| /* |
| * libjingle |
| * Copyright 2004--2005, Google Inc. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
| * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if defined(_MSC_VER) && _MSC_VER < 1300 |
| #pragma warning(disable:4786) |
| #endif |
| |
| #include <cassert> |
| |
| #ifdef POSIX |
| #include <string.h> |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <sys/time.h> |
| #include <unistd.h> |
| #include <signal.h> |
| #endif |
| |
| #ifdef WIN32 |
| #define WIN32_LEAN_AND_MEAN |
| #include <windows.h> |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| #undef SetPort |
| #endif |
| |
| #include <algorithm> |
| #include <map> |
| |
| #include "talk/base/basictypes.h" |
| #include "talk/base/byteorder.h" |
| #include "talk/base/common.h" |
| #include "talk/base/logging.h" |
| #include "talk/base/nethelpers.h" |
| #include "talk/base/physicalsocketserver.h" |
| #include "talk/base/timeutils.h" |
| #include "talk/base/winping.h" |
| #include "talk/base/win32socketinit.h" |
| |
| // stm: this will tell us if we are on OSX |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #ifdef POSIX |
| #include <netinet/tcp.h> // for TCP_NODELAY |
| #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h |
| typedef void* SockOptArg; |
| #endif // POSIX |
| |
| #ifdef WIN32 |
| typedef char* SockOptArg; |
| #endif |
| |
| namespace talk_base { |
| |
| // Standard MTUs, from RFC 1191 |
| const uint16 PACKET_MAXIMUMS[] = { |
| 65535, // Theoretical maximum, Hyperchannel |
| 32000, // Nothing |
| 17914, // 16Mb IBM Token Ring |
| 8166, // IEEE 802.4 |
| //4464, // IEEE 802.5 (4Mb max) |
| 4352, // FDDI |
| //2048, // Wideband Network |
| 2002, // IEEE 802.5 (4Mb recommended) |
| //1536, // Expermental Ethernet Networks |
| //1500, // Ethernet, Point-to-Point (default) |
| 1492, // IEEE 802.3 |
| 1006, // SLIP, ARPANET |
| //576, // X.25 Networks |
| //544, // DEC IP Portal |
| //512, // NETBIOS |
| 508, // IEEE 802/Source-Rt Bridge, ARCNET |
| 296, // Point-to-Point (low delay) |
| 68, // Official minimum |
| 0, // End of list marker |
| }; |
| |
| const uint32 IP_HEADER_SIZE = 20; |
| const uint32 ICMP_HEADER_SIZE = 8; |
| |
| class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> { |
| public: |
| PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET) |
| : ss_(ss), s_(s), enabled_events_(0), error_(0), |
| state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), |
| resolver_(NULL) { |
| #ifdef WIN32 |
| // EnsureWinsockInit() ensures that winsock is initialized. The default |
| // version of this function doesn't do anything because winsock is |
| // initialized by constructor of a static object. If neccessary libjingle |
| // users can link it with a different version of this function by replacing |
| // win32socketinit.cc. See win32socketinit.cc for more details. |
| EnsureWinsockInit(); |
| #endif |
| if (s_ != INVALID_SOCKET) { |
| enabled_events_ = DE_READ | DE_WRITE; |
| |
| int type = SOCK_STREAM; |
| socklen_t len = sizeof(type); |
| VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len)); |
| udp_ = (SOCK_DGRAM == type); |
| } |
| } |
| |
| virtual ~PhysicalSocket() { |
| Close(); |
| } |
| |
| // Creates the underlying OS socket (same as the "socket" function). |
| virtual bool Create(int type) { |
| Close(); |
| s_ = ::socket(AF_INET, type, 0); |
| udp_ = (SOCK_DGRAM == type); |
| UpdateLastError(); |
| if (udp_) |
| enabled_events_ = DE_READ | DE_WRITE; |
| return s_ != INVALID_SOCKET; |
| } |
| |
| SocketAddress GetLocalAddress() const { |
| sockaddr_in addr; |
| socklen_t addrlen = sizeof(addr); |
| int result = ::getsockname(s_, (sockaddr*)&addr, &addrlen); |
| SocketAddress address; |
| if (result >= 0) { |
| ASSERT(addrlen == sizeof(addr)); |
| address.FromSockAddr(addr); |
| } else { |
| LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" |
| << s_; |
| } |
| return address; |
| } |
| |
| SocketAddress GetRemoteAddress() const { |
| sockaddr_in addr; |
| socklen_t addrlen = sizeof(addr); |
| int result = ::getpeername(s_, (sockaddr*)&addr, &addrlen); |
| SocketAddress address; |
| if (result >= 0) { |
| ASSERT(addrlen == sizeof(addr)); |
| address.FromSockAddr(addr); |
| } else { |
| LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket=" |
| << s_; |
| } |
| return address; |
| } |
| |
| int Bind(const SocketAddress& addr) { |
| sockaddr_in saddr; |
| addr.ToSockAddr(&saddr); |
| int err = ::bind(s_, (sockaddr*)&saddr, sizeof(saddr)); |
| UpdateLastError(); |
| #ifdef _DEBUG |
| if (0 == err) { |
| dbg_addr_ = "Bound @ "; |
| dbg_addr_.append(GetLocalAddress().ToString()); |
| } |
| #endif // _DEBUG |
| return err; |
| } |
| |
| int Connect(const SocketAddress& addr) { |
| // TODO: Implicit creation is required to reconnect... |
| // ...but should we make it more explicit? |
| if ((s_ == INVALID_SOCKET) && !Create(SOCK_STREAM)) |
| return SOCKET_ERROR; |
| if (addr.IsUnresolved()) { |
| if (state_ != CS_CLOSED) { |
| SetError(EALREADY); |
| return SOCKET_ERROR; |
| } |
| |
| LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; |
| resolver_ = new AsyncResolver(); |
| resolver_->set_address(addr); |
| resolver_->SignalWorkDone.connect(this, &PhysicalSocket::OnResolveResult); |
| resolver_->Start(); |
| state_ = CS_CONNECTING; |
| return 0; |
| } |
| |
| return DoConnect(addr); |
| } |
| |
| int DoConnect(const SocketAddress& addr) { |
| sockaddr_in saddr; |
| addr.ToSockAddr(&saddr); |
