blob: 2aa66a41550940bbfd2667595c7c18cbd4658a84 [file] [log] [blame]
/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(_MSC_VER) && _MSC_VER < 1300
#pragma warning(disable:4786)
#endif
#include <algorithm>
#include <vector>
#include "talk/base/asyncudpsocket.h"
#include "talk/base/asynctcpsocket.h"
#include "talk/base/helpers.h"
#include "talk/base/logging.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/socketadapters.h"
#include "talk/base/stringutils.h"
#include "talk/p2p/base/common.h"
#include "talk/p2p/base/port.h"
#if defined(_MSC_VER) && _MSC_VER < 1300
namespace std {
using ::memcmp;
}
#endif
namespace {
// The length of time we wait before timing out readability on a connection.
const uint32 CONNECTION_READ_TIMEOUT = 30 * 1000; // 30 seconds
// The length of time we wait before timing out writability on a connection.
const uint32 CONNECTION_WRITE_TIMEOUT = 15 * 1000; // 15 seconds
// The length of time we wait before we become unwritable.
const uint32 CONNECTION_WRITE_CONNECT_TIMEOUT = 5 * 1000; // 5 seconds
// The number of pings that must fail to respond before we become unwritable.
const uint32 CONNECTION_WRITE_CONNECT_FAILURES = 5;
// This is the length of time that we wait for a ping response to come back.
const int CONNECTION_RESPONSE_TIMEOUT = 5 * 1000; // 5 seconds
// Determines whether we have seen at least the given maximum number of
// pings fail to have a response.
inline bool TooManyFailures(
const std::vector<uint32>& pings_since_last_response,
uint32 maximum_failures,
uint32 rtt_estimate,
uint32 now) {
// If we haven't sent that many pings, then we can't have failed that many.
if (pings_since_last_response.size() < maximum_failures)
return false;
// Check if the window in which we would expect a response to the ping has
// already elapsed.
return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now;
}
// Determines whether we have gone too long without seeing any response.
inline bool TooLongWithoutResponse(
const std::vector<uint32>& pings_since_last_response,
uint32 maximum_time,
uint32 now) {
if (pings_since_last_response.size() == 0)
return false;
return pings_since_last_response[0] + maximum_time < now;
}
// We will restrict RTT estimates (when used for determining state) to be
// within a reasonable range.
const uint32 MINIMUM_RTT = 100; // 0.1 seconds
const uint32 MAXIMUM_RTT = 3000; // 3 seconds
// When we don't have any RTT data, we have to pick something reasonable. We
// use a large value just in case the connection is really slow.
const uint32 DEFAULT_RTT = MAXIMUM_RTT;
// Computes our estimate of the RTT given the current estimate.
inline uint32 ConservativeRTTEstimate(uint32 rtt) {
return talk_base::_max(MINIMUM_RTT, talk_base::_min(MAXIMUM_RTT, 2 * rtt));
}
// Weighting of the old rtt value to new data.
const int RTT_RATIO = 3; // 3 : 1
// The delay before we begin checking if this port is useless.
const int kPortTimeoutDelay = 30 * 1000; // 30 seconds
const uint32 MSG_CHECKTIMEOUT = 1;
const uint32 MSG_DELETE = 1;
}
namespace cricket {
static const char* const PROTO_NAMES[] = { "udp", "tcp", "ssltcp" };
const char* ProtoToString(ProtocolType proto) {
return PROTO_NAMES[proto];
}
bool StringToProto(const char* value, ProtocolType* proto) {
for (size_t i = 0; i <= PROTO_LAST; ++i) {
if (strcmp(PROTO_NAMES[i], value) == 0) {
*proto = static_cast<ProtocolType>(i);
return true;
}
}
return false;
}
Port::Port(talk_base::Thread* thread, const std::string& type,
talk_base::SocketFactory* factory, talk_base::Network* network)
: thread_(thread), factory_(factory), type_(type), network_(network),
preference_(-1), lifetime_(LT_PRESTART), enable_port_packets_(false) {
if (factory_ == NULL)
factory_ = thread_->socketserver();
set_username_fragment(talk_base::CreateRandomString(16));
set_password(talk_base::CreateRandomString(16));
LOG_J(LS_INFO, this) << "Port created";
}
Port::~Port() {
// Delete all of the remaining connections. We copy the list up front
// because each deletion will cause it to be modified.
