| /* |
| * Monkey's Audio lossless audio decoder |
| * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org> |
| * based upon libdemac from Dave Chapman. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #define ALT_BITSTREAM_READER_LE |
| #include "avcodec.h" |
| #include "dsputil.h" |
| #include "bitstream.h" |
| #include "bytestream.h" |
| |
| /** |
| * @file libavcodec/apedec.c |
| * Monkey's Audio lossless audio decoder |
| */ |
| |
| #define BLOCKS_PER_LOOP 4608 |
| #define MAX_CHANNELS 2 |
| #define MAX_BYTESPERSAMPLE 3 |
| |
| #define APE_FRAMECODE_MONO_SILENCE 1 |
| #define APE_FRAMECODE_STEREO_SILENCE 3 |
| #define APE_FRAMECODE_PSEUDO_STEREO 4 |
| |
| #define HISTORY_SIZE 512 |
| #define PREDICTOR_ORDER 8 |
| /** Total size of all predictor histories */ |
| #define PREDICTOR_SIZE 50 |
| |
| #define YDELAYA (18 + PREDICTOR_ORDER*4) |
| #define YDELAYB (18 + PREDICTOR_ORDER*3) |
| #define XDELAYA (18 + PREDICTOR_ORDER*2) |
| #define XDELAYB (18 + PREDICTOR_ORDER) |
| |
| #define YADAPTCOEFFSA 18 |
| #define XADAPTCOEFFSA 14 |
| #define YADAPTCOEFFSB 10 |
| #define XADAPTCOEFFSB 5 |
| |
| /** |
| * Possible compression levels |
| * @{ |
| */ |
| enum APECompressionLevel { |
| COMPRESSION_LEVEL_FAST = 1000, |
| COMPRESSION_LEVEL_NORMAL = 2000, |
| COMPRESSION_LEVEL_HIGH = 3000, |
| COMPRESSION_LEVEL_EXTRA_HIGH = 4000, |
| COMPRESSION_LEVEL_INSANE = 5000 |
| }; |
| /** @} */ |
| |
| #define APE_FILTER_LEVELS 3 |
| |
| /** Filter orders depending on compression level */ |
| static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { |
| { 0, 0, 0 }, |
| { 16, 0, 0 }, |
| { 64, 0, 0 }, |
| { 32, 256, 0 }, |
| { 16, 256, 1280 } |
| }; |
| |
| /** Filter fraction bits depending on compression level */ |
| static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { |
| { 0, 0, 0 }, |
| { 11, 0, 0 }, |
| { 11, 0, 0 }, |
| { 10, 13, 0 }, |
| { 11, 13, 15 } |
| }; |
| |
| |
| /** Filters applied to the decoded data */ |
| typedef struct APEFilter { |
| int16_t *coeffs; ///< actual coefficients used in filtering |
| int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients |
| int16_t *historybuffer; ///< filter memory |
| int16_t *delay; ///< filtered values |
| |
| int avg; |
| } APEFilter; |
| |
| typedef struct APERice { |
| uint32_t k; |
| uint32_t ksum; |
| } APERice; |
| |
| typedef struct APERangecoder { |
| uint32_t low; ///< low end of interval |
| uint32_t range; ///< length of interval |
| uint32_t help; ///< bytes_to_follow resp. intermediate value |
| unsigned int buffer; ///< buffer for input/output |
| } APERangecoder; |
| |
| /** Filter histories */ |
| typedef struct APEPredictor { |
| int32_t *buf; |
| |
| int32_t lastA[2]; |
| |
| int32_t filterA[2]; |
| int32_t filterB[2]; |
| |
| int32_t coeffsA[2][4]; ///< adaption coefficients |
| int32_t coeffsB[2][5]; ///< adaption coefficients |
| int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
| } APEPredictor; |
| |
| /** Decoder context */ |
| typedef struct APEContext { |
| AVCodecContext *avctx; |
| DSPContext dsp; |
| int channels; |
| int samples; ///< samples left to decode in current frame |
| |
| int fileversion; ///< codec version, very important in decoding process |
| int compression_level; ///< compression levels |
| int fset; ///< which filter set to use (calculated from compression level) |
| int flags; ///< global decoder flags |
| |
| uint32_t CRC; ///< frame CRC |
| int frameflags; ///< frame flags |
| int currentframeblocks; ///< samples (per channel) in current frame |
| int blocksdecoded; ///< count of decoded samples in current frame |
