| /* |
| * libjingle |
| * Copyright 2006, Google Inc. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <time.h> |
| #ifdef POSIX |
| #include <netinet/in.h> |
| #endif |
| #include <cmath> |
| |
| #include "talk/base/logging.h" |
| #include "talk/base/gunit.h" |
| #include "talk/base/testclient.h" |
| #include "talk/base/testutils.h" |
| #include "talk/base/thread.h" |
| #include "talk/base/timeutils.h" |
| #include "talk/base/virtualsocketserver.h" |
| |
| using namespace talk_base; |
| |
| // Sends at a constant rate but with random packet sizes. |
| struct Sender : public MessageHandler { |
| Sender(Thread* th, AsyncSocket* s, uint32 rt) |
| : thread(th), socket(new AsyncUDPSocket(s)), |
| done(false), rate(rt), count(0) { |
| last_send = Time(); |
| thread->PostDelayed(NextDelay(), this, 1); |
| } |
| |
| uint32 NextDelay() { |
| uint32 size = (rand() % 4096) + 1; |
| return 1000 * size / rate; |
| } |
| |
| void OnMessage(Message* pmsg) { |
| ASSERT_EQ(1u, pmsg->message_id); |
| |
| if (done) |
| return; |
| |
| uint32 cur_time = Time(); |
| uint32 delay = cur_time - last_send; |
| uint32 size = rate * delay / 1000; |
| size = std::min<uint32>(size, 4096); |
| size = std::max<uint32>(size, sizeof(uint32)); |
| |
| count += size; |
| memcpy(dummy, &cur_time, sizeof(cur_time)); |
| socket->Send(dummy, size); |
| |
| last_send = cur_time; |
| thread->PostDelayed(NextDelay(), this, 1); |
| } |
| |
| Thread* thread; |
| scoped_ptr<AsyncUDPSocket> socket; |
| bool done; |
| uint32 rate; // bytes per second |
| uint32 count; |
| uint32 last_send; |
| char dummy[4096]; |
| }; |
| |
| struct Receiver : public MessageHandler, public sigslot::has_slots<> { |
| Receiver(Thread* th, AsyncSocket* s, uint32 bw) |
| : thread(th), socket(new AsyncUDPSocket(s)), bandwidth(bw), done(false), |
| count(0), sec_count(0), sum(0), sum_sq(0), samples(0) { |
| socket->SignalReadPacket.connect(this, &Receiver::OnReadPacket); |
| thread->PostDelayed(1000, this, 1); |
| } |
| |
| ~Receiver() { |
| thread->Clear(this); |
| } |
| |
| void OnReadPacket(AsyncPacketSocket* s, const char* data, size_t size, |
| const SocketAddress& remote_addr) { |
| ASSERT_EQ(socket.get(), s); |
| ASSERT_GE(size, 4U); |
| |
| count += size; |
| sec_count += size; |
| |
| uint32 send_time = *reinterpret_cast<const uint32*>(data); |
| uint32 recv_time = Time(); |
| uint32 delay = recv_time - send_time; |
| sum += delay; |
| sum_sq += delay * delay; |
| samples += 1; |
| } |
| |
| void OnMessage(Message* pmsg) { |
| ASSERT_EQ(1u, pmsg->message_id); |
| |
| if (done) |
| return; |
| |
| // It is always possible for us to receive more than expected because |
| // packets can be further delayed in delivery. |
| if (bandwidth > 0) |
| ASSERT_TRUE(sec_count <= 5 * bandwidth / 4); |
| sec_count = 0; |
| thread->PostDelayed(1000, this, 1); |
| } |
| |
| Thread* thread; |
| scoped_ptr<AsyncUDPSocket> socket; |
| uint32 bandwidth; |
| bool done; |
| uint32 count; |
| uint32 sec_count; |
| double sum; |
| double sum_sq; |
| uint32 samples; |
| }; |
| |
| class VirtualSocketServerTest : public testing::Test { |
| public: |
| VirtualSocketServerTest() : ss_(new VirtualSocketServer(NULL)), |
| kIPv4AnyAddress(IPAddress(INADDR_ANY), 0), |
| kIPv6AnyAddress(IPAddress(in6addr_any), 0) { |
| } |
| |
| void CheckAddressIncrementalization(const SocketAddress& post, |
| const SocketAddress& pre) { |
| EXPECT_EQ(post.port(), pre.port() + 1); |
| IPAddress post_ip = post.ipaddr(); |
| IPAddress pre_ip = pre.ipaddr(); |
| EXPECT_EQ(pre_ip.family(), post_ip.family()); |
| if (post_ip.family() == AF_INET) { |
| in_addr pre_ipv4 = pre_ip.ipv4_address(); |
| in_addr post_ipv4 = post_ip.ipv4_address(); |
| int difference = ntohl(post_ipv4.s_addr) - ntohl(pre_ipv4.s_addr); |
| EXPECT_EQ(1, difference); |
| } else if (post_ip.family() == AF_INET6) { |
| in6_addr post_ip6 = post_ip.ipv6_address(); |
| in6_addr pre_ip6 = pre_ip.ipv6_address(); |
| uint32* post_as_ints = reinterpret_cast<uint32*>(&post_ip6.s6_addr); |
| uint32* pre_as_ints = reinterpret_cast<uint32*>(&pre_ip6.s6_addr); |
| EXPECT_EQ(post_as_ints[3], pre_as_ints[3] + 1); |
| } |
| } |
| |
