| /* |
| * The simplest AC-3 encoder |
| * Copyright (c) 2000 Fabrice Bellard |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file libavcodec/ac3enc.c |
| * The simplest AC-3 encoder. |
| */ |
| //#define DEBUG |
| //#define DEBUG_BITALLOC |
| #include "libavutil/crc.h" |
| #include "avcodec.h" |
| #include "bitstream.h" |
| #include "ac3.h" |
| |
| typedef struct AC3EncodeContext { |
| PutBitContext pb; |
| int nb_channels; |
| int nb_all_channels; |
| int lfe_channel; |
| int bit_rate; |
| unsigned int sample_rate; |
| unsigned int bitstream_id; |
| unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */ |
| unsigned int frame_size; /* current frame size in words */ |
| unsigned int bits_written; |
| unsigned int samples_written; |
| int sr_shift; |
| unsigned int frame_size_code; |
| unsigned int sr_code; /* frequency */ |
| unsigned int channel_mode; |
| int lfe; |
| unsigned int bitstream_mode; |
| short last_samples[AC3_MAX_CHANNELS][256]; |
| unsigned int chbwcod[AC3_MAX_CHANNELS]; |
| int nb_coefs[AC3_MAX_CHANNELS]; |
| |
| /* bitrate allocation control */ |
| int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code; |
| AC3BitAllocParameters bit_alloc; |
| int coarse_snr_offset; |
| int fast_gain_code[AC3_MAX_CHANNELS]; |
| int fine_snr_offset[AC3_MAX_CHANNELS]; |
| /* mantissa encoding */ |
| int mant1_cnt, mant2_cnt, mant4_cnt; |
| } AC3EncodeContext; |
| |
| static int16_t costab[64]; |
| static int16_t sintab[64]; |
| static int16_t xcos1[128]; |
| static int16_t xsin1[128]; |
| |
| #define MDCT_NBITS 9 |
| #define N (1 << MDCT_NBITS) |
| |
| /* new exponents are sent if their Norm 1 exceed this number */ |
| #define EXP_DIFF_THRESHOLD 1000 |
| |
| static inline int16_t fix15(float a) |
| { |
| int v; |
| v = (int)(a * (float)(1 << 15)); |
| if (v < -32767) |
| v = -32767; |
| else if (v > 32767) |
| v = 32767; |
| return v; |
| } |
| |
| typedef struct IComplex { |
| short re,im; |
| } IComplex; |
| |
| static av_cold void fft_init(int ln) |
| { |
| int i, n; |
| float alpha; |
| |
| n = 1 << ln; |
| |
| for(i=0;i<(n/2);i++) { |
| alpha = 2 * M_PI * (float)i / (float)n; |
| costab[i] = fix15(cos(alpha)); |
| sintab[i] = fix15(sin(alpha)); |
| } |
| } |
| |
| /* butter fly op */ |
| #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ |
| {\ |
| int ax, ay, bx, by;\ |
| bx=pre1;\ |
| by=pim1;\ |
| ax=qre1;\ |
| ay=qim1;\ |
| pre = (bx + ax) >> 1;\ |
| pim = (by + ay) >> 1;\ |
| qre = (bx - ax) >> 1;\ |
| qim = (by - ay) >> 1;\ |
| } |
| |
| #define MUL16(a,b) ((a) * (b)) |
| |
| #define CMUL(pre, pim, are, aim, bre, bim) \ |
| {\ |
| pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\ |
| pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\ |
| } |
| |
| |
| /* do a 2^n point complex fft on 2^ln points. */ |
| static void fft(IComplex *z, int ln) |
| { |
| int j, l, np, np2; |
| int nblocks, nloops; |
| register IComplex *p,*q; |
| int tmp_re, tmp_im; |
| |
| np = 1 << ln; |
| |
| /* reverse */ |
| for(j=0;j<np;j++) { |
| int k = ff_reverse[j] >> (8 - ln); |
| if (k < j) |
| FFSWAP(IComplex, z[k], z[j]); |
| } |
| |
| /* pass 0 */ |
| |
| p=&z[0]; |
| j=(np >> 1); |
| do { |
| BF(p[0].re, p[0].im, p[1].re, p[1].im, |
| p[0].re, p[0].im, p[1].re, p[1].im); |
| p+=2; |
| } while (--j != 0); |
| |
| /* pass 1 */ |
| |
| p=&z[0]; |
| j=np >> 2; |
| do { |
| BF(p[0].re, p[0].im, p[2].re, p[2].im, |
| p[0].re, p[0].im, p[2].re, p[2].im); |
| BF(p[1].re, p[1].im, p[3].re, p[3].im, |
| p[1].re, p[1].im, p[3].im, -p[3].re); |
| p+=4; |
| } while (--j != 0); |
| |
| /* pass 2 .. ln-1 */ |
| |
| nblocks = np >> 3; |
| nloops = 1 << 2; |
| np2 = np >> 1; |