| APEPredictor predictor; ///< predictor used for final reconstruction |
| |
| int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel |
| int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel |
| |
| int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory |
| |
| APERangecoder rc; ///< rangecoder used to decode actual values |
| APERice riceX; ///< rice code parameters for the second channel |
| APERice riceY; ///< rice code parameters for the first channel |
| APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction |
| |
| uint8_t *data; ///< current frame data |
| uint8_t *data_end; ///< frame data end |
| const uint8_t *ptr; ///< current position in frame data |
| const uint8_t *last_ptr; ///< position where last 4608-sample block ended |
| |
| int error; |
| } APEContext; |
| |
| // TODO: dsputilize |
| |
| static av_cold int ape_decode_init(AVCodecContext * avctx) |
| { |
| APEContext *s = avctx->priv_data; |
| int i; |
| |
| if (avctx->extradata_size != 6) { |
| av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n"); |
| return -1; |
| } |
| if (avctx->bits_per_coded_sample != 16) { |
| av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n"); |
| return -1; |
| } |
| if (avctx->channels > 2) { |
| av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n"); |
| return -1; |
| } |
| s->avctx = avctx; |
| s->channels = avctx->channels; |
| s->fileversion = AV_RL16(avctx->extradata); |
| s->compression_level = AV_RL16(avctx->extradata + 2); |
| s->flags = AV_RL16(avctx->extradata + 4); |
| |
| av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags); |
| if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) { |
| av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level); |
| return -1; |
| } |
| s->fset = s->compression_level / 1000 - 1; |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[s->fset][i]) |
| break; |
| s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4); |
| } |
| |
| dsputil_init(&s->dsp, avctx); |
| avctx->sample_fmt = SAMPLE_FMT_S16; |
| avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO; |
| return 0; |
| } |
| |
| static av_cold int ape_decode_close(AVCodecContext * avctx) |
| { |
| APEContext *s = avctx->priv_data; |
| int i; |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) |
| av_freep(&s->filterbuf[i]); |
| |
| return 0; |
| } |
| |
| /** |
| * @defgroup rangecoder APE range decoder |
| * @{ |
| */ |
| |
| #define CODE_BITS 32 |
| #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) |
| #define SHIFT_BITS (CODE_BITS - 9) |
| #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) |
| #define BOTTOM_VALUE (TOP_VALUE >> 8) |
| |
| /** Start the decoder */ |
| static inline void range_start_decoding(APEContext * ctx) |
| { |
| ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); |
| ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS); |
| ctx->rc.range = (uint32_t) 1 << EXTRA_BITS; |
| } |
| |
| /** Perform normalization */ |
| static inline void range_dec_normalize(APEContext * ctx) |
| { |
| while (ctx->rc.range <= BOTTOM_VALUE) { |
| ctx->rc.buffer <<= 8; |
| if(ctx->ptr < ctx->data_end) |
| ctx->rc.buffer += *ctx->ptr; |
| ctx->ptr++; |
| ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); |
| ctx->rc.range <<= 8; |
| } |
| } |
| |
| /** |
| * Calculate culmulative frequency for next symbol. Does NO update! |
| * @param ctx decoder context |
| * @param tot_f is the total frequency or (code_value)1<<shift |
| * @return the culmulative frequency |
| */ |
| static inline int range_decode_culfreq(APEContext * ctx, int tot_f) |
| { |
| range_dec_normalize(ctx); |
| ctx->rc.help = ctx->rc.range / tot_f; |