| void BasicTest(const SocketAddress& initial_addr) { |
| AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| socket->Bind(initial_addr); |
| SocketAddress server_addr = socket->GetLocalAddress(); |
| // Make sure VSS didn't switch families on us. |
| EXPECT_EQ(server_addr.ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| TestClient* client1 = new TestClient(new AsyncUDPSocket(socket)); |
| AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2)); |
| |
| SocketAddress client2_addr; |
| EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); |
| |
| SocketAddress client1_addr; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); |
| EXPECT_EQ(client1_addr, server_addr); |
| |
| for (int i = 0; i < 10; i++) { |
| client2 = new TestClient(AsyncUDPSocket::Create(ss_, SocketAddress())); |
| |
| SocketAddress next_client2_addr; |
| EXPECT_EQ(3, client2->SendTo("foo", 3, server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &next_client2_addr)); |
| CheckAddressIncrementalization(next_client2_addr, client2_addr); |
| // EXPECT_EQ(next_client2_addr.port(), client2_addr.port() + 1); |
| |
| SocketAddress server_addr2; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, next_client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &server_addr2)); |
| EXPECT_EQ(server_addr2, server_addr); |
| |
| client2_addr = next_client2_addr; |
| } |
| } |
| |
| // initial_addr should be made from either INADDR_ANY or in6addr_any. |
| void ConnectTest(const SocketAddress& initial_addr) { |
| testing::StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress kEmptyAddr; |
| |
| // Create client |
| AsyncSocket* client = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(client); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); |
| |
| // Create server |
| AsyncSocket* server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| EXPECT_NE(0, server->Listen(5)); // Bind required |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(server->GetState(), AsyncSocket::CS_CONNECTING); |
| |
| // No pending server connections |
| EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); |
| EXPECT_TRUE(NULL == server->Accept(&accept_addr)); |
| EXPECT_EQ(accept_addr, kEmptyAddr); |
| |
| // Attempt connect to listening socket |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| EXPECT_NE(client->GetLocalAddress(), kEmptyAddr); // Implicit Bind |
| EXPECT_NE(client->GetLocalAddress(), server->GetLocalAddress()); |
| |
| // Client is connecting |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Client still connecting |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); |
| |
| // Server has pending connection |
| EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); |
| Socket* accepted = server->Accept(&accept_addr); |
| EXPECT_TRUE(NULL != accepted); |
| EXPECT_NE(accept_addr, kEmptyAddr); |
| EXPECT_EQ(accepted->GetRemoteAddress(), accept_addr); |
| |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(accepted->GetLocalAddress(), server->GetLocalAddress()); |
| EXPECT_EQ(accepted->GetRemoteAddress(), client->GetLocalAddress()); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Client has connected |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); |
| EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); |
| EXPECT_EQ(client->GetRemoteAddress(), accepted->GetLocalAddress()); |
| } |
| |
| void ConnectToNonListenerTest(const SocketAddress& initial_addr) { |
| testing::StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress kEmptyAddr; |
| |
| // Create client |
| AsyncSocket* client = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(client); |
| |
| // Create server |
| AsyncSocket* server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| // Attempt connect to non-listening socket |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // No pending server connections |
| EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); |
| EXPECT_TRUE(NULL == server->Accept(&accept_addr)); |
| EXPECT_EQ(accept_addr, kEmptyAddr); |
| |
| // Connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR)); |
| EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); |
