| /** |
| * LPC utility code |
| * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/lls.h" |
| #include "dsputil.h" |
| |
| #define LPC_USE_DOUBLE |
| #include "lpc.h" |
| |
| |
| /** |
| * Quantize LPC coefficients |
| */ |
| static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
| int32_t *lpc_out, int *shift, int max_shift, int zero_shift) |
| { |
| int i; |
| double cmax, error; |
| int32_t qmax; |
| int sh; |
| |
| /* define maximum levels */ |
| qmax = (1 << (precision - 1)) - 1; |
| |
| /* find maximum coefficient value */ |
| cmax = 0.0; |
| for(i=0; i<order; i++) { |
| cmax= FFMAX(cmax, fabs(lpc_in[i])); |
| } |
| |
| /* if maximum value quantizes to zero, return all zeros */ |
| if(cmax * (1 << max_shift) < 1.0) { |
| *shift = zero_shift; |
| memset(lpc_out, 0, sizeof(int32_t) * order); |
| return; |
| } |
| |
| /* calculate level shift which scales max coeff to available bits */ |
| sh = max_shift; |
| while((cmax * (1 << sh) > qmax) && (sh > 0)) { |
| sh--; |
| } |
| |
| /* since negative shift values are unsupported in decoder, scale down |
| coefficients instead */ |
| if(sh == 0 && cmax > qmax) { |
| double scale = ((double)qmax) / cmax; |
| for(i=0; i<order; i++) { |
| lpc_in[i] *= scale; |
| } |
| } |
| |
| /* output quantized coefficients and level shift */ |
| error=0; |
| for(i=0; i<order; i++) { |
| error -= lpc_in[i] * (1 << sh); |
| lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); |
| error -= lpc_out[i]; |
| } |
| *shift = sh; |
| } |
| |
| static int estimate_best_order(double *ref, int min_order, int max_order) |
| { |
| int i, est; |
| |
| est = min_order; |
| for(i=max_order-1; i>=min_order-1; i--) { |
| if(ref[i] > 0.10) { |
| est = i+1; |
| break; |
| } |
| } |
| return est; |
| } |
| |
| /** |
| * Calculate LPC coefficients for multiple orders |
| * |
| * @param use_lpc LPC method for determining coefficients |
| * 0 = LPC with fixed pre-defined coeffs |
| * 1 = LPC with coeffs determined by Levinson-Durbin recursion |
| * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes. |
| */ |
| int ff_lpc_calc_coefs(DSPContext *s, |
| const int32_t *samples, int blocksize, int min_order, |
| int max_order, int precision, |
| int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc, |
| int omethod, int max_shift, int zero_shift) |
| { |
| double autoc[MAX_LPC_ORDER+1]; |
| double ref[MAX_LPC_ORDER]; |
| double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
| int i, j, pass; |
| int opt_order; |
| |
| assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0); |
| |
| if(use_lpc == 1){ |
| s->flac_compute_autocorr(samples, blocksize, max_order, autoc); |
| |
| compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); |
| |
| for(i=0; i<max_order; i++) |
| ref[i] = fabs(lpc[i][i]); |
| }else{ |
| LLSModel m[2]; |
| double var[MAX_LPC_ORDER+1], av_uninit(weight); |
| |
| for(pass=0; pass<use_lpc-1; pass++){ |
| av_init_lls(&m[pass&1], max_order); |
| |
| weight=0; |
| for(i=max_order; i<blocksize; i++){ |
| for(j=0; j<=max_order; j++) |
| var[j]= samples[i-j]; |
| |
| if(pass){ |
| double eval, inv, rinv; |
| eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); |
| eval= (512>>pass) + fabs(eval - var[0]); |
| inv = 1/eval; |
| rinv = sqrt(inv); |
| for(j=0; j<=max_order; j++) |
| var[j] *= rinv; |
| weight += inv; |
| }else |
| weight++; |
| |
| av_update_lls(&m[pass&1], var, 1.0); |
| } |
| av_solve_lls(&m[pass&1], 0.001, 0); |
| } |
| |
| for(i=0; i<max_order; i++){ |
| for(j=0; j<max_order; j++) |
| lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; |
| ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; |
| } |
| for(i=max_order-1; i>0; i--) |
| ref[i] = ref[i-1] - ref[i]; |
| } |
| opt_order = max_order; |
| |
| if(omethod == ORDER_METHOD_EST) { |
| opt_order = estimate_best_order(ref, min_order, max_order); |
| i = opt_order-1; |
| quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); |
| } else { |
| for(i=min_order-1; i<max_order; i++) { |
| quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); |
| } |
| } |
| |
| return opt_order; |
| } |