std::vector<Connection*> list;
AddressMap::iterator iter = connections_.begin();
while (iter != connections_.end()) {
list.push_back(iter->second);
++iter;
}
for (uint32 i = 0; i < list.size(); i++)
delete list[i];
}
Connection* Port::GetConnection(const talk_base::SocketAddress& remote_addr) {
AddressMap::const_iterator iter = connections_.find(remote_addr);
if (iter != connections_.end())
return iter->second;
else
return NULL;
}
void Port::AddAddress(const talk_base::SocketAddress& address,
const std::string& protocol,
bool final) {
Candidate c;
c.set_name(name_);
c.set_type(type_);
c.set_protocol(protocol);
c.set_address(address);
c.set_preference(preference_);
c.set_username(username_frag_);
c.set_password(password_);
c.set_network_name(network_->name());
c.set_generation(generation_);
candidates_.push_back(c);
if (final)
SignalAddressReady(this);
}
void Port::AddConnection(Connection* conn) {
connections_[conn->remote_candidate().address()] = conn;
conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed);
SignalConnectionCreated(this, conn);
}
void Port::OnReadPacket(
const char* data, size_t size, const talk_base::SocketAddress& addr) {
// If the user has enabled port packets, just hand this over.
if (enable_port_packets_) {
SignalReadPacket(this, data, size, addr);
return;
}
// If this is an authenticated STUN request, then signal unknown address and
// send back a proper binding response.
StunMessage* msg;
std::string remote_username;
if (!GetStunMessage(data, size, addr, msg, remote_username)) {
LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address ("
<< addr.ToString() << ")";
} else if (!msg) {
// STUN message handled already
} else if (msg->type() == STUN_BINDING_REQUEST) {
SignalUnknownAddress(this, addr, msg, remote_username);
} else {
// NOTE(tschmelcher): This is benign. It occurs if we pruned a
// connection for this port while it had STUN requests in flight, because
// we then get back responses for them, which this code correctly does not
// handle.
LOG_J(LS_ERROR, this) << "Received unexpected STUN message type ("
<< msg->type() << ") from unknown address ("
<< addr.ToString() << ")";
delete msg;
}
}
void Port::SendBindingRequest(Connection* conn) {
// Construct the request message.
StunMessage request;
request.SetType(STUN_BINDING_REQUEST);
request.SetTransactionID(talk_base::CreateRandomString(16));
StunByteStringAttribute* username_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
std::string username = conn->remote_candidate().username();
username.append(username_frag_);
username_attr->CopyBytes(username.c_str(), username.size());
request.AddAttribute(username_attr);
// Send the request message.
// NOTE: If we wanted to, this is where we would add the HMAC.
talk_base::ByteBuffer buf;
request.Write(&buf);
SendTo(buf.Data(), buf.Length(), conn->remote_candidate().address(), false);
}
bool Port::GetStunMessage(const char* data, size_t size,
const talk_base::SocketAddress& addr,
StunMessage *& msg, std::string& remote_username) {
// NOTE: This could clearly be optimized to avoid allocating any memory.
// However, at the data rates we'll be looking at on the client side,
// this probably isn't worth worrying about.
msg = 0;
// Parse the request message. If the packet is not a complete and correct
// STUN message, then ignore it.
talk_base::scoped_ptr<StunMessage> stun_msg(new StunMessage());
talk_base::ByteBuffer buf(data, size);
if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
return false;
}
// The packet must include a username that either begins or ends with our
// fragment. It should begin with our fragment if it is a request and it
// should end with our fragment if it is a response.
const StunByteStringAttribute* username_attr =
stun_msg->GetByteString(STUN_ATTR_USERNAME);
int remote_frag_len = (username_attr ? username_attr->length() : 0);
remote_frag_len -= static_cast<int>(username_frag_.size());
if (stun_msg->type() == STUN_BINDING_REQUEST) {
if (remote_frag_len < 0) {
// Username not present or corrupted, don't reply.