| do { |
| p = z; |
| q = z + nloops; |
| for (j = 0; j < nblocks; ++j) { |
| |
| BF(p->re, p->im, q->re, q->im, |
| p->re, p->im, q->re, q->im); |
| |
| p++; |
| q++; |
| for(l = nblocks; l < np2; l += nblocks) { |
| CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
| BF(p->re, p->im, q->re, q->im, |
| p->re, p->im, tmp_re, tmp_im); |
| p++; |
| q++; |
| } |
| p += nloops; |
| q += nloops; |
| } |
| nblocks = nblocks >> 1; |
| nloops = nloops << 1; |
| } while (nblocks != 0); |
| } |
| |
| /* do a 512 point mdct */ |
| static void mdct512(int32_t *out, int16_t *in) |
| { |
| int i, re, im, re1, im1; |
| int16_t rot[N]; |
| IComplex x[N/4]; |
| |
| /* shift to simplify computations */ |
| for(i=0;i<N/4;i++) |
| rot[i] = -in[i + 3*N/4]; |
| for(i=N/4;i<N;i++) |
| rot[i] = in[i - N/4]; |
| |
| /* pre rotation */ |
| for(i=0;i<N/4;i++) { |
| re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1; |
| im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1; |
| CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
| } |
| |
| fft(x, MDCT_NBITS - 2); |
| |
| /* post rotation */ |
| for(i=0;i<N/4;i++) { |
| re = x[i].re; |
| im = x[i].im; |
| CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); |
| out[2*i] = im1; |
| out[N/2-1-2*i] = re1; |
| } |
| } |
| |
| /* XXX: use another norm ? */ |
| static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) |
| { |
| int sum, i; |
| sum = 0; |
| for(i=0;i<n;i++) { |
| sum += abs(exp1[i] - exp2[i]); |
| } |
| return sum; |
| } |
| |
| static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
| uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| int ch, int is_lfe) |
| { |
| int i, j; |
| int exp_diff; |
| |
| /* estimate if the exponent variation & decide if they should be |
| reused in the next frame */ |
| exp_strategy[0][ch] = EXP_NEW; |
| for(i=1;i<NB_BLOCKS;i++) { |
| exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2); |
| #ifdef DEBUG |
| av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff); |
| #endif |
| if (exp_diff > EXP_DIFF_THRESHOLD) |
| exp_strategy[i][ch] = EXP_NEW; |
| else |
| exp_strategy[i][ch] = EXP_REUSE; |
| } |
| if (is_lfe) |
| return; |
| |
| /* now select the encoding strategy type : if exponents are often |
| recoded, we use a coarse encoding */ |
| i = 0; |
| while (i < NB_BLOCKS) { |
| j = i + 1; |
| while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) |
| j++; |
| switch(j - i) { |
| case 1: |
| exp_strategy[i][ch] = EXP_D45; |
| break; |
| case 2: |
| case 3: |
| exp_strategy[i][ch] = EXP_D25; |
| break; |
| default: |
| exp_strategy[i][ch] = EXP_D15; |
| break; |
| } |
| i = j; |
| } |
| } |
| |
| /* set exp[i] to min(exp[i], exp1[i]) */ |
| static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n) |
| { |
| int i; |
| |
| for(i=0;i<n;i++) { |
| if (exp1[i] < exp[i]) |
| exp[i] = exp1[i]; |
| } |
| } |
| |
| /* update the exponents so that they are the ones the decoder will |
| decode. Return the number of bits used to code the exponents */ |
| static int encode_exp(uint8_t encoded_exp[N/2], |
| uint8_t exp[N/2], |
| int nb_exps, |
| int exp_strategy) |
| { |
| int group_size, nb_groups, i, j, k, exp_min; |
| uint8_t exp1[N/2]; |
| |
| switch(exp_strategy) { |
| case EXP_D15: |
| group_size = 1; |
| break; |
| case EXP_D25: |
| group_size = 2; |
| break; |
| default: |
| case EXP_D45: |
| group_size = 4; |
| break; |
| } |
| nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3; |
| |
| /* for each group, compute the minimum exponent */ |
| exp1[0] = exp[0]; /* DC exponent is handled separately */ |
| k = 1; |
| for(i=1;i<=nb_groups;i++) { |
