GetDescriptor() {
return fd_;
}
virtual uint32 GetRequestedEvents() {
return flags_;
}
virtual void OnPreEvent(uint32 ff) {
}
virtual void OnEvent(uint32 ff, int err) {
if ((ff & kfRead) != 0)
SignalReadEvent(this);
if ((ff & kfWrite) != 0)
SignalWriteEvent(this);
if ((ff & kfClose) != 0)
SignalCloseEvent(this, err);
}
virtual bool readable() {
return (flags_ & kfRead) != 0;
}
virtual void set_readable(bool value) {
flags_ = value ? (flags_ | kfRead) : (flags_ & ~kfRead);
}
virtual bool writable() {
return (flags_ & kfWrite) != 0;
}
virtual void set_writable(bool value) {
flags_ = value ? (flags_ | kfWrite) : (flags_ & ~kfWrite);
}
private:
PhysicalSocketServer* ss_;
int fd_;
int flags_;
};
AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
return new FileDispatcher(fd, this);
}
#endif // POSIX
#ifdef WIN32
class Dispatcher {
public:
virtual uint32 GetRequestedEvents() = 0;
virtual void OnPreEvent(uint32 ff) = 0;
virtual void OnEvent(uint32 ff, int err) = 0;
virtual WSAEVENT GetWSAEvent() = 0;
virtual SOCKET GetSocket() = 0;
virtual bool CheckSignalClose() = 0;
};
uint32 FlagsToEvents(uint32 events) {
uint32 ffFD = FD_CLOSE | FD_ACCEPT;
if (events & kfRead)
ffFD |= FD_READ;
if (events & kfWrite)
ffFD |= FD_WRITE;
if (events & kfConnect)
ffFD |= FD_CONNECT;
return ffFD;
}
class EventDispatcher : public Dispatcher {
public:
EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
if (hev_ = WSACreateEvent()) {
ss_->Add(this);
}
}
~EventDispatcher() {
if (hev_ != NULL) {
ss_->Remove(this);
WSACloseEvent(hev_);
hev_ = NULL;
}
}
virtual void Signal() {
if (hev_ != NULL)
WSASetEvent(hev_);
}
virtual uint32 GetRequestedEvents() {
return 0;
}
virtual void OnPreEvent(uint32 ff) {
WSAResetEvent(hev_);
}
virtual void OnEvent(uint32 ff, int err) {
}
virtual WSAEVENT GetWSAEvent() {
return hev_;
}
virtual SOCKET GetSocket() {
return INVALID_SOCKET;
}
virtual bool CheckSignalClose() { return false; }
private:
PhysicalSocketServer* ss_;
WSAEVENT hev_;
};
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
public:
static int next_id_;
int id_;
bool signal_close_;
int signal_err_;
SocketDispatcher(PhysicalSocketServer* ss) : PhysicalSocket(ss), id_(0), signal_close_(false) {
}
SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) : PhysicalSocket(ss, s), id_(0), signal_close_(false) {
}
virtual ~SocketDispatcher() {
Close();
}
bool Initialize() {
assert(s_ != INVALID_SOCKET);
// Must be a non-blocking
u_long argp = 1;
ioctlsocket(s_, FIONBIO, &argp);
ss_->Add(this);
return true;
}
virtual bool Create(int type) {
// Create socket
if (!PhysicalSocket::Create(type))
return false;
if (!Initialize())
return false;
do { id_ = ++next_id_; } while (id_ == 0);
return true;
}
virtual int Close() {
if (s_ == INVALID_SOCKET)
return 0;
id_ = 0;
signal_close_ = false;
ss_->Remove(this);
return PhysicalSocket::Close();
}
virtual uint32 GetRequestedEvents() {
return enabled_events_;
}
virtual void OnPreEvent(uint32 ff) {
if ((ff & kfConnect) != 0)
state_ = CS_CONNECTED;
}
virtual void OnEvent(uint32 ff, int err) {
int cache_id = id_;
if ((ff & kfRead) != 0) {
enabled_events_ &= ~kfRead;
SignalReadEvent(this);
}
if (((ff & kfWrite) != 0) && (id_ == cache_id)) {
enabled_events_ &= ~kfWrite;
SignalWriteEvent(this);
}
if (((ff & kfConnect) != 0) && (id_ == cache_id)) {
if (ff != kfConnect)
LOG(LS_VERBOSE) << "Signalled with kfConnect: " << ff;
enabled_events_ &= ~kfConnect;
SignalConnectEvent(this);
}
if (((ff & kfClose) != 0) && (id_ == cache_id)) {
//LOG(INFO) << "SOCK[" << static_cast<int>(s_) << "] OnClose() Error: " << err;
signal_close_ = true;
signal_err_ = err;
}
}
virtual WSAEVENT GetWSAEvent() {
return WSA_INVALID_EVENT;
}
virtual SOCKET GetSocket() {
return s_;
}
virtual bool CheckSignalClose() {
if (!signal_close_)
return false;
char ch;
if (recv(s_, &ch, 1, MSG_PEEK) > 0)
return false;
signal_close_ = false;
SignalCloseEvent(this, signal_err_);
return true;
}
};
int SocketDispatcher::next_id_ = 0;
#endif // WIN32
// Sets the value of a boolean value to false when signaled.