LOG_J(LS_ERROR, this) << "Received STUN request without username";
return true;
} else if (std::memcmp(username_attr->bytes(), username_frag_.c_str(),
username_frag_.size()) != 0) {
LOG_J(LS_ERROR, this) << "Received STUN request with bad username";
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
STUN_ERROR_REASON_BAD_REQUEST);
return true;
}
remote_username.assign(username_attr->bytes() + username_frag_.size(),
username_attr->bytes() + username_attr->length());
} else if ((stun_msg->type() == STUN_BINDING_RESPONSE)
|| (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
if (remote_frag_len < 0) {
// NOTE(tschmelcher): This is benign. It occurs when the response to a
// StunBindingRequest to the real STUN server (which involves no
// usernames) took too long to reach us and so the base StunRequest
// re-sent itself, resulting in us getting an extraneous second response
// that gets forwarded on to this code and correctly discarded.
LOG_J(LS_ERROR, this) << "Received STUN response without username";
// Do not send error response to a response
return true;
} else if (std::memcmp(username_attr->bytes() + remote_frag_len,
username_frag_.c_str(),
username_frag_.size()) != 0) {
LOG_J(LS_ERROR, this) << "Received STUN response with bad username";
// Do not send error response to a response
return true;
}
remote_username.assign(username_attr->bytes(),
username_attr->bytes() + remote_frag_len);
if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
LOG_J(LS_ERROR, this) << "Received STUN binding error:"
<< " class=" << error_code->error_class()
<< " number=" << error_code->number()
<< " reason='" << error_code->reason() << "'";
// Return message to allow error-specific processing
} else {
LOG_J(LS_ERROR, this)
<< "Received STUN error response with no error code";
// Drop corrupt message
return true;
}
}
} else {
LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type ("
<< stun_msg->type() << ")";
return true;
}
// Return the STUN message found.
msg = stun_msg.release();
return true;
}
void Port::SendBindingResponse(
StunMessage* request, const talk_base::SocketAddress& addr) {
ASSERT(request->type() == STUN_BINDING_REQUEST);
// Retrieve the username from the request.
const StunByteStringAttribute* username_attr =
request->GetByteString(STUN_ATTR_USERNAME);
ASSERT(username_attr != NULL);
if (username_attr == NULL) {
// No valid username, skip the response.
return;
}
// Fill in the response message.
StunMessage response;
response.SetType(STUN_BINDING_RESPONSE);
response.SetTransactionID(request->transaction_id());
StunByteStringAttribute* username2_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
username2_attr->CopyBytes(username_attr->bytes(), username_attr->length());
response.AddAttribute(username2_attr);
StunAddressAttribute* addr_attr =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
addr_attr->SetFamily(1);
addr_attr->SetPort(addr.port());
addr_attr->SetIP(addr.ip());
response.AddAttribute(addr_attr);
// Send the response message.
// NOTE: If we wanted to, this is where we would add the HMAC.
talk_base::ByteBuffer buf;
response.Write(&buf);
SendTo(buf.Data(), buf.Length(), addr, false);
// The fact that we received a successful request means that this connection
// (if one exists) should now be readable.
Connection* conn = GetConnection(addr);
ASSERT(conn != NULL);
if (conn)
conn->ReceivedPing();
}
void Port::SendBindingErrorResponse(
StunMessage* request, const talk_base::SocketAddress& addr, int error_code,
const std::string& reason) {
ASSERT(request->type() == STUN_BINDING_REQUEST);
// Retrieve the username from the request. If it didn't have one, we
// shouldn't be responding at all.
const StunByteStringAttribute* username_attr =
request->GetByteString(STUN_ATTR_USERNAME);
ASSERT(username_attr != NULL);
if (username_attr == NULL) {
// No valid username, skip the response.
return;
}
// Fill in the response message.
StunMessage response;
response.SetType(STUN_BINDING_ERROR_RESPONSE);
response.SetTransactionID(request->transaction_id());
StunByteStringAttribute* username2_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
username2_attr->CopyBytes(username_attr->bytes(), username_attr->length());
response.AddAttribute(username2_attr);
StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode();
error_attr->SetErrorCode(error_code);
error_attr->SetReason(reason);
response.AddAttribute(error_attr);
// Send the response message.