| } |
| |
| void CloseDuringConnectTest(const SocketAddress& initial_addr) { |
| testing::StreamSink sink; |
| SocketAddress accept_addr; |
| const SocketAddress kEmptyAddr; |
| |
| // Create client and server |
| AsyncSocket* client = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(client); |
| AsyncSocket* server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| // Server close before socket enters accept queue |
| EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); |
| server->Close(); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Result: connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR)); |
| |
| // New server |
| delete server; |
| server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Server close while socket is in accept queue |
| EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); |
| server->Close(); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Result: connection failed |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(client, testing::SSE_ERROR)); |
| |
| // New server |
| delete server; |
| server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| |
| // Initiate connect |
| EXPECT_EQ(0, server->Bind(initial_addr)); |
| EXPECT_EQ(server->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, server->Listen(5)); |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Server accepts connection |
| EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); |
| AsyncSocket* accepted = server->Accept(&accept_addr); |
| ASSERT_TRUE(NULL != accepted); |
| sink.Monitor(accepted); |
| |
| // Client closes before connection complets |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CONNECTED); |
| |
| // Connected message has not been processed yet. |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CONNECTING); |
| client->Close(); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // Result: accepted socket closes |
| EXPECT_EQ(accepted->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_TRUE(sink.Check(accepted, testing::SSE_CLOSE)); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_CLOSE)); |
| } |
| |
| void CloseTest(const SocketAddress& initial_addr) { |
| testing::StreamSink sink; |
| const SocketAddress kEmptyAddr; |
| |
| // Create clients |
| AsyncSocket* a = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(a); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| |
| AsyncSocket* b = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(b); |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| EXPECT_TRUE(sink.Check(a, testing::SSE_OPEN)); |
| EXPECT_EQ(a->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(a->GetRemoteAddress(), b->GetLocalAddress()); |
| |
| EXPECT_TRUE(sink.Check(b, testing::SSE_OPEN)); |
| EXPECT_EQ(b->GetState(), AsyncSocket::CS_CONNECTED); |
| EXPECT_EQ(b->GetRemoteAddress(), a->GetLocalAddress()); |
| |
| EXPECT_EQ(1, a->Send("a", 1)); |
| b->Close(); |
| EXPECT_EQ(1, a->Send("b", 1)); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| char buffer[10]; |
| EXPECT_FALSE(sink.Check(b, testing::SSE_READ)); |
| EXPECT_EQ(-1, b->Recv(buffer, 10)); |
| |
| EXPECT_TRUE(sink.Check(a, testing::SSE_CLOSE)); |
| EXPECT_EQ(a->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(a->GetRemoteAddress(), kEmptyAddr); |
| |
| EXPECT_FALSE(sink.Check(b, testing::SSE_CLOSE)); // No signal for Closer |
| EXPECT_EQ(b->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(b->GetRemoteAddress(), kEmptyAddr); |
| } |
| |
| void TcpSendTest(const SocketAddress& initial_addr) { |
| testing::StreamSink sink; |
| const SocketAddress kEmptyAddr; |
| |
| // Connect two sockets |
| AsyncSocket* a = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(a); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| AsyncSocket* b = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(b); |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| const size_t kBufferSize = 2000; |
| ss_->set_send_buffer_capacity(kBufferSize); |
| ss_->set_recv_buffer_capacity(kBufferSize); |
| |
| const size_t kDataSize = 5000; |
| char send_buffer[kDataSize], recv_buffer[kDataSize]; |
| for (size_t i = 0; i < kDataSize; ++i) send_buffer[i] = i; |