| return ctx->rc.low / ctx->rc.help; |
| } |
| |
| /** |
| * Decode value with given size in bits |
| * @param ctx decoder context |
| * @param shift number of bits to decode |
| */ |
| static inline int range_decode_culshift(APEContext * ctx, int shift) |
| { |
| range_dec_normalize(ctx); |
| ctx->rc.help = ctx->rc.range >> shift; |
| return ctx->rc.low / ctx->rc.help; |
| } |
| |
| |
| /** |
| * Update decoding state |
| * @param ctx decoder context |
| * @param sy_f the interval length (frequency of the symbol) |
| * @param lt_f the lower end (frequency sum of < symbols) |
| */ |
| static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f) |
| { |
| ctx->rc.low -= ctx->rc.help * lt_f; |
| ctx->rc.range = ctx->rc.help * sy_f; |
| } |
| |
| /** Decode n bits (n <= 16) without modelling */ |
| static inline int range_decode_bits(APEContext * ctx, int n) |
| { |
| int sym = range_decode_culshift(ctx, n); |
| range_decode_update(ctx, 1, sym); |
| return sym; |
| } |
| |
| |
| #define MODEL_ELEMENTS 64 |
| |
| /** |
| * Fixed probabilities for symbols in Monkey Audio version 3.97 |
| */ |
| static const uint16_t counts_3970[22] = { |
| 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, |
| 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, |
| 65450, 65469, 65480, 65487, 65491, 65493, |
| }; |
| |
| /** |
| * Probability ranges for symbols in Monkey Audio version 3.97 |
| */ |
| static const uint16_t counts_diff_3970[21] = { |
| 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, |
| 1104, 677, 415, 248, 150, 89, 54, 31, |
| 19, 11, 7, 4, 2, |
| }; |
| |
| /** |
| * Fixed probabilities for symbols in Monkey Audio version 3.98 |
| */ |
| static const uint16_t counts_3980[22] = { |
| 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, |
| 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, |
| 65485, 65488, 65490, 65491, 65492, 65493, |
| }; |
| |
| /** |
| * Probability ranges for symbols in Monkey Audio version 3.98 |
| */ |
| static const uint16_t counts_diff_3980[21] = { |
| 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, |
| 261, 119, 65, 31, 19, 10, 6, 3, |
| 3, 2, 1, 1, 1, |
| }; |
| |
| /** |
| * Decode symbol |
| * @param ctx decoder context |
| * @param counts probability range start position |
| * @param counts_diff probability range widths |
| */ |
| static inline int range_get_symbol(APEContext * ctx, |
| const uint16_t counts[], |
| const uint16_t counts_diff[]) |
| { |
| int symbol, cf; |
| |
| cf = range_decode_culshift(ctx, 16); |
| |
| if(cf > 65492){ |
| symbol= cf - 65535 + 63; |
| range_decode_update(ctx, 1, cf); |
| if(cf > 65535) |
| ctx->error=1; |
| return symbol; |
| } |
| /* figure out the symbol inefficiently; a binary search would be much better */ |
| for (symbol = 0; counts[symbol + 1] <= cf; symbol++); |
| |
| range_decode_update(ctx, counts_diff[symbol], counts[symbol]); |
| |
| return symbol; |
| } |
| /** @} */ // group rangecoder |
| |
| static inline void update_rice(APERice *rice, int x) |
| { |
| int lim = rice->k ? (1 << (rice->k + 4)) : 0; |
| rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); |
| |
| if (rice->ksum < lim) |
| rice->k--; |
| else if (rice->ksum >= (1 << (rice->k + 5))) |
| rice->k++; |
| } |
| |
| static inline int ape_decode_value(APEContext * ctx, APERice *rice) |
| { |
| int x, overflow; |
| |
| if (ctx->fileversion < 3990) { |
| int tmpk; |
| |
| overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); |
| |
| if (overflow == (MODEL_ELEMENTS - 1)) { |
| tmpk = range_decode_bits(ctx, 5); |
| overflow = 0; |
| } else |
| tmpk = (rice->k < 1) ? 0 : rice->k - 1; |
| |
| if (tmpk <= 16) |