| int err = ::connect(s_, (sockaddr*)&saddr, sizeof(saddr)); |
| UpdateLastError(); |
| if (err == 0) { |
| state_ = CS_CONNECTED; |
| } else if (IsBlockingError(error_)) { |
| state_ = CS_CONNECTING; |
| enabled_events_ |= DE_CONNECT; |
| } else { |
| return SOCKET_ERROR; |
| } |
| |
| enabled_events_ |= DE_READ | DE_WRITE; |
| return 0; |
| } |
| |
| int GetError() const { |
| return error_; |
| } |
| |
| void SetError(int error) { |
| error_ = error; |
| } |
| |
| ConnState GetState() const { |
| return state_; |
| } |
| |
| int GetOption(Option opt, int* value) { |
| int slevel; |
| int sopt; |
| if (TranslateOption(opt, &slevel, &sopt) == -1) |
| return -1; |
| socklen_t optlen = sizeof(*value); |
| int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); |
| if (ret != -1 && opt == OPT_DONTFRAGMENT) { |
| #ifdef LINUX |
| *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; |
| #endif |
| } |
| return ret; |
| } |
| |
| int SetOption(Option opt, int value) { |
| int slevel; |
| int sopt; |
| if (TranslateOption(opt, &slevel, &sopt) == -1) |
| return -1; |
| if (opt == OPT_DONTFRAGMENT) { |
| #ifdef LINUX |
| value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; |
| #endif |
| } |
| return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); |
| } |
| |
| int Send(const void *pv, size_t cb) { |
| int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb, |
| #ifdef LINUX |
| // Suppress SIGPIPE. Without this, attempting to send on a socket whose |
| // other end is closed will result in a SIGPIPE signal being raised to |
| // our process, which by default will terminate the process, which we |
| // don't want. By specifying this flag, we'll just get the error EPIPE |
| // instead and can handle the error gracefully. |
| MSG_NOSIGNAL |
| #else |
| 0 |
| #endif |
| ); |
| UpdateLastError(); |
| // We have seen minidumps where this may be false. |
| ASSERT(sent <= static_cast<int>(cb)); |
| if ((sent < 0) && IsBlockingError(error_)) { |
| enabled_events_ |= DE_WRITE; |
| } |
| return sent; |
| } |
| |
| int SendTo(const void *pv, size_t cb, const SocketAddress& addr) { |
| sockaddr_in saddr; |
| addr.ToSockAddr(&saddr); |
| int sent = ::sendto( |
| s_, (const char *)pv, (int)cb, |
| #ifdef LINUX |
| // Suppress SIGPIPE. See above for explanation. |
| MSG_NOSIGNAL, |
| #else |
| 0, |
| #endif |
| (sockaddr*)&saddr, sizeof(saddr)); |
| UpdateLastError(); |
| // We have seen minidumps where this may be false. |
| ASSERT(sent <= static_cast<int>(cb)); |
| if ((sent < 0) && IsBlockingError(error_)) { |
| enabled_events_ |= DE_WRITE; |
| } |
| return sent; |
| } |
| |
| int Recv(void *pv, size_t cb) { |
| int received = ::recv(s_, (char *)pv, (int)cb, 0); |
| if ((received == 0) && (cb != 0)) { |
| // Note: on graceful shutdown, recv can return 0. In this case, we |
| // pretend it is blocking, and then signal close, so that simplifying |
| // assumptions can be made about Recv. |
| LOG(LS_WARNING) << "EOF from socket; deferring close event"; |
| // Must turn this back on so that the select() loop will notice the close |
| // event. |
| enabled_events_ |= DE_READ; |
| error_ = EWOULDBLOCK; |
| return SOCKET_ERROR; |
| } |
| UpdateLastError(); |
| bool success = (received >= 0) || IsBlockingError(error_); |
| if (udp_ || success) { |
| enabled_events_ |= DE_READ; |
| } |
| if (!success) { |
| LOG_F(LS_VERBOSE) << "Error = " << error_; |
| } |
| return received; |
| } |
| |
| int RecvFrom(void *pv, size_t cb, SocketAddress *paddr) { |
| sockaddr_in saddr; |
| socklen_t cbAddr = sizeof(saddr); |
| int received = ::recvfrom(s_, (char *)pv, (int)cb, 0, (sockaddr*)&saddr, |
| &cbAddr); |
| UpdateLastError(); |
| if ((received >= 0) && (paddr != NULL)) |
| paddr->FromSockAddr(saddr); |
| bool success = (received >= 0) || IsBlockingError(error_); |
| if (udp_ || success) { |
| enabled_events_ |= DE_READ; |
| } |
| if (!success) { |
| LOG_F(LS_VERBOSE) << "Error = " << error_; |
| } |
| return received; |
| } |
| |
| int Listen(int backlog) { |
| int err = ::listen(s_, backlog); |
| UpdateLastError(); |
| if (err == 0) { |
| state_ = CS_CONNECTING; |
| enabled_events_ |= DE_ACCEPT; |
| #ifdef _DEBUG |
| dbg_addr_ = "Listening @ "; |
| dbg_addr_.append(GetLocalAddress().ToString()); |
| #endif // _DEBUG |
| } |
| return err; |
| } |
| |
| AsyncSocket* Accept(SocketAddress *paddr) { |
| sockaddr_in saddr; |
| socklen_t cbAddr = sizeof(saddr); |
| SOCKET s = ::accept(s_, (sockaddr*)&saddr, &cbAddr); |
| UpdateLastError(); |
| if (s == INVALID_SOCKET) |
| return NULL; |
| enabled_events_ |= DE_ACCEPT; |
| if (paddr != NULL) |
| paddr->FromSockAddr(saddr); |
| return ss_->WrapSocket(s); |
| } |
| |
| int Close() { |
| if (s_ == INVALID_SOCKET) |
| return 0; |
| int err = ::closesocket(s_); |
| UpdateLastError(); |
| s_ = INVALID_SOCKET; |
| state_ = CS_CLOSED; |
| enabled_events_ = 0; |
| if (resolver_) { |
| resolver_->Destroy(false); |
| resolver_ = NULL; |
| } |
| return err; |
| } |
| |
| int EstimateMTU(uint16* mtu) { |
| SocketAddress addr = GetRemoteAddress(); |
| if (addr.IsAny()) { |
| error_ = ENOTCONN; |
| return -1; |
| } |
| |
| #if defined(WIN32) |
| // Gets the interface MTU (TTL=1) for the interface used to reach |addr|. |
| WinPing ping; |
| if (!ping.IsValid()) { |
| error_ = EINVAL; // can't think of a better error ID |
| return -1; |
| } |
| |
| for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) { |