// NOTE: If we wanted to, this is where we would add the HMAC.
talk_base::ByteBuffer buf;
response.Write(&buf);
SendTo(buf.Data(), buf.Length(), addr, false);
}
talk_base::AsyncPacketSocket* Port::CreatePacketSocket(ProtocolType proto) {
if (proto == PROTO_UDP) {
// UDP sockets are simple.
return talk_base::AsyncUDPSocket::Create(factory_);
} else if (proto == PROTO_TCP || proto == PROTO_SSLTCP) {
// Create the base TCP socket. Bail out if this fails.
talk_base::AsyncSocket* socket = factory_->CreateAsyncSocket(SOCK_STREAM);
if (!socket) {
return NULL;
}
// If using a proxy, wrap the socket in a proxy socket.
if (proxy().type == talk_base::PROXY_SOCKS5) {
socket = new talk_base::AsyncSocksProxySocket(
socket, proxy().address, proxy().username, proxy().password);
} else if (proxy().type == talk_base::PROXY_HTTPS) {
socket = new talk_base::AsyncHttpsProxySocket(
socket, user_agent(), proxy().address,
proxy().username, proxy().password);
}
// If using SSLTCP, wrap the TCP socket in a pseudo-SSL socket.
if (proto == PROTO_SSLTCP) {
socket = new talk_base::AsyncSSLSocket(socket);
}
// Finally, wrap that socket in a TCP packet socket.
// [Insert obligatory Taco Town reference here]
return new talk_base::AsyncTCPSocket(socket);
} else {
LOG_J(LS_ERROR, this) << "Unknown protocol (" << proto << ")";
return NULL;
}
}
void Port::OnMessage(talk_base::Message *pmsg) {
ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT);
ASSERT(lifetime_ == LT_PRETIMEOUT);
lifetime_ = LT_POSTTIMEOUT;
CheckTimeout();
}
std::string Port::ToString() const {
std::stringstream ss;
ss << "Port[" << name_ << ":" << type_ << ":" << network_->ToString() << "]";
return ss.str();
}
void Port::EnablePortPackets() {
enable_port_packets_ = true;
}
void Port::Start() {
// The port sticks around for a minimum lifetime, after which
// we destroy it when it drops to zero connections.
if (lifetime_ == LT_PRESTART) {
lifetime_ = LT_PRETIMEOUT;
thread_->PostDelayed(kPortTimeoutDelay, this, MSG_CHECKTIMEOUT);
} else {
LOG_J(LS_WARNING, this) << "Port restart attempted";
}
}
void Port::OnConnectionDestroyed(Connection* conn) {
AddressMap::iterator iter =
connections_.find(conn->remote_candidate().address());
ASSERT(iter != connections_.end());
connections_.erase(iter);
CheckTimeout();
}
void Port::Destroy() {
ASSERT(connections_.empty());
LOG_J(LS_INFO, this) << "Port deleted";
SignalDestroyed(this);
delete this;
}
void Port::CheckTimeout() {
// If this port has no connections, then there's no reason to keep it around.
// When the connections time out (both read and write), they will delete
// themselves, so if we have any connections, they are either readable or
// writable (or still connecting).
if ((lifetime_ == LT_POSTTIMEOUT) && connections_.empty()) {
Destroy();
}
}
// A ConnectionRequest is a simple STUN ping used to determine writability.
class ConnectionRequest : public StunRequest {
public:
explicit ConnectionRequest(Connection* connection) : connection_(connection) {
}
virtual ~ConnectionRequest() {
}
virtual void Prepare(StunMessage* request) {
request->SetType(STUN_BINDING_REQUEST);
StunByteStringAttribute* username_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
std::string username = connection_->remote_candidate().username();
username.append(connection_->port()->username_fragment());
username_attr->CopyBytes(username.c_str(), username.size());
request->AddAttribute(username_attr);
}
virtual void OnResponse(StunMessage* response) {
connection_->OnConnectionRequestResponse(response, Elapsed());
}
virtual void OnErrorResponse(StunMessage* response) {
connection_->OnConnectionRequestErrorResponse(response, Elapsed());
}
virtual void OnTimeout() {
LOG_J(LS_VERBOSE, connection_) << "Timing-out STUN ping " << id();
}
virtual int GetNextDelay() {
// Each request is sent only once. After a single delay , the request will
// time out.