| x = range_decode_bits(ctx, tmpk); |
| else { |
| x = range_decode_bits(ctx, 16); |
| x |= (range_decode_bits(ctx, tmpk - 16) << 16); |
| } |
| x += overflow << tmpk; |
| } else { |
| int base, pivot; |
| |
| pivot = rice->ksum >> 5; |
| if (pivot == 0) |
| pivot = 1; |
| |
| overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); |
| |
| if (overflow == (MODEL_ELEMENTS - 1)) { |
| overflow = range_decode_bits(ctx, 16) << 16; |
| overflow |= range_decode_bits(ctx, 16); |
| } |
| |
| base = range_decode_culfreq(ctx, pivot); |
| range_decode_update(ctx, 1, base); |
| |
| x = base + overflow * pivot; |
| } |
| |
| update_rice(rice, x); |
| |
| /* Convert to signed */ |
| if (x & 1) |
| return (x >> 1) + 1; |
| else |
| return -(x >> 1); |
| } |
| |
| static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo) |
| { |
| int32_t *decoded0 = ctx->decoded0; |
| int32_t *decoded1 = ctx->decoded1; |
| |
| ctx->blocksdecoded = blockstodecode; |
| |
| if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
| /* We are pure silence, just memset the output buffer. */ |
| memset(decoded0, 0, blockstodecode * sizeof(int32_t)); |
| memset(decoded1, 0, blockstodecode * sizeof(int32_t)); |
| } else { |
| while (blockstodecode--) { |
| *decoded0++ = ape_decode_value(ctx, &ctx->riceY); |
| if (stereo) |
| *decoded1++ = ape_decode_value(ctx, &ctx->riceX); |
| } |
| } |
| |
| if (ctx->blocksdecoded == ctx->currentframeblocks) |
| range_dec_normalize(ctx); /* normalize to use up all bytes */ |
| } |
| |
| static void init_entropy_decoder(APEContext * ctx) |
| { |
| /* Read the CRC */ |
| ctx->CRC = bytestream_get_be32(&ctx->ptr); |
| |
| /* Read the frame flags if they exist */ |
| ctx->frameflags = 0; |
| if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { |
| ctx->CRC &= ~0x80000000; |
| |
| ctx->frameflags = bytestream_get_be32(&ctx->ptr); |
| } |
| |
| /* Keep a count of the blocks decoded in this frame */ |
| ctx->blocksdecoded = 0; |
| |
| /* Initialize the rice structs */ |
| ctx->riceX.k = 10; |
| ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; |
| ctx->riceY.k = 10; |
| ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; |
| |
| /* The first 8 bits of input are ignored. */ |
| ctx->ptr++; |
| |
| range_start_decoding(ctx); |
| } |
| |
| static const int32_t initial_coeffs[4] = { |
| 360, 317, -109, 98 |
| }; |
| |
| static void init_predictor_decoder(APEContext * ctx) |
| { |
| APEPredictor *p = &ctx->predictor; |
| |
| /* Zero the history buffers */ |
| memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t)); |
| p->buf = p->historybuffer; |
| |
| /* Initialize and zero the coefficients */ |
| memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs)); |
| memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs)); |
| memset(p->coeffsB, 0, sizeof(p->coeffsB)); |
| |
| p->filterA[0] = p->filterA[1] = 0; |
| p->filterB[0] = p->filterB[1] = 0; |
| p->lastA[0] = p->lastA[1] = 0; |
| } |
| |
| /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */ |
| static inline int APESIGN(int32_t x) { |
| return (x < 0) - (x > 0); |
| } |
| |
| static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB) |
| { |
| int32_t predictionA, predictionB; |
| |
| p->buf[delayA] = p->lastA[filter]; |
| p->buf[adaptA] = APESIGN(p->buf[delayA]); |
| p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1]; |
| p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); |
| |
| predictionA = p->buf[delayA ] * p->coeffsA[filter][0] + |
| p->buf[delayA - 1] * p->coeffsA[filter][1] + |
| p->buf[delayA - 2] * p->coeffsA[filter][2] + |
| p->buf[delayA - 3] * p->coeffsA[filter][3]; |