| int32 size = PACKET_MAXIMUMS[level] - IP_HEADER_SIZE - ICMP_HEADER_SIZE; |
| WinPing::PingResult result = ping.Ping(addr.ip(), size, 0, 1, false); |
| if (result == WinPing::PING_FAIL) { |
| error_ = EINVAL; // can't think of a better error ID |
| return -1; |
| } else if (result != WinPing::PING_TOO_LARGE) { |
| *mtu = PACKET_MAXIMUMS[level]; |
| return 0; |
| } |
| } |
| |
| ASSERT(false); |
| return -1; |
| #elif defined(IOS) || defined(OSX) |
| // No simple way to do this on Mac OS X. |
| // SIOCGIFMTU would work if we knew which interface would be used, but |
| // figuring that out is pretty complicated. For now we'll return an error |
| // and let the caller pick a default MTU. |
| error_ = EINVAL; |
| return -1; |
| #elif defined(LINUX) || defined(ANDROID) |
| // Gets the path MTU. |
| int value; |
| socklen_t vlen = sizeof(value); |
| int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen); |
| if (err < 0) { |
| UpdateLastError(); |
| return err; |
| } |
| |
| ASSERT((0 <= value) && (value <= 65536)); |
| *mtu = value; |
| return 0; |
| #endif |
| } |
| |
| SocketServer* socketserver() { return ss_; } |
| |
| protected: |
| void OnResolveResult(SignalThread* thread) { |
| if (thread != resolver_) { |
| return; |
| } |
| |
| int error = resolver_->error(); |
| if (error == 0) { |
| error = DoConnect(resolver_->address()); |
| } else { |
| Close(); |
| } |
| |
| if (error) { |
| error_ = error; |
| SignalCloseEvent(this, error_); |
| } |
| } |
| |
| void UpdateLastError() { |
| error_ = LAST_SYSTEM_ERROR; |
| } |
| |
| static int TranslateOption(Option opt, int* slevel, int* sopt) { |
| switch (opt) { |
| case OPT_DONTFRAGMENT: |
| #ifdef WIN32 |
| *slevel = IPPROTO_IP; |
| *sopt = IP_DONTFRAGMENT; |
| break; |
| #elif defined(IOS) || defined(OSX) || defined(BSD) |
| LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; |
| return -1; |
| #elif defined(POSIX) |
| *slevel = IPPROTO_IP; |
| *sopt = IP_MTU_DISCOVER; |
| break; |
| #endif |
| case OPT_RCVBUF: |
| *slevel = SOL_SOCKET; |
| *sopt = SO_RCVBUF; |
| break; |
| case OPT_SNDBUF: |
| *slevel = SOL_SOCKET; |
| *sopt = SO_SNDBUF; |
| break; |
| case OPT_NODELAY: |
| *slevel = IPPROTO_TCP; |
| *sopt = TCP_NODELAY; |
| break; |
| default: |
| ASSERT(false); |
| return -1; |
| } |
| return 0; |
| } |
| |
| PhysicalSocketServer* ss_; |
| SOCKET s_; |
| uint8 enabled_events_; |
| bool udp_; |
| int error_; |
| ConnState state_; |
| AsyncResolver* resolver_; |
| |
| #ifdef _DEBUG |
| std::string dbg_addr_; |
| #endif // _DEBUG; |
| }; |
| |
| #ifdef POSIX |
| class EventDispatcher : public Dispatcher { |
| public: |
| EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) { |
| if (pipe(afd_) < 0) |
| LOG(LERROR) << "pipe failed"; |
| ss_->Add(this); |
| } |
| |
| virtual ~EventDispatcher() { |
| ss_->Remove(this); |
| close(afd_[0]); |
| close(afd_[1]); |
| } |
| |
| virtual void Signal() { |
| CritScope cs(&crit_); |
| if (!fSignaled_) { |
| const uint8 b[1] = { 0 }; |
| if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) { |
| fSignaled_ = true; |
| } |
| } |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return DE_READ; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| // It is not possible to perfectly emulate an auto-resetting event with |
| // pipes. This simulates it by resetting before the event is handled. |
| |
| CritScope cs(&crit_); |
| if (fSignaled_) { |
| uint8 b[4]; // Allow for reading more than 1 byte, but expect 1. |
| VERIFY(1 == read(afd_[0], b, sizeof(b))); |
| fSignaled_ = false; |
| } |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| ASSERT(false); |
| } |
| |
| virtual int GetDescriptor() { |
| return afd_[0]; |
| } |
| |
| virtual bool IsDescriptorClosed() { |
| return false; |
| } |
| |
| private: |
| PhysicalSocketServer *ss_; |
| int afd_[2]; |
| bool fSignaled_; |
| CriticalSection crit_; |
| }; |
| |
| // These two classes use the self-pipe trick to deliver POSIX signals to our |
| // select loop. This is the only safe, reliable, cross-platform way to do |
| // non-trivial things with a POSIX signal in an event-driven program (until |
| // proper pselect() implementations become ubiquitous). |
| |
| class PosixSignalHandler { |
| public: |
| // POSIX only specifies 32 signals, but in principle the system might have |
| // more and the programmer might choose to use them, so we size our array |
| // for 128. |
| static const int kNumPosixSignals = 128; |
| |
| // There is just a single global instance. (Signal handlers do not get any |
| // sort of user-defined void * parameter, so they can't access anything that |
| // isn't global.) |
| static PosixSignalHandler* Instance() { |
| LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ()); |
| return &instance; |
| } |
| |
| // Returns true if the given signal number is set. |
| bool IsSignalSet(int signum) const { |
| ASSERT(signum < ARRAY_SIZE(received_signal_)); |
| if (signum < ARRAY_SIZE(received_signal_)) { |
| return received_signal_[signum]; |
| } else { |
| return false; |
| } |
| } |
| |
| // Clears the given signal number. |
| void ClearSignal(int signum) { |
| ASSERT(signum < ARRAY_SIZE(received_signal_)); |
| if (signum < ARRAY_SIZE(received_signal_)) { |
| received_signal_[signum] = false; |
| } |
| } |
| |
| // Returns the file descriptor to monitor for signal events. |
| int GetDescriptor() const { |
| return afd_[0]; |
| } |
| |
| // This is called directly from our real signal handler, so it must be |