timeout_ = true;
return CONNECTION_RESPONSE_TIMEOUT;
}
private:
Connection* connection_;
};
//
// Connection
//
Connection::Connection(Port* port, size_t index,
const Candidate& remote_candidate)
: port_(port), local_candidate_index_(index),
remote_candidate_(remote_candidate), read_state_(STATE_READ_TIMEOUT),
write_state_(STATE_WRITE_CONNECT), connected_(true), pruned_(false),
requests_(port->thread()), rtt_(DEFAULT_RTT),
last_ping_sent_(0), last_ping_received_(0), reported_(false) {
// Wire up to send stun packets
requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket);
LOG_J(LS_INFO, this) << "Connection created";
}
Connection::~Connection() {
}
const Candidate& Connection::local_candidate() const {
if (local_candidate_index_ < port_->candidates().size())
return port_->candidates()[local_candidate_index_];
ASSERT(false);
static Candidate foo;
return foo;
}
void Connection::set_read_state(ReadState value) {
ReadState old_value = read_state_;
read_state_ = value;
if (value != old_value) {
LOG_J(LS_VERBOSE, this) << "set_read_state";
SignalStateChange(this);
CheckTimeout();
}
}
void Connection::set_write_state(WriteState value) {
WriteState old_value = write_state_;
write_state_ = value;
if (value != old_value) {
LOG_J(LS_VERBOSE, this) << "set_write_state";
SignalStateChange(this);
CheckTimeout();
}
}
void Connection::set_connected(bool value) {
bool old_value = connected_;
connected_ = value;
if (value != old_value) {
LOG_J(LS_VERBOSE, this) << "set_connected";
}
}
void Connection::OnSendStunPacket(
const void* data, size_t size, StunRequest* req) {
port_->SendTo(data, size, remote_candidate_.address(), false);
}
void Connection::OnReadPacket(const char* data, size_t size) {
StunMessage* msg;
std::string remote_username;
const talk_base::SocketAddress& addr(remote_candidate_.address());
if (!port_->GetStunMessage(data, size, addr, msg, remote_username)) {
// The packet did not parse as a valid STUN message
// If this connection is readable, then pass along the packet.
if (read_state_ == STATE_READABLE) {
// readable means data from this address is acceptable
// Send it on!
recv_rate_tracker_.Update(size);
SignalReadPacket(this, data, size);
// If timed out sending writability checks, start up again
if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT))
set_write_state(STATE_WRITE_CONNECT);
} else {
// Not readable means the remote address hasn't send a valid
// binding request yet.
LOG_J(LS_WARNING, this)
<< "Received non-STUN packet from an unreadable connection.";
}
} else if (!msg) {
// The packet was STUN, but was already handled
} else if (remote_username != remote_candidate_.username()) {
// Not destined this connection
LOG_J(LS_ERROR, this) << "Received STUN packet on wrong address.";
if (msg->type() == STUN_BINDING_REQUEST) {
port_->SendBindingErrorResponse(msg, addr, STUN_ERROR_BAD_REQUEST,
STUN_ERROR_REASON_BAD_REQUEST);
}
delete msg;
} else {
// The packet is STUN, with the current username
// If this is a STUN request, then update the readable bit and respond.
// If this is a STUN response, then update the writable bit.
switch (msg->type()) {
case STUN_BINDING_REQUEST:
// Incoming, validated stun request from remote peer.
// This call will also set the connection readable.
port_->SendBindingResponse(msg, addr);
// If timed out sending writability checks, start up again
if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT))
set_write_state(STATE_WRITE_CONNECT);
break;
case STUN_BINDING_RESPONSE:
case STUN_BINDING_ERROR_RESPONSE:
// Response from remote peer. Does it match request sent?
// This doesn't just check, it makes callbacks if transaction
// id's match
requests_.CheckResponse(msg);
break;
default:
ASSERT(false);
break;
}
// Done with the message; delete
delete msg;
}
}
void Connection::Prune() {
if (!pruned_) {
LOG_J(LS_VERBOSE, this) << "Connection pruned";
pruned_ = true;
requests_.Clear();
set_write_state(STATE_WRITE_TIMEOUT);
}
}
void Connection::Destroy() {
LOG_J(LS_VERBOSE, this) << "Connection destroyed";
set_read_state(STATE_READ_TIMEOUT);
set_write_state(STATE_WRITE_TIMEOUT);
}
void Connection::UpdateState(uint32 now) {
// Check the readable state.
//
// Since we don't know how many pings the other side has attempted, the best
// test we can do is a simple window.
if ((read_state_ == STATE_READABLE) &&
(last_ping_received_ + CONNECTION_READ_TIMEOUT <= now)) {
set_read_state(STATE_READ_TIMEOUT);
}
// Check the writable state. (The order of these checks is important.)