| memset(recv_buffer, 0, sizeof(recv_buffer)); |
| size_t send_pos = 0, recv_pos = 0; |
| |
| // Can't send more than send buffer in one write |
| int result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(static_cast<int>(kBufferSize), result); |
| send_pos += result; |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE)); |
| EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); |
| |
| // Receive buffer is already filled, fill send buffer again |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(static_cast<int>(kBufferSize), result); |
| send_pos += result; |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(a, testing::SSE_WRITE)); |
| EXPECT_FALSE(sink.Check(b, testing::SSE_READ)); |
| |
| // No more room in send or receive buffer |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(a->IsBlocking()); |
| |
| // Read a subset of the data |
| result = b->Recv(recv_buffer + recv_pos, 500); |
| EXPECT_EQ(500, result); |
| recv_pos += result; |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(a, testing::SSE_WRITE)); |
| EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); |
| |
| // Room for more on the sending side |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(500, result); |
| send_pos += result; |
| |
| // Empty the recv buffer |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); |
| |
| // Continue to empty the recv buffer |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| // Send last of the data |
| result = a->Send(send_buffer + send_pos, kDataSize - send_pos); |
| EXPECT_EQ(500, result); |
| send_pos += result; |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(b, testing::SSE_READ)); |
| |
| // Receive the last of the data |
| while (true) { |
| result = b->Recv(recv_buffer + recv_pos, kDataSize - recv_pos); |
| if (result < 0) { |
| EXPECT_EQ(-1, result); |
| EXPECT_TRUE(b->IsBlocking()); |
| break; |
| } |
| recv_pos += result; |
| } |
| |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_FALSE(sink.Check(b, testing::SSE_READ)); |
| |
| // The received data matches the sent data |
| EXPECT_EQ(kDataSize, send_pos); |
| EXPECT_EQ(kDataSize, recv_pos); |
| EXPECT_EQ(0, memcmp(recv_buffer, send_buffer, kDataSize)); |
| } |
| |
| void TcpSendsPacketsInOrderTest(const SocketAddress& initial_addr) { |
| const SocketAddress kEmptyAddr; |
| |
| // Connect two sockets |
| AsyncSocket* a = ss_->CreateAsyncSocket(SOCK_STREAM); |
| AsyncSocket* b = ss_->CreateAsyncSocket(SOCK_STREAM); |
| a->Bind(initial_addr); |
| EXPECT_EQ(a->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| b->Bind(initial_addr); |
| EXPECT_EQ(b->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| |
| EXPECT_EQ(0, a->Connect(b->GetLocalAddress())); |
| EXPECT_EQ(0, b->Connect(a->GetLocalAddress())); |
| ss_->ProcessMessagesUntilIdle(); |
| |
| // First, deliver all packets in 0 ms. |
| char buffer[2] = { 0, 0 }; |
| const size_t cNumPackets = 10; |
| for (size_t i = 0; i < cNumPackets; ++i) { |
| buffer[0] = '0' + i; |
| EXPECT_EQ(1, a->Send(buffer, 1)); |
| } |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| for (size_t i = 0; i < cNumPackets; ++i) { |
| EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer))); |
| EXPECT_EQ(static_cast<char>('0' + i), buffer[0]); |
| } |
| |
| // Next, deliver packets at random intervals |
| const uint32 mean = 50; |
| const uint32 stddev = 50; |
| |
| ss_->set_delay_mean(mean); |
| ss_->set_delay_stddev(stddev); |
| ss_->UpdateDelayDistribution(); |
| |
| for (size_t i = 0; i < cNumPackets; ++i) { |
| buffer[0] = 'A' + i; |
| EXPECT_EQ(1, a->Send(buffer, 1)); |
| } |
| |
| ss_->ProcessMessagesUntilIdle(); |
| |
| for (size_t i = 0; i < cNumPackets; ++i) { |
| EXPECT_EQ(1, b->Recv(buffer, sizeof(buffer))); |
| EXPECT_EQ(static_cast<char>('A' + i), buffer[0]); |
| } |
| } |
| |
| void BandwidthTest(const SocketAddress& initial_addr) { |
| AsyncSocket* send_socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| AsyncSocket* recv_socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| ASSERT_EQ(0, send_socket->Bind(initial_addr)); |
| ASSERT_EQ(0, recv_socket->Bind(initial_addr)); |