| // signal-handler-safe. That means it cannot assume anything about the |
| // user-level state of the process, since the handler could be executed at any |
| // time on any thread. |
| void OnPosixSignalReceived(int signum) { |
| if (signum >= ARRAY_SIZE(received_signal_)) { |
| // We don't have space in our array for this. |
| return; |
| } |
| // Set a flag saying we've seen this signal. |
| received_signal_[signum] = true; |
| // Notify application code that we got a signal. |
| const uint8 b[1] = { 0 }; |
| if (-1 == write(afd_[1], b, sizeof(b))) { |
| // Nothing we can do here. If there's an error somehow then there's |
| // nothing we can safely do from a signal handler. |
| // No, we can't even safely log it. |
| // But, we still have to check the return value here. Otherwise, |
| // GCC 4.4.1 complains ignoring return value. Even (void) doesn't help. |
| return; |
| } |
| } |
| |
| private: |
| PosixSignalHandler() { |
| if (pipe(afd_) < 0) { |
| LOG_ERR(LS_ERROR) << "pipe failed"; |
| return; |
| } |
| if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) { |
| LOG_ERR(LS_WARNING) << "fcntl #1 failed"; |
| } |
| if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) { |
| LOG_ERR(LS_WARNING) << "fcntl #2 failed"; |
| } |
| memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)), |
| 0, |
| sizeof(received_signal_)); |
| } |
| |
| ~PosixSignalHandler() { |
| int fd1 = afd_[0]; |
| int fd2 = afd_[1]; |
| // We clobber the stored file descriptor numbers here or else in principle |
| // a signal that happens to be delivered during application termination |
| // could erroneously write a zero byte to an unrelated file handle in |
| // OnPosixSignalReceived() if some other file happens to be opened later |
| // during shutdown and happens to be given the same file descriptor number |
| // as our pipe had. Unfortunately even with this precaution there is still a |
| // race where that could occur if said signal happens to be handled |
| // concurrently with this code and happens to have already read the value of |
| // afd_[1] from memory before we clobber it, but that's unlikely. |
| afd_[0] = -1; |
| afd_[1] = -1; |
| close(fd1); |
| close(fd2); |
| } |
| |
| int afd_[2]; |
| // These are boolean flags that will be set in our signal handler and read |
| // and cleared from Wait(). There is a race involved in this, but it is |
| // benign. The signal handler sets the flag before signaling the pipe, so |
| // we'll never end up blocking in select() while a flag is still true. |
| // However, if two of the same signal arrive close to each other then it's |
| // possible that the second time the handler may set the flag while it's still |
| // true, meaning that signal will be missed. But the first occurrence of it |
| // will still be handled, so this isn't a problem. |
| // Volatile is not necessary here for correctness, but this data _is_ volatile |
| // so I've marked it as such. |
| volatile uint8 received_signal_[kNumPosixSignals]; |
| }; |
| |
| class PosixSignalDispatcher : public Dispatcher { |
| public: |
| PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) { |
| owner_->Add(this); |
| } |
| |
| virtual ~PosixSignalDispatcher() { |
| owner_->Remove(this); |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return DE_READ; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| // Events might get grouped if signals come very fast, so we read out up to |
| // 16 bytes to make sure we keep the pipe empty. |
| uint8 b[16]; |
| ssize_t ret = read(GetDescriptor(), b, sizeof(b)); |
| if (ret < 0) { |
| LOG_ERR(LS_WARNING) << "Error in read()"; |
| } else if (ret == 0) { |
| LOG(LS_WARNING) << "Should have read at least one byte"; |
| } |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals; |
| ++signum) { |
| if (PosixSignalHandler::Instance()->IsSignalSet(signum)) { |
| PosixSignalHandler::Instance()->ClearSignal(signum); |
| HandlerMap::iterator i = handlers_.find(signum); |
| if (i == handlers_.end()) { |
| // This can happen if a signal is delivered to our process at around |
| // the same time as we unset our handler for it. It is not an error |
| // condition, but it's unusual enough to be worth logging. |
| LOG(LS_INFO) << "Received signal with no handler: " << signum; |
| } else { |
| // Otherwise, execute our handler. |
| (*i->second)(signum); |
| } |
| } |
| } |
| } |
| |
| virtual int GetDescriptor() { |
| return PosixSignalHandler::Instance()->GetDescriptor(); |
| } |
| |
| virtual bool IsDescriptorClosed() { |
| return false; |
| } |
| |
| void SetHandler(int signum, void (*handler)(int)) { |
| handlers_[signum] = handler; |
| } |
| |
| void ClearHandler(int signum) { |
| handlers_.erase(signum); |
| } |
| |
| bool HasHandlers() { |
| return !handlers_.empty(); |
| } |
| |
| private: |
| typedef std::map<int, void (*)(int)> HandlerMap; |
| |
| HandlerMap handlers_; |
| // Our owner. |
| PhysicalSocketServer *owner_; |
| }; |
| |
| class SocketDispatcher : public Dispatcher, public PhysicalSocket { |
| public: |
| explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) { |
| } |
| SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) { |
| } |
| |
| virtual ~SocketDispatcher() { |
| Close(); |
| } |
| |
| bool Initialize() { |
| ss_->Add(this); |
| fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); |
| return true; |
| } |
| |
| virtual bool Create(int type) { |
| // Change the socket to be non-blocking. |