| |
| /* Apply a scaled first-order filter compression */ |
| p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5); |
| p->buf[adaptB] = APESIGN(p->buf[delayB]); |
| p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1]; |
| p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); |
| p->filterB[filter] = p->filterA[filter ^ 1]; |
| |
| predictionB = p->buf[delayB ] * p->coeffsB[filter][0] + |
| p->buf[delayB - 1] * p->coeffsB[filter][1] + |
| p->buf[delayB - 2] * p->coeffsB[filter][2] + |
| p->buf[delayB - 3] * p->coeffsB[filter][3] + |
| p->buf[delayB - 4] * p->coeffsB[filter][4]; |
| |
| p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10); |
| p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); |
| |
| if (!decoded) // no need updating filter coefficients |
| return p->filterA[filter]; |
| |
| if (decoded > 0) { |
| p->coeffsA[filter][0] -= p->buf[adaptA ]; |
| p->coeffsA[filter][1] -= p->buf[adaptA - 1]; |
| p->coeffsA[filter][2] -= p->buf[adaptA - 2]; |
| p->coeffsA[filter][3] -= p->buf[adaptA - 3]; |
| |
| p->coeffsB[filter][0] -= p->buf[adaptB ]; |
| p->coeffsB[filter][1] -= p->buf[adaptB - 1]; |
| p->coeffsB[filter][2] -= p->buf[adaptB - 2]; |
| p->coeffsB[filter][3] -= p->buf[adaptB - 3]; |
| p->coeffsB[filter][4] -= p->buf[adaptB - 4]; |
| } else { |
| p->coeffsA[filter][0] += p->buf[adaptA ]; |
| p->coeffsA[filter][1] += p->buf[adaptA - 1]; |
| p->coeffsA[filter][2] += p->buf[adaptA - 2]; |
| p->coeffsA[filter][3] += p->buf[adaptA - 3]; |
| |
| p->coeffsB[filter][0] += p->buf[adaptB ]; |
| p->coeffsB[filter][1] += p->buf[adaptB - 1]; |
| p->coeffsB[filter][2] += p->buf[adaptB - 2]; |
| p->coeffsB[filter][3] += p->buf[adaptB - 3]; |
| p->coeffsB[filter][4] += p->buf[adaptB - 4]; |
| } |
| return p->filterA[filter]; |
| } |
| |
| static void predictor_decode_stereo(APEContext * ctx, int count) |
| { |
| int32_t predictionA, predictionB; |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded0; |
| int32_t *decoded1 = ctx->decoded1; |
| |
| while (count--) { |
| /* Predictor Y */ |
| predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB); |
| predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB); |
| *(decoded0++) = predictionA; |
| *(decoded1++) = predictionB; |
| |
| /* Combined */ |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static void predictor_decode_mono(APEContext * ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded0; |
| int32_t predictionA, currentA, A; |
| |
| currentA = p->lastA[0]; |
| |
| while (count--) { |
| A = *decoded0; |
| |
| p->buf[YDELAYA] = currentA; |
| p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1]; |
| |
| predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + |
| p->buf[YDELAYA - 1] * p->coeffsA[0][1] + |
| p->buf[YDELAYA - 2] * p->coeffsA[0][2] + |
| p->buf[YDELAYA - 3] * p->coeffsA[0][3]; |
| |
| currentA = A + (predictionA >> 10); |
| |
| p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); |
| p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); |
| |
| if (A > 0) { |
| p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA ]; |
| p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1]; |
| p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2]; |
| p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3]; |
| } else if (A < 0) { |
| p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ]; |
| p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1]; |
| p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2]; |
| p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3]; |
| } |
| |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); |