class Signaler : public EventDispatcher {
public:
Signaler(PhysicalSocketServer* ss, bool* pf)
: EventDispatcher(ss), pf_(pf) {
}
virtual ~Signaler() { }
void OnEvent(uint32 ff, int err) {
if (pf_)
*pf_ = false;
}
private:
bool *pf_;
};
PhysicalSocketServer::PhysicalSocketServer() : fWait_(false),
last_tick_tracked_(0), last_tick_dispatch_count_(0) {
signal_wakeup_ = new Signaler(this, &fWait_);
}
PhysicalSocketServer::~PhysicalSocketServer() {
delete signal_wakeup_;
// ASSERT(dispatchers_.empty());
}
void PhysicalSocketServer::WakeUp() {
signal_wakeup_->Signal();
}
Socket* PhysicalSocketServer::CreateSocket(int type) {
PhysicalSocket* socket = new PhysicalSocket(this);
if (socket->Create(type)) {
return socket;
} else {
delete socket;
return 0;
}
}
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
SocketDispatcher* dispatcher = new SocketDispatcher(this);
if (dispatcher->Create(type)) {
return dispatcher;
} else {
delete dispatcher;
return 0;
}
}
AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
if (dispatcher->Initialize()) {
return dispatcher;
} else {
delete dispatcher;
return 0;
}
}
void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
CritScope cs(&crit_);
dispatchers_.push_back(pdispatcher);
}
void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
CritScope cs(&crit_);
dispatchers_.erase(std::remove(dispatchers_.begin(), dispatchers_.end(), pdispatcher), dispatchers_.end());
}
#ifdef POSIX
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
// Calculate timing information
struct timeval *ptvWait = NULL;
struct timeval tvWait;
struct timeval tvStop;
if (cmsWait != kForever) {
// Calculate wait timeval
tvWait.tv_sec = cmsWait / 1000;
tvWait.tv_usec = (cmsWait % 1000) * 1000;
ptvWait = &tvWait;
// Calculate when to return in a timeval
gettimeofday(&tvStop, NULL);
tvStop.tv_sec += tvWait.tv_sec;
tvStop.tv_usec += tvWait.tv_usec;
if (tvStop.tv_usec >= 1000000) {
tvStop.tv_usec -= 1000000;
tvStop.tv_sec += 1;
}
}
// Zero all fd_sets. Don't need to do this inside the loop since
// select() zeros the descriptors not signaled
fd_set fdsRead;
FD_ZERO(&fdsRead);
fd_set fdsWrite;
FD_ZERO(&fdsWrite);
fWait_ = true;
while (fWait_) {
int fdmax = -1;
{
CritScope cr(&crit_);
for (unsigned i = 0; i < dispatchers_.size(); i++) {
// Query dispatchers for read and write wait state
Dispatcher *pdispatcher = dispatchers_[i];
assert(pdispatcher);
if (!process_io && (pdispatcher != signal_wakeup_))
continue;
int fd = pdispatcher->GetDescriptor();
if (fd > fdmax)
fdmax = fd;
uint32 ff = pdispatcher->GetRequestedEvents();
if (ff & kfRead)
FD_SET(fd, &fdsRead);
if (ff & (kfWrite | kfConnect))
FD_SET(fd, &fdsWrite);
}
}
// Wait then call handlers as appropriate
// < 0 means error
// 0 means timeout
// > 0 means count of descriptors ready
int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
// If error, return error
// todo: do something intelligent
if (n < 0)
return false;
// If timeout, return success
if (n == 0)
return true;
// We have signaled descriptors
{
CritScope cr(&crit_);
for (unsigned i = 0; i < dispatchers_.size(); i++) {
Dispatcher *pdispatcher = dispatchers_[i];
int fd = pdispatcher->GetDescriptor();
uint32 ff = 0;
if (FD_ISSET(fd, &fdsRead)) {
FD_CLR(fd, &fdsRead);
ff |= kfRead;
}
if (FD_ISSET(fd, &fdsWrite)) {
FD_CLR(fd, &fdsWrite);
if (pdispatcher->GetRequestedEvents() & kfConnect) {
ff |= kfConnect;
} else {
ff |= kfWrite;
}
}
if (ff != 0) {
pdispatcher->OnPreEvent(ff);
pdispatcher->OnEvent(ff, 0);
}
}
}
// Recalc the time remaining to wait. Doing it here means it doesn't get
// calced twice the first time through the loop
if (cmsWait != kForever) {
ptvWait->tv_sec = 0;
ptvWait->tv_usec = 0;
struct timeval tvT;
gettimeofday(&tvT, NULL);
if (tvStop.tv_sec >= tvT.tv_sec) {
ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
if (ptvWait->tv_usec < 0) {
ptvWait->tv_usec += 1000000;
ptvWait->tv_sec -= 1;
}
}
}
}
return true;
}
#endif // POSIX
#ifdef WIN32
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io)
{
int cmsTotal = cmsWait;
int cmsElapsed = 0;
uint32 msStart = GetMillisecondCount();
#if LOGGING
if (last_tick_dispatch_count_ == 0) {
last_tick_tracked_ = msStart;
}
#endif
WSAEVENT socket_ev = WSACreateEvent();
fWait_ = true;
while (fWait_) {
std::vector<WSAEVENT> events;
std::vector<Dispatcher *> event_owners;
events.push_back(socket_ev);
{
CritScope cr(&crit_);
for (size_t i = 0; i < dispatchers_.size(); ++i) {
Dispatcher * disp = dispatchers_[i];
if (!process_io && (disp != signal_wakeup_))
continue;
SOCKET s = disp->GetSocket();
if (disp->CheckSignalClose()) {
// We just signalled close, don't poll this socket
} else if (s != INVALID_SOCKET) {
WSAEventSelect(s, events[0], FlagsToEvents(disp->GetRequestedEvents()));
} else {
events.push_back(disp->GetWSAEvent());
event_owners.push_back(disp);
}
}
}
// Which is shorter, the delay wait or the asked wait?
int cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsWait;
} else {
cmsNext = cmsTotal - cmsElapsed;
if (cmsNext < 0)
cmsNext = 0;
}
// Wait for one of the events to signal
DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0], false, cmsNext, false);
#if 0 // LOGGING
// we track this information purely for logging purposes.
last_tick_dispatch_count_++;
if (last_tick_dispatch_count_ >= 1000) {
uint32 now = GetMillisecondCount();
LOG(INFO) << "PhysicalSocketServer took " << TimeDiff(now, last_tick_tracked_) << "ms for 1000 events";
// If we get more than 1000 events in a second, we are spinning badly
// (normally it should take about 8-20 seconds).
assert(TimeDiff(now, last_tick_tracked_) > 1000);
last_tick_tracked_ = now;
last_tick_dispatch_count_ = 0;
}
#endif
// Failed?
// todo: need a better strategy than this!
if (dw == WSA_WAIT_FAILED) {
int error = WSAGetLastError();
assert(false);
WSACloseEvent(socket_ev);
return false;
}
// Timeout?
if (dw == WSA_WAIT_TIMEOUT) {
WSACloseEvent(socket_ev);
return true;
}
// Figure out which one it is and call it
{
CritScope cr(&crit_);
int index = dw - WSA_WAIT_EVENT_0;
if (index > 0) {
--index; // The first event is the socket event
event_owners[index]->OnPreEvent(0);
event_owners[index]->OnEvent(0, 0);
} else if (process_io) {
for (size_t i = 0; i < dispatchers_.size(); ++i) {
Dispatcher * disp = dispatchers_[i];
SOCKET s = disp->GetSocket();
if (s == INVALID_SOCKET)
continue;
WSANETWORKEVENTS wsaEvents;
int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
if (err == 0) {
#if LOGGING
{
if ((wsaEvents.lNetworkEvents & FD_READ) && wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error " << wsaEvents.iErrorCode[FD_READ_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_WRITE) && wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error " << wsaEvents.iErrorCode[FD_WRITE_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_CONNECT) && wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error " << wsaEvents.iErrorCode[FD_CONNECT_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error " << wsaEvents.iErrorCode[FD_ACCEPT_BIT];
}
if ((wsaEvents.lNetworkEvents & FD_CLOSE) && wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error " << wsaEvents.iErrorCode[FD_CLOSE_BIT];
}
}
#endif
uint32 ff = 0;
int errcode = 0;
if (wsaEvents.lNetworkEvents & FD_READ)
ff |= kfRead;
if (wsaEvents.lNetworkEvents & FD_WRITE)
ff |= kfWrite;
if (wsaEvents.lNetworkEvents & FD_CONNECT) {
if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
ff |= kfConnect;
} else {
// TODO: Decide whether we want to signal connect, but with an error code
ff |= kfClose;
errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
}
}
if (wsaEvents.lNetworkEvents & FD_ACCEPT)
ff |= kfRead;
if (wsaEvents.lNetworkEvents & FD_CLOSE) {
ff |= kfClose;
errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
}
if (ff != 0) {
disp->OnPreEvent(ff);
disp->OnEvent(ff, errcode);
}
}
}
}
// Reset the network event until new activity occurs
WSAResetEvent(socket_ev);
}
// Break?
if (!fWait_)
break;
cmsElapsed = GetMillisecondCount() - msStart;
if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
break;
}
}
// Done
WSACloseEvent(socket_ev);
return true;
}
#endif // WIN32
} // namespace talk_base