| if (!PhysicalSocket::Create(type)) |
| return false; |
| |
| return Initialize(); |
| } |
| |
| virtual int GetDescriptor() { |
| return s_; |
| } |
| |
| virtual bool IsDescriptorClosed() { |
| // We don't have a reliable way of distinguishing end-of-stream |
| // from readability. So test on each readable call. Is this |
| // inefficient? Probably. |
| char ch; |
| ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK); |
| if (res > 0) { |
| // Data available, so not closed. |
| return false; |
| } else if (res == 0) { |
| // EOF, so closed. |
| return true; |
| } else { // error |
| switch (errno) { |
| // Returned if we've already closed s_. |
| case EBADF: |
| // Returned during ungraceful peer shutdown. |
| case ECONNRESET: |
| return true; |
| default: |
| // Assume that all other errors are just blocking errors, meaning the |
| // connection is still good but we just can't read from it right now. |
| // This should only happen when connecting (and at most once), because |
| // in all other cases this function is only called if the file |
| // descriptor is already known to be in the readable state. However, |
| // it's not necessary a problem if we spuriously interpret a |
| // "connection lost"-type error as a blocking error, because typically |
| // the next recv() will get EOF, so we'll still eventually notice that |
| // the socket is closed. |
| LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; |
| return false; |
| } |
| } |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return enabled_events_; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| if ((ff & DE_CONNECT) != 0) |
| state_ = CS_CONNECTED; |
| if ((ff & DE_CLOSE) != 0) |
| state_ = CS_CLOSED; |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| if ((ff & DE_READ) != 0) { |
| enabled_events_ &= ~DE_READ; |
| SignalReadEvent(this); |
| } |
| if ((ff & DE_WRITE) != 0) { |
| enabled_events_ &= ~DE_WRITE; |
| SignalWriteEvent(this); |
| } |
| if ((ff & DE_CONNECT) != 0) { |
| enabled_events_ &= ~DE_CONNECT; |
| SignalConnectEvent(this); |
| } |
| if ((ff & DE_ACCEPT) != 0) { |
| enabled_events_ &= ~DE_ACCEPT; |
| SignalReadEvent(this); |
| } |
| if ((ff & DE_CLOSE) != 0) { |
| // The socket is now dead to us, so stop checking it. |
| enabled_events_ = 0; |
| SignalCloseEvent(this, err); |
| } |
| } |
| |
| virtual int Close() { |
| if (s_ == INVALID_SOCKET) |
| return 0; |
| |
| ss_->Remove(this); |
| return PhysicalSocket::Close(); |
| } |
| }; |
| |
| class FileDispatcher: public Dispatcher, public AsyncFile { |
| public: |
| FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) { |
| set_readable(true); |
| |
| ss_->Add(this); |
| |
| fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK); |
| } |
| |
| virtual ~FileDispatcher() { |
| ss_->Remove(this); |
| } |
| |
| SocketServer* socketserver() { return ss_; } |
| |
| virtual int GetDescriptor() { |
| return fd_; |
| } |
| |
| virtual bool IsDescriptorClosed() { |
| return false; |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return flags_; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| if ((ff & DE_READ) != 0) |
| SignalReadEvent(this); |
| if ((ff & DE_WRITE) != 0) |
| SignalWriteEvent(this); |
| if ((ff & DE_CLOSE) != 0) |
| SignalCloseEvent(this, err); |
| } |
| |
| virtual bool readable() { |
| return (flags_ & DE_READ) != 0; |
| } |
| |
| virtual void set_readable(bool value) { |
| flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ); |
| } |
| |
| virtual bool writable() { |
| return (flags_ & DE_WRITE) != 0; |
| } |
| |
| virtual void set_writable(bool value) { |
| flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE); |
| } |
| |
| private: |
| PhysicalSocketServer* ss_; |
| int fd_; |
| int flags_; |
| }; |
| |
| AsyncFile* PhysicalSocketServer::CreateFile(int fd) { |
| return new FileDispatcher(fd, this); |
| } |
| |
| #endif // POSIX |
| |
| #ifdef WIN32 |
| static uint32 FlagsToEvents(uint32 events) { |
| uint32 ffFD = FD_CLOSE; |
| if (events & DE_READ) |
| ffFD |= FD_READ; |
| if (events & DE_WRITE) |
| ffFD |= FD_WRITE; |
| if (events & DE_CONNECT) |
| ffFD |= FD_CONNECT; |
| if (events & DE_ACCEPT) |
| ffFD |= FD_ACCEPT; |
| return ffFD; |
| } |
| |
| class EventDispatcher : public Dispatcher { |
| public: |
| EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) { |
| hev_ = WSACreateEvent(); |
| if (hev_) { |
| ss_->Add(this); |
| } |
| } |
| |
| ~EventDispatcher() { |
| if (hev_ != NULL) { |
| ss_->Remove(this); |
| WSACloseEvent(hev_); |
| hev_ = NULL; |
| } |
| } |
| |
| virtual void Signal() { |
| if (hev_ != NULL) |
| WSASetEvent(hev_); |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return 0; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| WSAResetEvent(hev_); |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| } |
| |
| virtual WSAEVENT GetWSAEvent() { |
| return hev_; |
| } |
| |
| virtual SOCKET GetSocket() { |
| return INVALID_SOCKET; |
| } |
| |
| virtual bool CheckSignalClose() { return false; } |
| |
| private: |
| PhysicalSocketServer* ss_; |
| WSAEVENT hev_; |
| }; |
| |
| class SocketDispatcher : public Dispatcher, public PhysicalSocket { |
| public: |
| static int next_id_; |
| int id_; |
| bool signal_close_; |
| int signal_err_; |
| |
| SocketDispatcher(PhysicalSocketServer* ss) |
| : PhysicalSocket(ss), |
| id_(0), |
| signal_close_(false) { |
| } |
| |
| SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) |