| p->buf = p->historybuffer; |
| } |
| |
| p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5); |
| *(decoded0++) = p->filterA[0]; |
| } |
| |
| p->lastA[0] = currentA; |
| } |
| |
| static void do_init_filter(APEFilter *f, int16_t * buf, int order) |
| { |
| f->coeffs = buf; |
| f->historybuffer = buf + order; |
| f->delay = f->historybuffer + order * 2; |
| f->adaptcoeffs = f->historybuffer + order; |
| |
| memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t)); |
| memset(f->coeffs, 0, order * sizeof(int16_t)); |
| f->avg = 0; |
| } |
| |
| static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order) |
| { |
| do_init_filter(&f[0], buf, order); |
| do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); |
| } |
| |
| static inline void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits) |
| { |
| int res; |
| int absres; |
| |
| while (count--) { |
| /* round fixedpoint scalar product */ |
| res = (ctx->dsp.scalarproduct_int16(f->delay - order, f->coeffs, order, 0) + (1 << (fracbits - 1))) >> fracbits; |
| |
| if (*data < 0) |
| ctx->dsp.add_int16(f->coeffs, f->adaptcoeffs - order, order); |
| else if (*data > 0) |
| ctx->dsp.sub_int16(f->coeffs, f->adaptcoeffs - order, order); |
| |
| res += *data; |
| |
| *data++ = res; |
| |
| /* Update the output history */ |
| *f->delay++ = av_clip_int16(res); |
| |
| if (version < 3980) { |
| /* Version ??? to < 3.98 files (untested) */ |
| f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; |
| f->adaptcoeffs[-4] >>= 1; |
| f->adaptcoeffs[-8] >>= 1; |
| } else { |
| /* Version 3.98 and later files */ |
| |
| /* Update the adaption coefficients */ |
| absres = (res < 0 ? -res : res); |
| |
| if (absres > (f->avg * 3)) |
| *f->adaptcoeffs = ((res >> 25) & 64) - 32; |
| else if (absres > (f->avg * 4) / 3) |
| *f->adaptcoeffs = ((res >> 26) & 32) - 16; |
| else if (absres > 0) |
| *f->adaptcoeffs = ((res >> 27) & 16) - 8; |
| else |
| *f->adaptcoeffs = 0; |
| |
| f->avg += (absres - f->avg) / 16; |
| |
| f->adaptcoeffs[-1] >>= 1; |
| f->adaptcoeffs[-2] >>= 1; |
| f->adaptcoeffs[-8] >>= 1; |
| } |
| |
| f->adaptcoeffs++; |
| |
| /* Have we filled the history buffer? */ |
| if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { |
| memmove(f->historybuffer, f->delay - (order * 2), |
| (order * 2) * sizeof(int16_t)); |
| f->delay = f->historybuffer + order * 2; |
| f->adaptcoeffs = f->historybuffer + order; |
| } |
| } |
| } |
| |
| static void apply_filter(APEContext * ctx, APEFilter *f, |
| int32_t * data0, int32_t * data1, |
| int count, int order, int fracbits) |
| { |
| do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits); |
| if (data1) |
| do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits); |
| } |
| |
| static void ape_apply_filters(APEContext * ctx, int32_t * decoded0, |
| int32_t * decoded1, int count) |
| { |
| int i; |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[ctx->fset][i]) |
| break; |
| apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]); |
| } |
| } |
| |
| static void init_frame_decoder(APEContext * ctx) |
| { |
| int i; |
| init_entropy_decoder(ctx); |
| init_predictor_decoder(ctx); |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[ctx->fset][i]) |
| break; |
| init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]); |
| } |
| } |
| |
| static void ape_unpack_mono(APEContext * ctx, int count) |
| { |
| int32_t left; |
| int32_t *decoded0 = ctx->decoded0; |
| int32_t *decoded1 = ctx->decoded1; |
| |
| if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
| entropy_decode(ctx, count, 0); |
| /* We are pure silence, so we're done. */ |