//
// Before becoming unwritable, we allow for a fixed number of pings to fail
// (i.e., receive no response). We also have to give the response time to
// get back, so we include a conservative estimate of this.
//
// Before timing out writability, we give a fixed amount of time. This is to
// allow for changes in network conditions.
uint32 rtt = ConservativeRTTEstimate(rtt_);
std::string pings;
for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
char buf[32];
talk_base::sprintfn(buf, sizeof(buf), "%u",
pings_since_last_response_[i]);
pings.append(buf).append(" ");
}
LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_ = " <<
pings << ", rtt = " << rtt << ", now = " << now;
if ((write_state_ == STATE_WRITABLE) &&
TooManyFailures(pings_since_last_response_,
CONNECTION_WRITE_CONNECT_FAILURES,
rtt,
now) &&
TooLongWithoutResponse(pings_since_last_response_,
CONNECTION_WRITE_CONNECT_TIMEOUT,
now)) {
set_write_state(STATE_WRITE_CONNECT);
}
if ((write_state_ == STATE_WRITE_CONNECT) &&
TooLongWithoutResponse(pings_since_last_response_,
CONNECTION_WRITE_TIMEOUT,
now)) {
set_write_state(STATE_WRITE_TIMEOUT);
}
}
void Connection::Ping(uint32 now) {
ASSERT(connected_);
last_ping_sent_ = now;
pings_since_last_response_.push_back(now);
ConnectionRequest *req = new ConnectionRequest(this);
LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now;
requests_.Send(req);
}
void Connection::ReceivedPing() {
last_ping_received_ = talk_base::Time();
set_read_state(STATE_READABLE);
}
std::string Connection::ToString() const {
const char CONNECT_STATE_ABBREV[2] = {
'-', // not connected (false)
'C', // connected (true)
};
const char READ_STATE_ABBREV[2] = {
'R', // STATE_READABLE
'-', // STATE_READ_TIMEOUT
};
const char WRITE_STATE_ABBREV[3] = {
'W', // STATE_WRITABLE
'w', // STATE_WRITE_CONNECT
'-', // STATE_WRITE_TIMEOUT
};
const Candidate& local = local_candidate();
const Candidate& remote = remote_candidate();
std::stringstream ss;
ss << "Conn[" << local.generation()
<< ":" << local.name() << ":" << local.type() << ":"
<< local.protocol() << ":" << local.address().ToString()
<< "->" << remote.name() << ":" << remote.type() << ":"
<< remote.protocol() << ":" << remote.address().ToString()
<< "|"
<< CONNECT_STATE_ABBREV[connected()]
<< READ_STATE_ABBREV[read_state()]
<< WRITE_STATE_ABBREV[write_state()]
<< "|" << rtt_ << "]";
return ss.str();
}
void Connection::OnConnectionRequestResponse(StunMessage* response,
uint32 rtt) {
// We have a potentially valid reply from the remote address.
// The packet must include a username that ends with our fragment,
// since it is a response.
// Check exact message type
bool valid = true;
if (response->type() != STUN_BINDING_RESPONSE)
valid = false;
// Must have username attribute
const StunByteStringAttribute* username_attr =
response->GetByteString(STUN_ATTR_USERNAME);
if (valid) {
if (!username_attr) {
LOG_J(LS_ERROR, this) << "Received likely STUN packet with no username";
valid = false;
}
}
// Length must be at least the size of our fragment (actually, should
// be bigger since our fragment is at the end!)
if (valid) {
if (username_attr->length() <= port_->username_fragment().size()) {
LOG_J(LS_ERROR, this) << "Received likely STUN packet with short username";
valid = false;
}
}
// Compare our fragment with the end of the username - must be exact match
if (valid) {
std::string username_fragment = port_->username_fragment();
int offset = (int)(username_attr->length() - username_fragment.size());
if (std::memcmp(username_attr->bytes() + offset,
username_fragment.c_str(), username_fragment.size()) != 0) {
LOG_J(LS_ERROR, this) << "Received STUN response with bad username";
valid = false;
}
}
if (valid) {
// Valid response. If we're not already, become writable. We may be
// bringing a pruned connection back to life, but if we don't really want
// it, we can always prune it again.