| : PhysicalSocket(ss, s), |
| id_(0), |
| signal_close_(false) { |
| } |
| |
| virtual ~SocketDispatcher() { |
| Close(); |
| } |
| |
| bool Initialize() { |
| ASSERT(s_ != INVALID_SOCKET); |
| // Must be a non-blocking |
| u_long argp = 1; |
| ioctlsocket(s_, FIONBIO, &argp); |
| ss_->Add(this); |
| return true; |
| } |
| |
| virtual bool Create(int type) { |
| // Create socket |
| if (!PhysicalSocket::Create(type)) |
| return false; |
| |
| if (!Initialize()) |
| return false; |
| |
| do { id_ = ++next_id_; } while (id_ == 0); |
| return true; |
| } |
| |
| virtual int Close() { |
| if (s_ == INVALID_SOCKET) |
| return 0; |
| |
| id_ = 0; |
| signal_close_ = false; |
| ss_->Remove(this); |
| return PhysicalSocket::Close(); |
| } |
| |
| virtual uint32 GetRequestedEvents() { |
| return enabled_events_; |
| } |
| |
| virtual void OnPreEvent(uint32 ff) { |
| if ((ff & DE_CONNECT) != 0) |
| state_ = CS_CONNECTED; |
| // We set CS_CLOSED from CheckSignalClose. |
| } |
| |
| virtual void OnEvent(uint32 ff, int err) { |
| int cache_id = id_; |
| if ((ff & DE_READ) != 0) { |
| enabled_events_ &= ~DE_READ; |
| SignalReadEvent(this); |
| } |
| if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { |
| enabled_events_ &= ~DE_WRITE; |
| SignalWriteEvent(this); |
| } |
| if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { |
| if (ff != DE_CONNECT) |
| LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; |
| enabled_events_ &= ~DE_CONNECT; |
| #ifdef _DEBUG |
| dbg_addr_ = "Connected @ "; |
| dbg_addr_.append(GetRemoteAddress().ToString()); |
| #endif // _DEBUG |
| SignalConnectEvent(this); |
| } |
| if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { |
| enabled_events_ &= ~DE_ACCEPT; |
| SignalReadEvent(this); |
| } |
| if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { |
| signal_close_ = true; |
| signal_err_ = err; |
| } |
| } |
| |
| virtual WSAEVENT GetWSAEvent() { |
| return WSA_INVALID_EVENT; |
| } |
| |
| virtual SOCKET GetSocket() { |
| return s_; |
| } |
| |
| virtual bool CheckSignalClose() { |
| if (!signal_close_) |
| return false; |
| |
| char ch; |
| if (recv(s_, &ch, 1, MSG_PEEK) > 0) |
| return false; |
| |
| state_ = CS_CLOSED; |
| signal_close_ = false; |
| SignalCloseEvent(this, signal_err_); |
| return true; |
| } |
| }; |
| |
| int SocketDispatcher::next_id_ = 0; |
| |
| #endif // WIN32 |
| |
| // Sets the value of a boolean value to false when signaled. |
| class Signaler : public EventDispatcher { |
| public: |
| Signaler(PhysicalSocketServer* ss, bool* pf) |
| : EventDispatcher(ss), pf_(pf) { |
| } |
| virtual ~Signaler() { } |
| |
| void OnEvent(uint32 ff, int err) { |
| if (pf_) |
| *pf_ = false; |
| } |
| |
| private: |
| bool *pf_; |
| }; |
| |
| PhysicalSocketServer::PhysicalSocketServer() |
| : fWait_(false), |
| last_tick_tracked_(0), |
| last_tick_dispatch_count_(0) { |
| signal_wakeup_ = new Signaler(this, &fWait_); |
| #ifdef WIN32 |
| socket_ev_ = WSACreateEvent(); |
| #endif |
| } |
| |
| PhysicalSocketServer::~PhysicalSocketServer() { |
| #ifdef WIN32 |
| WSACloseEvent(socket_ev_); |
| #endif |
| #ifdef POSIX |
| signal_dispatcher_.reset(); |
| #endif |
| delete signal_wakeup_; |
| ASSERT(dispatchers_.empty()); |
| } |
| |
| void PhysicalSocketServer::WakeUp() { |
| signal_wakeup_->Signal(); |
| } |
| |
| Socket* PhysicalSocketServer::CreateSocket(int type) { |
| PhysicalSocket* socket = new PhysicalSocket(this); |
| if (socket->Create(type)) { |
| return socket; |
| } else { |
| delete socket; |
| return 0; |
| } |
| } |
| |
| AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) { |
| SocketDispatcher* dispatcher = new SocketDispatcher(this); |
| if (dispatcher->Create(type)) { |
| return dispatcher; |
| } else { |
| delete dispatcher; |
| return 0; |
| } |
| } |
| |
| AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) { |
| SocketDispatcher* dispatcher = new SocketDispatcher(s, this); |
| if (dispatcher->Initialize()) { |
| return dispatcher; |
| } else { |
| delete dispatcher; |
| return 0; |
| } |
| } |
| |
| void PhysicalSocketServer::Add(Dispatcher *pdispatcher) { |
| CritScope cs(&crit_); |
| // Prevent duplicates. This can cause dead dispatchers to stick around. |
| DispatcherList::iterator pos = std::find(dispatchers_.begin(), |
| dispatchers_.end(), |
| pdispatcher); |
| if (pos != dispatchers_.end()) |
| return; |
| dispatchers_.push_back(pdispatcher); |
| } |
| |
| void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) { |
| CritScope cs(&crit_); |
| DispatcherList::iterator pos = std::find(dispatchers_.begin(), |
| dispatchers_.end(), |
| pdispatcher); |
| ASSERT(pos != dispatchers_.end()); |
| size_t index = pos - dispatchers_.begin(); |
| dispatchers_.erase(pos); |
| for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end(); |
| ++it) { |
| if (index < **it) { |
| --**it; |
| } |
| } |
| } |
| |
| #ifdef POSIX |
| bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { |
| // Calculate timing information |
| |
| struct timeval *ptvWait = NULL; |
| struct timeval tvWait; |
| struct timeval tvStop; |
| if (cmsWait != kForever) { |
| // Calculate wait timeval |
| tvWait.tv_sec = cmsWait / 1000; |
| tvWait.tv_usec = (cmsWait % 1000) * 1000; |
| ptvWait = &tvWait; |
| |
| // Calculate when to return in a timeval |
| gettimeofday(&tvStop, NULL); |
| tvStop.tv_sec += tvWait.tv_sec; |
| tvStop.tv_usec += tvWait.tv_usec; |
| if (tvStop.tv_usec >= 1000000) { |
| tvStop.tv_usec -= 1000000; |