| exp_min = exp[k]; |
| assert(exp_min >= 0 && exp_min <= 24); |
| for(j=1;j<group_size;j++) { |
| if (exp[k+j] < exp_min) |
| exp_min = exp[k+j]; |
| } |
| exp1[i] = exp_min; |
| k += group_size; |
| } |
| |
| /* constraint for DC exponent */ |
| if (exp1[0] > 15) |
| exp1[0] = 15; |
| |
| /* Decrease the delta between each groups to within 2 |
| * so that they can be differentially encoded */ |
| for (i=1;i<=nb_groups;i++) |
| exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2); |
| for (i=nb_groups-1;i>=0;i--) |
| exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2); |
| |
| /* now we have the exponent values the decoder will see */ |
| encoded_exp[0] = exp1[0]; |
| k = 1; |
| for(i=1;i<=nb_groups;i++) { |
| for(j=0;j<group_size;j++) { |
| encoded_exp[k+j] = exp1[i]; |
| } |
| k += group_size; |
| } |
| |
| #if defined(DEBUG) |
| av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy); |
| for(i=0;i<=nb_groups * group_size;i++) { |
| av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]); |
| } |
| av_log(NULL, AV_LOG_DEBUG, "\n"); |
| #endif |
| |
| return 4 + (nb_groups / 3) * 7; |
| } |
| |
| /* return the size in bits taken by the mantissa */ |
| static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) |
| { |
| int bits, mant, i; |
| |
| bits = 0; |
| for(i=0;i<nb_coefs;i++) { |
| mant = m[i]; |
| switch(mant) { |
| case 0: |
| /* nothing */ |
| break; |
| case 1: |
| /* 3 mantissa in 5 bits */ |
| if (s->mant1_cnt == 0) |
| bits += 5; |
| if (++s->mant1_cnt == 3) |
| s->mant1_cnt = 0; |
| break; |
| case 2: |
| /* 3 mantissa in 7 bits */ |
| if (s->mant2_cnt == 0) |
| bits += 7; |
| if (++s->mant2_cnt == 3) |
| s->mant2_cnt = 0; |
| break; |
| case 3: |
| bits += 3; |
| break; |
| case 4: |
| /* 2 mantissa in 7 bits */ |
| if (s->mant4_cnt == 0) |
| bits += 7; |
| if (++s->mant4_cnt == 2) |
| s->mant4_cnt = 0; |
| break; |
| case 14: |
| bits += 14; |
| break; |
| case 15: |
| bits += 16; |
| break; |
| default: |
| bits += mant - 1; |
| break; |
| } |
| } |
| return bits; |
| } |
| |
| |
| static void bit_alloc_masking(AC3EncodeContext *s, |
| uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
| int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50]) |
| { |
| int blk, ch; |
| int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50]; |
| |
| for(blk=0; blk<NB_BLOCKS; blk++) { |
| for(ch=0;ch<s->nb_all_channels;ch++) { |
| if(exp_strategy[blk][ch] == EXP_REUSE) { |
| memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t)); |
| memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t)); |
| } else { |
| ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0, |
| s->nb_coefs[ch], |
| psd[blk][ch], band_psd[blk][ch]); |
| ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch], |
| 0, s->nb_coefs[ch], |
| ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
| ch == s->lfe_channel, |
| DBA_NONE, 0, NULL, NULL, NULL, |
| mask[blk][ch]); |
| } |
| } |
| } |
| } |
| |
| static int bit_alloc(AC3EncodeContext *s, |
| int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50], |
| int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| int frame_bits, int coarse_snr_offset, int fine_snr_offset) |
| { |
| int i, ch; |
| int snr_offset; |
| |
| snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2; |
| |
| /* compute size */ |
| for(i=0;i<NB_BLOCKS;i++) { |
| s->mant1_cnt = 0; |
| s->mant2_cnt = 0; |
| s->mant4_cnt = 0; |
| for(ch=0;ch<s->nb_all_channels;ch++) { |
| ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0, |
| s->nb_coefs[ch], snr_offset, |
| s->bit_alloc.floor, ff_ac3_bap_tab, |
| bap[i][ch]); |
| frame_bits += compute_mantissa_size(s, bap[i][ch], |
