| /* |
| * Real Audio 1.0 (14.4K) |
| * |
| * Copyright (c) 2008 Vitor Sessak |
| * Copyright (c) 2003 Nick Kurshev |
| * Based on public domain decoder at http://www.honeypot.net/audio |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "avcodec.h" |
| #include "bitstream.h" |
| #include "ra144.h" |
| #include "celp_filters.h" |
| |
| #define NBLOCKS 4 ///< number of subblocks within a block |
| #define BLOCKSIZE 40 ///< subblock size in 16-bit words |
| #define BUFFERSIZE 146 ///< the size of the adaptive codebook |
| |
| |
| typedef struct { |
| unsigned int old_energy; ///< previous frame energy |
| |
| unsigned int lpc_tables[2][10]; |
| |
| /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame |
| * and lpc_coef[1] of the previous one. */ |
| unsigned int *lpc_coef[2]; |
| |
| unsigned int lpc_refl_rms[2]; |
| |
| /** The current subblock padded by the last 10 values of the previous one. */ |
| int16_t curr_sblock[50]; |
| |
| /** Adaptive codebook, its size is two units bigger to avoid a |
| * buffer overflow. */ |
| uint16_t adapt_cb[146+2]; |
| } RA144Context; |
| |
| static av_cold int ra144_decode_init(AVCodecContext * avctx) |
| { |
| RA144Context *ractx = avctx->priv_data; |
| |
| ractx->lpc_coef[0] = ractx->lpc_tables[0]; |
| ractx->lpc_coef[1] = ractx->lpc_tables[1]; |
| |
| avctx->sample_fmt = SAMPLE_FMT_S16; |
| return 0; |
| } |
| |
| /** |
| * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an |
| * odd way to make the output identical to the binary decoder. |
| */ |
| static int t_sqrt(unsigned int x) |
| { |
| int s = 2; |
| while (x > 0xfff) { |
| s++; |
| x >>= 2; |
| } |
| |
| return ff_sqrt(x << 20) << s; |
| } |
| |
| /** |
| * Evaluate the LPC filter coefficients from the reflection coefficients. |
| * Does the inverse of the eval_refl() function. |
| */ |
| static void eval_coefs(int *coefs, const int *refl) |
| { |
| int buffer[10]; |
| int *b1 = buffer; |
| int *b2 = coefs; |
| int i, j; |
| |
| for (i=0; i < 10; i++) { |
| b1[i] = refl[i] << 4; |
| |
| for (j=0; j < i; j++) |
| b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j]; |
| |
| FFSWAP(int *, b1, b2); |
| } |
| |
| for (i=0; i < 10; i++) |
| coefs[i] >>= 4; |
| } |
| |
| /** |
| * Copy the last offset values of *source to *target. If those values are not |
| * enough to fill the target buffer, fill it with another copy of those values. |
| */ |
| static void copy_and_dup(int16_t *target, const int16_t *source, int offset) |
| { |
| source += BUFFERSIZE - offset; |
| |
| memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target)); |
| if (offset < BLOCKSIZE) |
| memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target)); |
| } |
| |
| /** inverse root mean square */ |
| static int irms(const int16_t *data) |
| { |
| unsigned int i, sum = 0; |
| |
| for (i=0; i < BLOCKSIZE; i++) |
| sum += data[i] * data[i]; |
| |
| if (sum == 0) |
| return 0; /* OOPS - division by zero */ |
| |
| return 0x20000000 / (t_sqrt(sum) >> 8); |
| } |
| |
| static void add_wav(int16_t *dest, int n, int skip_first, int *m, |
| const int16_t *s1, const int8_t *s2, const int8_t *s3) |
| { |
| int i; |
| int v[3]; |
| |
| v[0] = 0; |
| for (i=!skip_first; i<3; i++) |
| v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n]; |
| |
| if (v[0]) { |
| for (i=0; i < BLOCKSIZE; i++) |
| dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12; |
| } else { |
| for (i=0; i < BLOCKSIZE; i++) |
| dest[i] = ( s2[i]*v[1] + s3[i]*v[2]) >> 12; |
| } |
| } |
| |
| static unsigned int rescale_rms(unsigned int rms, unsigned int energy) |
| { |
| return (rms * energy) >> 10; |
| } |
| |
| static unsigned int rms(const int *data) |
| { |
| int i; |
| unsigned int res = 0x10000; |
| int b = 10; |
| |
| for (i=0; i < 10; i++) { |
| res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12; |
| |
| if (res == 0) |
| return 0; |
| |
| while (res <= 0x3fff) { |
| b++; |
| res <<= 2; |
| } |
| } |
| |
| return t_sqrt(res) >> b; |
| } |
| |
| static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs, |
| int gval, GetBitContext *gb) |
| { |
| uint16_t buffer_a[40]; |
| uint16_t *block; |
| int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none |
| int gain = get_bits(gb, 8); |
| int cb1_idx = get_bits(gb, 7); |
| int cb2_idx = get_bits(gb, 7); |
| int m[3]; |
| |
| if (cba_idx) { |
| cba_idx += BLOCKSIZE/2 - 1; |
| copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx); |
| m[0] = (irms(buffer_a) * gval) >> 12; |
| } else { |
| m[0] = 0; |
| } |
| |
| m[1] = (cb1_base[cb1_idx] * gval) >> 8; |