| tvStop.tv_sec += 1; |
| } |
| } |
| |
| // Zero all fd_sets. Don't need to do this inside the loop since |
| // select() zeros the descriptors not signaled |
| |
| fd_set fdsRead; |
| FD_ZERO(&fdsRead); |
| fd_set fdsWrite; |
| FD_ZERO(&fdsWrite); |
| |
| fWait_ = true; |
| |
| while (fWait_) { |
| int fdmax = -1; |
| { |
| CritScope cr(&crit_); |
| for (size_t i = 0; i < dispatchers_.size(); ++i) { |
| // Query dispatchers for read and write wait state |
| Dispatcher *pdispatcher = dispatchers_[i]; |
| ASSERT(pdispatcher); |
| if (!process_io && (pdispatcher != signal_wakeup_)) |
| continue; |
| int fd = pdispatcher->GetDescriptor(); |
| if (fd > fdmax) |
| fdmax = fd; |
| |
| uint32 ff = pdispatcher->GetRequestedEvents(); |
| if (ff & (DE_READ | DE_ACCEPT)) |
| FD_SET(fd, &fdsRead); |
| if (ff & (DE_WRITE | DE_CONNECT)) |
| FD_SET(fd, &fdsWrite); |
| } |
| } |
| |
| // Wait then call handlers as appropriate |
| // < 0 means error |
| // 0 means timeout |
| // > 0 means count of descriptors ready |
| int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait); |
| |
| // If error, return error. |
| if (n < 0) { |
| if (errno != EINTR) { |
| LOG_E(LS_ERROR, EN, errno) << "select"; |
| return false; |
| } |
| // Else ignore the error and keep going. If this EINTR was for one of the |
| // signals managed by this PhysicalSocketServer, the |
| // PosixSignalDeliveryDispatcher will be in the signaled state in the next |
| // iteration. |
| } else if (n == 0) { |
| // If timeout, return success |
| return true; |
| } else { |
| // We have signaled descriptors |
| CritScope cr(&crit_); |
| for (size_t i = 0; i < dispatchers_.size(); ++i) { |
| Dispatcher *pdispatcher = dispatchers_[i]; |
| int fd = pdispatcher->GetDescriptor(); |
| uint32 ff = 0; |
| int errcode = 0; |
| |
| // Reap any error code, which can be signaled through reads or writes. |
| // TODO: Should we set errcode if getsockopt fails? |
| if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) { |
| socklen_t len = sizeof(errcode); |
| ::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len); |
| } |
| |
| // Check readable descriptors. If we're waiting on an accept, signal |
| // that. Otherwise we're waiting for data, check to see if we're |
| // readable or really closed. |
| // TODO: Only peek at TCP descriptors. |
| if (FD_ISSET(fd, &fdsRead)) { |
| FD_CLR(fd, &fdsRead); |
| if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) { |
| ff |= DE_ACCEPT; |
| } else if (errcode || pdispatcher->IsDescriptorClosed()) { |
| ff |= DE_CLOSE; |
| } else { |
| ff |= DE_READ; |
| } |
| } |
| |
| // Check writable descriptors. If we're waiting on a connect, detect |
| // success versus failure by the reaped error code. |
| if (FD_ISSET(fd, &fdsWrite)) { |
| FD_CLR(fd, &fdsWrite); |
| if (pdispatcher->GetRequestedEvents() & DE_CONNECT) { |
| if (!errcode) { |
| ff |= DE_CONNECT; |
| } else { |
| ff |= DE_CLOSE; |
| } |
| } else { |
| ff |= DE_WRITE; |
| } |
| } |
| |
| // Tell the descriptor about the event. |
| if (ff != 0) { |
| pdispatcher->OnPreEvent(ff); |
| pdispatcher->OnEvent(ff, errcode); |
| } |
| } |
| } |
| |
| // Recalc the time remaining to wait. Doing it here means it doesn't get |
| // calced twice the first time through the loop |
| |
| if (cmsWait != kForever) { |
| ptvWait->tv_sec = 0; |
| ptvWait->tv_usec = 0; |
| struct timeval tvT; |
| gettimeofday(&tvT, NULL); |
| if ((tvStop.tv_sec > tvT.tv_sec) |
| || ((tvStop.tv_sec == tvT.tv_sec) |
| && (tvStop.tv_usec > tvT.tv_usec))) { |
| ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec; |
| ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec; |
| if (ptvWait->tv_usec < 0) { |
| ASSERT(ptvWait->tv_sec > 0); |
| ptvWait->tv_usec += 1000000; |
| ptvWait->tv_sec -= 1; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static void GlobalSignalHandler(int signum) { |
| PosixSignalHandler::Instance()->OnPosixSignalReceived(signum); |
| } |
| |
| bool PhysicalSocketServer::SetPosixSignalHandler(int signum, |
| void (*handler)(int)) { |
| // If handler is SIG_IGN or SIG_DFL then clear our user-level handler, |
| // otherwise set one. |
| if (handler == SIG_IGN || handler == SIG_DFL) { |
| if (!InstallSignal(signum, handler)) { |
| return false; |
| } |
| if (signal_dispatcher_.get()) { |
| signal_dispatcher_->ClearHandler(signum); |
| if (!signal_dispatcher_->HasHandlers()) { |
| signal_dispatcher_.reset(); |
| } |
| } |
| } else { |
| if (!signal_dispatcher_.get()) { |
| signal_dispatcher_.reset(new PosixSignalDispatcher(this)); |
| } |
| signal_dispatcher_->SetHandler(signum, handler); |
| if (!InstallSignal(signum, &GlobalSignalHandler)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| Dispatcher* PhysicalSocketServer::signal_dispatcher() { |
| return signal_dispatcher_.get(); |
| } |
| |
| bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) { |
| struct sigaction act; |
| // It doesn't really matter what we set this mask to. |
| if (sigemptyset(&act.sa_mask) != 0) { |
| LOG_ERR(LS_ERROR) << "Couldn't set mask"; |
| return false; |
| } |
| act.sa_handler = handler; |
| // Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it |
| // and it's a nuisance. Though some syscalls still return EINTR and there's no |
| // real standard for which ones. :( |
| act.sa_flags = SA_RESTART; |
| if (sigaction(signum, &act, NULL) != 0) { |
| LOG_ERR(LS_ERROR) << "Couldn't set sigaction"; |
| return false; |
| } |