| av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n"); |
| return; |
| } |
| |
| entropy_decode(ctx, count, 0); |
| ape_apply_filters(ctx, decoded0, NULL, count); |
| |
| /* Now apply the predictor decoding */ |
| predictor_decode_mono(ctx, count); |
| |
| /* Pseudo-stereo - just copy left channel to right channel */ |
| if (ctx->channels == 2) { |
| while (count--) { |
| left = *decoded0; |
| *(decoded1++) = *(decoded0++) = left; |
| } |
| } |
| } |
| |
| static void ape_unpack_stereo(APEContext * ctx, int count) |
| { |
| int32_t left, right; |
| int32_t *decoded0 = ctx->decoded0; |
| int32_t *decoded1 = ctx->decoded1; |
| |
| if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
| /* We are pure silence, so we're done. */ |
| av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n"); |
| return; |
| } |
| |
| entropy_decode(ctx, count, 1); |
| ape_apply_filters(ctx, decoded0, decoded1, count); |
| |
| /* Now apply the predictor decoding */ |
| predictor_decode_stereo(ctx, count); |
| |
| /* Decorrelate and scale to output depth */ |
| while (count--) { |
| left = *decoded1 - (*decoded0 / 2); |
| right = left + *decoded0; |
| |
| *(decoded0++) = left; |
| *(decoded1++) = right; |
| } |
| } |
| |
| static int ape_decode_frame(AVCodecContext * avctx, |
| void *data, int *data_size, |
| const uint8_t * buf, int buf_size) |
| { |
| APEContext *s = avctx->priv_data; |
| int16_t *samples = data; |
| int nblocks; |
| int i, n; |
| int blockstodecode; |
| int bytes_used; |
| |
| if (buf_size == 0 && !s->samples) { |
| *data_size = 0; |
| return 0; |
| } |
| |
| /* should not happen but who knows */ |
| if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) { |
| av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels); |
| return -1; |
| } |
| |
| if(!s->samples){ |
| s->data = av_realloc(s->data, (buf_size + 3) & ~3); |
| s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2); |
| s->ptr = s->last_ptr = s->data; |
| s->data_end = s->data + buf_size; |
| |
| nblocks = s->samples = bytestream_get_be32(&s->ptr); |
| n = bytestream_get_be32(&s->ptr); |
| if(n < 0 || n > 3){ |
| av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n"); |
| s->data = NULL; |
| return -1; |
| } |
| s->ptr += n; |
| |
| s->currentframeblocks = nblocks; |
| buf += 4; |
| if (s->samples <= 0) { |
| *data_size = 0; |
| return buf_size; |
| } |
| |
| memset(s->decoded0, 0, sizeof(s->decoded0)); |
| memset(s->decoded1, 0, sizeof(s->decoded1)); |
| |
| /* Initialize the frame decoder */ |
| init_frame_decoder(s); |
| } |
| |
| if (!s->data) { |
| *data_size = 0; |
| return buf_size; |
| } |
| |
| nblocks = s->samples; |
| blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks); |
| |
| s->error=0; |
| |
| if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) |
| ape_unpack_mono(s, blockstodecode); |
| else |
| ape_unpack_stereo(s, blockstodecode); |
| |
| if(s->error || s->ptr > s->data_end){ |
| s->samples=0; |
| av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n"); |
| return -1; |
| } |
| |
| for (i = 0; i < blockstodecode; i++) { |
| *samples++ = s->decoded0[i]; |
| if(s->channels == 2) |
| *samples++ = s->decoded1[i]; |
| } |
| |
| s->samples -= blockstodecode; |
| |
| *data_size = blockstodecode * 2 * s->channels; |
| bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size; |
| s->last_ptr = s->ptr; |
| return bytes_used; |
| } |
| |
| AVCodec ape_decoder = { |
| "ape", |
| CODEC_TYPE_AUDIO, |
| CODEC_ID_APE, |
| sizeof(APEContext), |
| ape_decode_init, |
| NULL, |
| ape_decode_close, |
| ape_decode_frame, |
| .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"), |
| }; |