| m[2] = (cb2_base[cb2_idx] * gval) >> 8; |
| |
| memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE, |
| (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb)); |
| |
| block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE; |
| |
| add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL, |
| cb1_vects[cb1_idx], cb2_vects[cb2_idx]); |
| |
| memcpy(ractx->curr_sblock, ractx->curr_sblock + 40, |
| 10*sizeof(*ractx->curr_sblock)); |
| |
| if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs, |
| block, BLOCKSIZE, 10, 1, 0xfff)) |
| memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock)); |
| } |
| |
| static void int_to_int16(int16_t *out, const int *inp) |
| { |
| int i; |
| |
| for (i=0; i < 30; i++) |
| *out++ = *inp++; |
| } |
| |
| /** |
| * Evaluate the reflection coefficients from the filter coefficients. |
| * Does the inverse of the eval_coefs() function. |
| * |
| * @return 1 if one of the reflection coefficients is greater than |
| * 4095, 0 if not. |
| */ |
| static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx) |
| { |
| int b, i, j; |
| int buffer1[10]; |
| int buffer2[10]; |
| int *bp1 = buffer1; |
| int *bp2 = buffer2; |
| |
| for (i=0; i < 10; i++) |
| buffer2[i] = coefs[i]; |
| |
| refl[9] = bp2[9]; |
| |
| if ((unsigned) bp2[9] + 0x1000 > 0x1fff) { |
| av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n"); |
| return 1; |
| } |
| |
| for (i=8; i >= 0; i--) { |
| b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12); |
| |
| if (!b) |
| b = -2; |
| |
| for (j=0; j <= i; j++) |
| bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12; |
| |
| if ((unsigned) bp1[i] + 0x1000 > 0x1fff) |
| return 1; |
| |
| refl[i] = bp1[i]; |
| |
| FFSWAP(int *, bp1, bp2); |
| } |
| return 0; |
| } |
| |
| static int interp(RA144Context *ractx, int16_t *out, int a, |
| int copyold, int energy) |
| { |
| int work[10]; |
| int b = NBLOCKS - a; |
| int i; |
| |
| // Interpolate block coefficients from the this frame's forth block and |
| // last frame's forth block. |
| for (i=0; i<30; i++) |
| out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2; |
| |
| if (eval_refl(work, out, ractx)) { |
| // The interpolated coefficients are unstable, copy either new or old |
| // coefficients. |
| int_to_int16(out, ractx->lpc_coef[copyold]); |
| return rescale_rms(ractx->lpc_refl_rms[copyold], energy); |
| } else { |
| return rescale_rms(rms(work), energy); |
| } |
| } |
| |
| /** Uncompress one block (20 bytes -> 160*2 bytes). */ |
| static int ra144_decode_frame(AVCodecContext * avctx, void *vdata, |
| int *data_size, const uint8_t *buf, int buf_size) |
| { |
| static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; |
| unsigned int refl_rms[4]; // RMS of the reflection coefficients |
| uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block |
| unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame |
| int i, j; |
| int16_t *data = vdata; |
| unsigned int energy; |
| |
| RA144Context *ractx = avctx->priv_data; |
| GetBitContext gb; |
| |
| if (*data_size < 2*160) |
| return -1; |
| |
| if(buf_size < 20) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Frame too small (%d bytes). Truncated file?\n", buf_size); |
| *data_size = 0; |
| return buf_size; |
| } |
| init_get_bits(&gb, buf, 20 * 8); |
| |
| for (i=0; i<10; i++) |
| lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])]; |
| |
| eval_coefs(ractx->lpc_coef[0], lpc_refl); |
| ractx->lpc_refl_rms[0] = rms(lpc_refl); |
| |
| energy = energy_tab[get_bits(&gb, 5)]; |
| |
| refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); |
| refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy, |
| t_sqrt(energy*ractx->old_energy) >> 12); |
| refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy); |
| refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy); |
| |
| int_to_int16(block_coefs[3], ractx->lpc_coef[0]); |
| |
| for (i=0; i < 4; i++) { |
| do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb); |
| |
| for (j=0; j < BLOCKSIZE; j++) |
| *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2); |
| } |
| |
| ractx->old_energy = energy; |
| ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; |
| |
| FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); |
| |
| *data_size = 2*160; |
| return 20; |
| } |
| |
| AVCodec ra_144_decoder = |
| { |
| "real_144", |
| CODEC_TYPE_AUDIO, |
| CODEC_ID_RA_144, |
| sizeof(RA144Context), |
| ra144_decode_init, |
| NULL, |
| NULL, |
| ra144_decode_frame, |
| .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"), |
| }; |