| return true; |
| } |
| #endif // POSIX |
| |
| #ifdef WIN32 |
| bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { |
| int cmsTotal = cmsWait; |
| int cmsElapsed = 0; |
| uint32 msStart = Time(); |
| |
| #if LOGGING |
| if (last_tick_dispatch_count_ == 0) { |
| last_tick_tracked_ = msStart; |
| } |
| #endif |
| |
| fWait_ = true; |
| while (fWait_) { |
| std::vector<WSAEVENT> events; |
| std::vector<Dispatcher *> event_owners; |
| |
| events.push_back(socket_ev_); |
| |
| { |
| CritScope cr(&crit_); |
| size_t i = 0; |
| iterators_.push_back(&i); |
| // Don't track dispatchers_.size(), because we want to pick up any new |
| // dispatchers that were added while processing the loop. |
| while (i < dispatchers_.size()) { |
| Dispatcher* disp = dispatchers_[i++]; |
| if (!process_io && (disp != signal_wakeup_)) |
| continue; |
| SOCKET s = disp->GetSocket(); |
| if (disp->CheckSignalClose()) { |
| // We just signalled close, don't poll this socket |
| } else if (s != INVALID_SOCKET) { |
| WSAEventSelect(s, |
| events[0], |
| FlagsToEvents(disp->GetRequestedEvents())); |
| } else { |
| events.push_back(disp->GetWSAEvent()); |
| event_owners.push_back(disp); |
| } |
| } |
| ASSERT(iterators_.back() == &i); |
| iterators_.pop_back(); |
| } |
| |
| // Which is shorter, the delay wait or the asked wait? |
| |
| int cmsNext; |
| if (cmsWait == kForever) { |
| cmsNext = cmsWait; |
| } else { |
| cmsNext = _max(0, cmsTotal - cmsElapsed); |
| } |
| |
| // Wait for one of the events to signal |
| DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), |
| &events[0], |
| false, |
| cmsNext, |
| false); |
| |
| #if 0 // LOGGING |
| // we track this information purely for logging purposes. |
| last_tick_dispatch_count_++; |
| if (last_tick_dispatch_count_ >= 1000) { |
| int32 elapsed = TimeSince(last_tick_tracked_); |
| LOG(INFO) << "PhysicalSocketServer took " << elapsed |
| << "ms for 1000 events"; |
| |
| // If we get more than 1000 events in a second, we are spinning badly |
| // (normally it should take about 8-20 seconds). |
| ASSERT(elapsed > 1000); |
| |
| last_tick_tracked_ = Time(); |
| last_tick_dispatch_count_ = 0; |
| } |
| #endif |
| |
| if (dw == WSA_WAIT_FAILED) { |
| // Failed? |
| // TODO: need a better strategy than this! |
| int error = WSAGetLastError(); |
| ASSERT(false); |
| return false; |
| } else if (dw == WSA_WAIT_TIMEOUT) { |
| // Timeout? |
| return true; |
| } else { |
| // Figure out which one it is and call it |
| CritScope cr(&crit_); |
| int index = dw - WSA_WAIT_EVENT_0; |
| if (index > 0) { |
| --index; // The first event is the socket event |
| event_owners[index]->OnPreEvent(0); |
| event_owners[index]->OnEvent(0, 0); |
| } else if (process_io) { |
| size_t i = 0, end = dispatchers_.size(); |
| iterators_.push_back(&i); |
| iterators_.push_back(&end); // Don't iterate over new dispatchers. |
| while (i < end) { |
| Dispatcher* disp = dispatchers_[i++]; |
| SOCKET s = disp->GetSocket(); |
| if (s == INVALID_SOCKET) |
| continue; |
| |
| WSANETWORKEVENTS wsaEvents; |
| int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); |
| if (err == 0) { |
| |
| #if LOGGING |
| { |
| if ((wsaEvents.lNetworkEvents & FD_READ) && |
| wsaEvents.iErrorCode[FD_READ_BIT] != 0) { |
| LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error " |
| << wsaEvents.iErrorCode[FD_READ_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_WRITE) && |
| wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { |
| LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error " |
| << wsaEvents.iErrorCode[FD_WRITE_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_CONNECT) && |
| wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { |
| LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error " |
| << wsaEvents.iErrorCode[FD_CONNECT_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && |
| wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { |
| LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error " |
| << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_CLOSE) && |
| wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { |
| LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error " |
| << wsaEvents.iErrorCode[FD_CLOSE_BIT]; |
| } |
| } |
| #endif |
| uint32 ff = 0; |
| int errcode = 0; |
| if (wsaEvents.lNetworkEvents & FD_READ) |
| ff |= DE_READ; |
| if (wsaEvents.lNetworkEvents & FD_WRITE) |
| ff |= DE_WRITE; |
| if (wsaEvents.lNetworkEvents & FD_CONNECT) { |
| if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { |
| ff |= DE_CONNECT; |
| } else { |
| ff |= DE_CLOSE; |
| errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; |
| } |
| } |
| if (wsaEvents.lNetworkEvents & FD_ACCEPT) |
| ff |= DE_ACCEPT; |
| if (wsaEvents.lNetworkEvents & FD_CLOSE) { |
| ff |= DE_CLOSE; |
| errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; |
| } |
| if (ff != 0) { |
| disp->OnPreEvent(ff); |
| disp->OnEvent(ff, errcode); |
| } |
| } |
| } |
| ASSERT(iterators_.back() == &end); |
| iterators_.pop_back(); |
| ASSERT(iterators_.back() == &i); |
| iterators_.pop_back(); |
| } |
| |
| // Reset the network event until new activity occurs |
| WSAResetEvent(socket_ev_); |
| } |
| |
| // Break? |
| if (!fWait_) |
| break; |
| cmsElapsed = TimeSince(msStart); |
| if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) { |
| break; |
| } |
| } |
| |
| // Done |
| return true; |
| } |
| #endif // WIN32 |
| |
| } // namespace talk_base |