blob: fa51e55fd864503ae3c2165efa37baf7fa3cae25 [file] [log] [blame]
/*
* libjingle
* Copyright 2004--2011, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <signal.h>
#include <stdarg.h>
#include "talk/base/gunit.h"
#include "talk/base/logging.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/socket_unittest.h"
#include "talk/base/thread.h"
namespace talk_base {
class PhysicalSocketTest : public SocketTest {
};
TEST_F(PhysicalSocketTest, TestConnect) {
SocketTest::TestConnect();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookup) {
SocketTest::TestConnectWithDnsLookup();
}
TEST_F(PhysicalSocketTest, TestConnectFail) {
SocketTest::TestConnectFail();
}
TEST_F(PhysicalSocketTest, TestConnectWithDnsLookupFail) {
SocketTest::TestConnectWithDnsLookupFail();
}
#ifdef OSX
// This test crashes the OS X kernel on 10.6 (at bsd/netinet/tcp_subr.c:2118).
TEST_F(PhysicalSocketTest, DISABLED_TestConnectWithClosedSocket) {
#else
TEST_F(PhysicalSocketTest, TestConnectWithClosedSocket) {
#endif
SocketTest::TestConnectWithClosedSocket();
}
TEST_F(PhysicalSocketTest, TestServerCloseDuringConnect) {
SocketTest::TestServerCloseDuringConnect();
}
TEST_F(PhysicalSocketTest, TestClientCloseDuringConnect) {
SocketTest::TestClientCloseDuringConnect();
}
TEST_F(PhysicalSocketTest, TestServerClose) {
SocketTest::TestServerClose();
}
TEST_F(PhysicalSocketTest, TestCloseInClosedCallback) {
SocketTest::TestCloseInClosedCallback();
}
TEST_F(PhysicalSocketTest, TestSocketServerWait) {
SocketTest::TestSocketServerWait();
}
TEST_F(PhysicalSocketTest, TestTcp) {
SocketTest::TestTcp();
}
TEST_F(PhysicalSocketTest, TestUdp) {
SocketTest::TestUdp();
}
TEST_F(PhysicalSocketTest, TestGetSetOptions) {
SocketTest::TestGetSetOptions();
}
#ifdef POSIX
class PosixSignalDeliveryTest : public testing::Test {
public:
static void RecordSignal(int signum) {
signals_received_.push_back(signum);
signaled_thread_ = Thread::Current();
}
protected:
void SetUp() {
ss_.reset(new PhysicalSocketServer());
}
void TearDown() {
ss_.reset(NULL);
signals_received_.clear();
signaled_thread_ = NULL;
}
bool ExpectSignal(int signum) {
if (signals_received_.empty()) {
LOG(LS_ERROR) << "ExpectSignal(): No signal received";
return false;
}
if (signals_received_[0] != signum) {
LOG(LS_ERROR) << "ExpectSignal(): Received signal " <<
signals_received_[0] << ", expected " << signum;
return false;
}
signals_received_.erase(signals_received_.begin());
return true;
}
bool ExpectNone() {
bool ret = signals_received_.empty();
if (!ret) {
LOG(LS_ERROR) << "ExpectNone(): Received signal " << signals_received_[0]
<< ", expected none";
}
return ret;
}
static std::vector<int> signals_received_;
static Thread *signaled_thread_;
scoped_ptr<PhysicalSocketServer> ss_;
};
std::vector<int> PosixSignalDeliveryTest::signals_received_;
Thread *PosixSignalDeliveryTest::signaled_thread_ = NULL;
// Test receiving a synchronous signal while not in Wait() and then entering
// Wait() afterwards.
TEST_F(PosixSignalDeliveryTest, RaiseThenWait) {
ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal);
raise(SIGTERM);
EXPECT_TRUE(ss_->Wait(0, true));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_TRUE(ExpectNone());
}
// Test that we can handle getting tons of repeated signals and that we see all
// the different ones.
TEST_F(PosixSignalDeliveryTest, InsanelyManySignals) {
ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal);
ss_->SetPosixSignalHandler(SIGINT, &RecordSignal);
for (int i = 0; i < 10000; ++i) {
raise(SIGTERM);
}
raise(SIGINT);
EXPECT_TRUE(ss_->Wait(0, true));
// Order will be lowest signal numbers first.
EXPECT_TRUE(ExpectSignal(SIGINT));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_TRUE(ExpectNone());
}
// Test that a signal during a Wait() call is detected.
TEST_F(PosixSignalDeliveryTest, SignalDuringWait) {
ss_->SetPosixSignalHandler(SIGALRM, &RecordSignal);
alarm(1);
EXPECT_TRUE(ss_->Wait(1500, true));
EXPECT_TRUE(ExpectSignal(SIGALRM));
EXPECT_TRUE(ExpectNone());
}
class RaiseSigTermRunnable : public Runnable {
void Run(Thread *thread) {
thread->socketserver()->Wait(1000, false);
// Allow SIGTERM. This will be the only thread with it not masked so it will
// be delivered to us.
sigset_t mask;
sigemptyset(&mask);
pthread_sigmask(SIG_SETMASK, &mask, NULL);
// Raise it.
raise(SIGTERM);
}
};
// Test that it works no matter what thread the kernel chooses to give the
// signal to (since it's not guaranteed to be the one that Wait() runs on).
TEST_F(PosixSignalDeliveryTest, SignalOnDifferentThread) {
ss_->SetPosixSignalHandler(SIGTERM, &RecordSignal);
// Mask out SIGTERM so that it can't be delivered to this thread.
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGTERM);
EXPECT_EQ(0, pthread_sigmask(SIG_SETMASK, &mask, NULL));
// Start a new thread that raises it. It will have to be delivered to that
// thread. Our implementation should safely handle it and dispatch
// RecordSignal() on this thread.
scoped_ptr<Thread> thread(new Thread());
thread->Start(new RaiseSigTermRunnable());
EXPECT_TRUE(ss_->Wait(1500, true));
EXPECT_TRUE(ExpectSignal(SIGTERM));
EXPECT_EQ(Thread::Current(), signaled_thread_);
EXPECT_TRUE(ExpectNone());
}
#endif
} // namespace talk_base