| EXPECT_EQ(send_socket->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| EXPECT_EQ(recv_socket->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); |
| |
| uint32 bandwidth = 64 * 1024; |
| ss_->set_bandwidth(bandwidth); |
| |
| Thread* pthMain = Thread::Current(); |
| Sender sender(pthMain, send_socket, 80 * 1024); |
| Receiver receiver(pthMain, recv_socket, bandwidth); |
| |
| pthMain->ProcessMessages(5000); |
| sender.done = true; |
| pthMain->ProcessMessages(5000); |
| |
| ASSERT_TRUE(receiver.count >= 5 * 3 * bandwidth / 4); |
| ASSERT_TRUE(receiver.count <= 6 * bandwidth); // queue could drain for 1s |
| |
| ss_->set_bandwidth(0); |
| } |
| |
| void DelayTest(const SocketAddress& initial_addr) { |
| time_t seed = ::time(NULL); |
| LOG(LS_VERBOSE) << "seed = " << seed; |
| srand(seed); |
| |
| const uint32 mean = 2000; |
| const uint32 stddev = 500; |
| |
| ss_->set_delay_mean(mean); |
| ss_->set_delay_stddev(stddev); |
| ss_->UpdateDelayDistribution(); |
| |
| AsyncSocket* send_socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| AsyncSocket* recv_socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| ASSERT_EQ(0, send_socket->Bind(initial_addr)); |
| ASSERT_EQ(0, recv_socket->Bind(initial_addr)); |
| EXPECT_EQ(send_socket->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| EXPECT_EQ(recv_socket->GetLocalAddress().ipaddr().family(), |
| initial_addr.ipaddr().family()); |
| ASSERT_EQ(0, send_socket->Connect(recv_socket->GetLocalAddress())); |
| |
| Thread* pthMain = Thread::Current(); |
| // Avg packet size is 2K, so at 200KB/s for 10s, we should see about |
| // 1000 packets, which is necessary to get a good distribution. |
| Sender sender(pthMain, send_socket, 100 * 2 * 1024); |
| Receiver receiver(pthMain, recv_socket, 0); |
| |
| pthMain->ProcessMessages(10000); |
| sender.done = receiver.done = true; |
| ss_->ProcessMessagesUntilIdle(); |
| |
| const double sample_mean = receiver.sum / receiver.samples; |
| double num = |
| receiver.samples * receiver.sum_sq - receiver.sum * receiver.sum; |
| double den = receiver.samples * (receiver.samples - 1); |
| const double sample_stddev = std::sqrt(num / den); |
| LOG(LS_VERBOSE) << "mean=" << sample_mean << " stddev=" << sample_stddev; |
| |
| EXPECT_LE(500u, receiver.samples); |
| // We initially used a 0.1 fudge factor, but on the build machine, we |
| // have seen the value differ by as much as 0.13. |
| EXPECT_NEAR(mean, sample_mean, 0.15 * mean); |
| EXPECT_NEAR(stddev, sample_stddev, 0.15 * stddev); |
| |
| ss_->set_delay_mean(0); |
| ss_->set_delay_stddev(0); |
| ss_->UpdateDelayDistribution(); |
| } |
| |
| // Test cross-family communication between a client bound to client_addr and a |
| // server bound to server_addr. shouldSucceed indicates if communication is |
| // expected to work or not. |
| void CrossFamilyConnectionTest(const SocketAddress& client_addr, |
| const SocketAddress& server_addr, |
| bool shouldSucceed) { |
| testing::StreamSink sink; |
| SocketAddress accept_address; |
| const SocketAddress kEmptyAddr; |
| |
| // Client gets a IPv4 address |
| AsyncSocket* client = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(client); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_EQ(client->GetLocalAddress(), kEmptyAddr); |
| client->Bind(client_addr); |
| |
| // Server gets a non-mapped non-any IPv6 address. |
| // IPv4 sockets should not be able to connect to this. |
| AsyncSocket* server = ss_->CreateAsyncSocket(SOCK_STREAM); |
| sink.Monitor(server); |
| server->Bind(server_addr); |
| server->Listen(5); |
| |
| if (shouldSucceed) { |
| EXPECT_EQ(0, client->Connect(server->GetLocalAddress())); |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(server, testing::SSE_READ)); |
| Socket* accepted = server->Accept(&accept_address); |
| EXPECT_TRUE(NULL != accepted); |
| EXPECT_NE(kEmptyAddr, accept_address); |
| ss_->ProcessMessagesUntilIdle(); |
| EXPECT_TRUE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_EQ(client->GetRemoteAddress(), server->GetLocalAddress()); |
| } else { |
| // Check that the connection failed. |
| EXPECT_EQ(-1, client->Connect(server->GetLocalAddress())); |