set_write_state(STATE_WRITABLE);
std::string pings;
for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
char buf[32];
talk_base::sprintfn(buf, sizeof(buf), "%u",
pings_since_last_response_[i]);
pings.append(buf).append(" ");
}
LOG_J(LS_VERBOSE, this) << "OnConnectionRequestResponse(): "
"pings_since_last_response_ = " << pings << ", rtt = " << rtt;
pings_since_last_response_.clear();
rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1);
LOG_J(LS_VERBOSE, this) << "Received STUN ping response " <<
response->transaction_id() << " after rtt = " << rtt;
}
}
void Connection::OnConnectionRequestErrorResponse(StunMessage *response,
uint32 rtt) {
const StunErrorCodeAttribute* error = response->GetErrorCode();
uint32 error_code = error ? error->error_code() : STUN_ERROR_GLOBAL_FAILURE;
if ((error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE)
|| (error_code == STUN_ERROR_SERVER_ERROR)
|| (error_code == STUN_ERROR_UNAUTHORIZED)) {
// Recoverable error, retry
} else if (error_code == STUN_ERROR_STALE_CREDENTIALS) {
// Race failure, retry
} else {
// This is not a valid connection.
LOG_J(LS_ERROR, this) << "Received STUN error response; killing connection";
set_write_state(STATE_WRITE_TIMEOUT);
}
}
void Connection::CheckTimeout() {
// If both read and write have timed out, then this connection can contribute
// no more to p2p socket unless at some later date readability were to come
// back. However, we gave readability a long time to timeout, so at this
// point, it seems fair to get rid of this connectoin.
if ((read_state_ == STATE_READ_TIMEOUT) &&
(write_state_ == STATE_WRITE_TIMEOUT)) {
port_->thread()->Post(this, MSG_DELETE);
}
}
void Connection::OnMessage(talk_base::Message *pmsg) {
ASSERT(pmsg->message_id == MSG_DELETE);
LOG_J(LS_INFO, this) << "Connection deleted";
SignalDestroyed(this);
delete this;
}
size_t Connection::recv_bytes_second() {
return recv_rate_tracker_.bytes_second();
}
size_t Connection::recv_total_bytes() {
return recv_rate_tracker_.total_bytes();
}
size_t Connection::sent_bytes_second() {
return send_rate_tracker_.bytes_second();
}
size_t Connection::sent_total_bytes() {
return send_rate_tracker_.total_bytes();
}
ProxyConnection::ProxyConnection(Port* port, size_t index,
const Candidate& candidate)
: Connection(port, index, candidate), error_(0) {
}
int ProxyConnection::Send(const void* data, size_t size) {
if (write_state() != STATE_WRITABLE) {
error_ = EWOULDBLOCK;
return SOCKET_ERROR;
}
int sent = port_->SendTo(data, size, remote_candidate_.address(), true);
if (sent <= 0) {
ASSERT(sent < 0);
error_ = port_->GetError();
} else {
send_rate_tracker_.Update(sent);
}
return sent;
}
RateTracker::RateTracker()
: total_bytes_(0), bytes_second_(0),
last_bytes_second_time_(static_cast<uint32>(-1)),
last_bytes_second_calc_(0) {
}
size_t RateTracker::total_bytes() const {
return total_bytes_;
}
size_t RateTracker::bytes_second() {
// Snapshot bytes / second calculator. Determine how many seconds have
// elapsed since our last reference point. If over 1 second, establish
// a new reference point that is an integer number of seconds since the
// last one, and compute the bytes over that interval.
uint32 current_time = talk_base::Time();
if (last_bytes_second_time_ != static_cast<uint32>(-1)) {
int delta = talk_base::TimeDiff(current_time, last_bytes_second_time_);
if (delta >= 1000) {
int fraction_time = delta % 1000;
int seconds = delta / 1000;
int fraction_bytes =
static_cast<int>(total_bytes_ - last_bytes_second_calc_) *
fraction_time / delta;
// Compute "bytes received during the interval" / "seconds in interval"
bytes_second_ =
(total_bytes_ - last_bytes_second_calc_ - fraction_bytes) / seconds;
last_bytes_second_time_ = current_time - fraction_time;
last_bytes_second_calc_ = total_bytes_ - fraction_bytes;
}
}
if (last_bytes_second_time_ == static_cast<uint32>(-1)) {
last_bytes_second_time_ = current_time;
last_bytes_second_calc_ = total_bytes_;
}
return bytes_second_;
}
void RateTracker::Update(size_t bytes) {
total_bytes_ += bytes;
}
} // namespace cricket