| ss_->ProcessMessagesUntilIdle(); |
| |
| EXPECT_FALSE(sink.Check(server, testing::SSE_READ)); |
| EXPECT_TRUE(NULL == server->Accept(&accept_address)); |
| EXPECT_EQ(accept_address, kEmptyAddr); |
| EXPECT_EQ(client->GetState(), AsyncSocket::CS_CLOSED); |
| EXPECT_FALSE(sink.Check(client, testing::SSE_OPEN)); |
| EXPECT_EQ(client->GetRemoteAddress(), kEmptyAddr); |
| } |
| } |
| |
| // Test cross-family datagram sending between a client bound to client_addr |
| // and a server bound to server_addr. shouldSucceed indicates if sending is |
| // expected to succed or not. |
| void CrossFamilyDatagramTest(const SocketAddress& client_addr, |
| const SocketAddress& server_addr, |
| bool shouldSucceed) { |
| AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| socket->Bind(server_addr); |
| SocketAddress bound_server_addr = socket->GetLocalAddress(); |
| TestClient* client1 = new TestClient(new AsyncUDPSocket(socket)); |
| |
| AsyncSocket* socket2 = ss_->CreateAsyncSocket(SOCK_DGRAM); |
| socket2->Bind(client_addr); |
| TestClient* client2 = new TestClient(new AsyncUDPSocket(socket2)); |
| SocketAddress client2_addr; |
| |
| if (shouldSucceed) { |
| EXPECT_EQ(3, client2->SendTo("foo", 3, bound_server_addr)); |
| EXPECT_TRUE(client1->CheckNextPacket("foo", 3, &client2_addr)); |
| SocketAddress client1_addr; |
| EXPECT_EQ(6, client1->SendTo("bizbaz", 6, client2_addr)); |
| EXPECT_TRUE(client2->CheckNextPacket("bizbaz", 6, &client1_addr)); |
| EXPECT_EQ(client1_addr, bound_server_addr); |
| } else { |
| EXPECT_EQ(-1, client2->SendTo("foo", 3, bound_server_addr)); |
| EXPECT_FALSE(client1->CheckNextPacket("foo", 3, 0)); |
| } |
| } |
| |
| protected: |
| virtual void SetUp() { |
| Thread::Current()->set_socketserver(ss_); |
| } |
| virtual void TearDown() { |
| Thread::Current()->set_socketserver(NULL); |
| } |
| |
| VirtualSocketServer* ss_; |
| const SocketAddress kIPv4AnyAddress; |
| const SocketAddress kIPv6AnyAddress; |
| }; |
| |
| TEST_F(VirtualSocketServerTest, basic_v4) { |
| SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 5000); |
| BasicTest(ipv4_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, basic_v6) { |
| SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 5000); |
| BasicTest(ipv6_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_v4) { |
| ConnectTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_v6) { |
| ConnectTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_to_non_listener_v4) { |
| ConnectToNonListenerTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, connect_to_non_listener_v6) { |
| ConnectToNonListenerTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_during_connect_v4) { |
| CloseDuringConnectTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_during_connect_v6) { |
| CloseDuringConnectTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_v4) { |
| CloseTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, close_v6) { |
| CloseTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, tcp_send_v4) { |
| TcpSendTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, tcp_send_v6) { |
| TcpSendTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v4) { |
| TcpSendsPacketsInOrderTest(kIPv4AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, TcpSendsPacketsInOrder_v6) { |
| TcpSendsPacketsInOrderTest(kIPv6AnyAddress); |
| } |
| |
| TEST_F(VirtualSocketServerTest, bandwidth_v4) { |
| SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000); |
| BandwidthTest(ipv4_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, bandwidth_v6) { |
| SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000); |
| BandwidthTest(ipv6_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, delay_v4) { |
| SocketAddress ipv4_test_addr(IPAddress(INADDR_ANY), 1000); |
| DelayTest(ipv4_test_addr); |
| } |
| |
| TEST_F(VirtualSocketServerTest, delay_v6) { |
| SocketAddress ipv6_test_addr(IPAddress(in6addr_any), 1000); |
| DelayTest(ipv6_test_addr); |
| } |
| |
| // Works, receiving socket sees 127.0.0.2. |
| TEST_F(VirtualSocketServerTest, CanConnectFromMappedIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::ffff:127.0.0.2", 0), |
| SocketAddress("0.0.0.0", 5000), |
| true); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::2", 0), |
| SocketAddress("0.0.0.0", 5000), |
| false); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromUnMappedIPv6ToMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("::2", 0), |
| SocketAddress("::ffff:127.0.0.1", 5000), |
| false); |
| } |
| |
| // Works. receiving socket sees ::ffff:127.0.0.2. |
| TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToIPv6Any) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::", 5000), |
| true); |
| } |
| |
| // Fails. |
| TEST_F(VirtualSocketServerTest, CantConnectFromIPv4ToUnMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::1", 5000), |
| false); |
| } |
| |
| // Works. Receiving socket sees ::ffff:127.0.0.1. |
| TEST_F(VirtualSocketServerTest, CanConnectFromIPv4ToMappedIPv6) { |
| CrossFamilyConnectionTest(SocketAddress("127.0.0.1", 0), |
| SocketAddress("::ffff:127.0.0.2", 5000), |
| true); |
| } |
| |
| // Works, receiving socket sees a result from GetNextIP. |
| TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv6ToIPv4Any) { |
| CrossFamilyConnectionTest(SocketAddress("::", 0), |
| SocketAddress("0.0.0.0", 5000), |
| true); |
| } |
| |
| // Works, receiving socket sees whatever GetNextIP gave the client. |
| TEST_F(VirtualSocketServerTest, CanConnectFromUnboundIPv4ToIPv6Any) { |
| CrossFamilyConnectionTest(SocketAddress(), |
| SocketAddress("::", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv4ToIPv6Any) { |
| CrossFamilyDatagramTest(SocketAddress(), |
| SocketAddress("::", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromMappedIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::ffff:127.0.0.1", 0), |
| SocketAddress("0.0.0.0", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::2", 0), |
| SocketAddress("0.0.0.0", 5000), |
| false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromUnMappedIPv6ToMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("::2", 0), |
| SocketAddress("::ffff:127.0.0.1", 5000), |
| false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToIPv6Any) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CantSendDatagramFromIPv4ToUnMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.2", 0), |
| SocketAddress("::1", 5000), |
| false); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromIPv4ToMappedIPv6) { |
| CrossFamilyDatagramTest(SocketAddress("127.0.0.1", 0), |
| SocketAddress("::ffff:127.0.0.2", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CanSendDatagramFromUnboundIPv6ToIPv4Any) { |
| CrossFamilyDatagramTest(SocketAddress("::", 0), |
| SocketAddress("0.0.0.0", 5000), |
| true); |
| } |
| |
| TEST_F(VirtualSocketServerTest, CreatesStandardDistribution) { |
| const uint32 kTestMean[] = { 10, 100, 333, 1000 }; |
| const double kTestDev[] = { 0.25, 0.1, 0.01 }; |
| // TODO: The current code only works for 1000 data points or more. |
| const uint32 kTestSamples[] = { /*10, 100,*/ 1000 }; |
| for (size_t midx = 0; midx < ARRAY_SIZE(kTestMean); ++midx) { |
| for (size_t didx = 0; didx < ARRAY_SIZE(kTestDev); ++didx) { |
| for (size_t sidx = 0; sidx < ARRAY_SIZE(kTestSamples); ++sidx) { |
| ASSERT_LT(0u, kTestSamples[sidx]); |
| const uint32 kStdDev = |
| static_cast<uint32>(kTestDev[didx] * kTestMean[midx]); |
| VirtualSocketServer::Function* f = |
| VirtualSocketServer::CreateDistribution(kTestMean[midx], |
| kStdDev, |
| kTestSamples[sidx]); |
| ASSERT_TRUE(NULL != f); |
| ASSERT_EQ(kTestSamples[sidx], f->size()); |
| double sum = 0; |
| for (uint32 i = 0; i < f->size(); ++i) { |
| sum += (*f)[i].second; |
| } |
| const double mean = sum / f->size(); |
| double sum_sq_dev = 0; |
| for (uint32 i = 0; i < f->size(); ++i) { |
| double dev = (*f)[i].second - mean; |
| sum_sq_dev += dev * dev; |
| } |
| const double stddev = std::sqrt(sum_sq_dev / f->size()); |
| EXPECT_NEAR(kTestMean[midx], mean, 0.1 * kTestMean[midx]) |
| << "M=" << kTestMean[midx] |
| << " SD=" << kStdDev |
| << " N=" << kTestSamples[sidx]; |
| EXPECT_NEAR(kStdDev, stddev, 0.1 * kStdDev) |
| << "M=" << kTestMean[midx] |
| << " SD=" << kStdDev |
| << " N=" << kTestSamples[sidx]; |
| delete f; |
| } |
| } |
| } |
| } |