| s->nb_coefs[ch]); |
| } |
| } |
| #if 0 |
| printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n", |
| coarse_snr_offset, fine_snr_offset, frame_bits, |
| 16 * s->frame_size - ((frame_bits + 7) & ~7)); |
| #endif |
| return 16 * s->frame_size - frame_bits; |
| } |
| |
| #define SNR_INC1 4 |
| |
| static int compute_bit_allocation(AC3EncodeContext *s, |
| uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2], |
| uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
| int frame_bits) |
| { |
| int i, ch; |
| int coarse_snr_offset, fine_snr_offset; |
| uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50]; |
| static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
| |
| /* init default parameters */ |
| s->slow_decay_code = 2; |
| s->fast_decay_code = 1; |
| s->slow_gain_code = 1; |
| s->db_per_bit_code = 2; |
| s->floor_code = 4; |
| for(ch=0;ch<s->nb_all_channels;ch++) |
| s->fast_gain_code[ch] = 4; |
| |
| /* compute real values */ |
| s->bit_alloc.sr_code = s->sr_code; |
| s->bit_alloc.sr_shift = s->sr_shift; |
| s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift; |
| s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift; |
| s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
| s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
| s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
| |
| /* header size */ |
| frame_bits += 65; |
| // if (s->channel_mode == 2) |
| // frame_bits += 2; |
| frame_bits += frame_bits_inc[s->channel_mode]; |
| |
| /* audio blocks */ |
| for(i=0;i<NB_BLOCKS;i++) { |
| frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
| if (s->channel_mode == AC3_CHMODE_STEREO) { |
| frame_bits++; /* rematstr */ |
| if(i==0) frame_bits += 4; |
| } |
| frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */ |
| if (s->lfe) |
| frame_bits++; /* lfeexpstr */ |
| for(ch=0;ch<s->nb_channels;ch++) { |
| if (exp_strategy[i][ch] != EXP_REUSE) |
| frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
| } |
| frame_bits++; /* baie */ |
| frame_bits++; /* snr */ |
| frame_bits += 2; /* delta / skip */ |
| } |
| frame_bits++; /* cplinu for block 0 */ |
| /* bit alloc info */ |
| /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */ |
| /* csnroffset[6] */ |
| /* (fsnoffset[4] + fgaincod[4]) * c */ |
| frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3); |
| |
| /* auxdatae, crcrsv */ |
| frame_bits += 2; |
| |
| /* CRC */ |
| frame_bits += 16; |
| |
| /* calculate psd and masking curve before doing bit allocation */ |
| bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask); |
| |
| /* now the big work begins : do the bit allocation. Modify the snr |
| offset until we can pack everything in the requested frame size */ |
| |
| coarse_snr_offset = s->coarse_snr_offset; |
| while (coarse_snr_offset >= 0 && |
| bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0) |
| coarse_snr_offset -= SNR_INC1; |
| if (coarse_snr_offset < 0) { |
| av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
| return -1; |
| } |
| while ((coarse_snr_offset + SNR_INC1) <= 63 && |
| bit_alloc(s, mask, psd, bap1, frame_bits, |
| coarse_snr_offset + SNR_INC1, 0) >= 0) { |
| coarse_snr_offset += SNR_INC1; |
| memcpy(bap, bap1, sizeof(bap1)); |
| } |
| while ((coarse_snr_offset + 1) <= 63 && |
| bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) { |
| coarse_snr_offset++; |
| memcpy(bap, bap1, sizeof(bap1)); |
| } |
| |
| fine_snr_offset = 0; |
| while ((fine_snr_offset + SNR_INC1) <= 15 && |
| bit_alloc(s, mask, psd, bap1, frame_bits, |
| coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) { |
| fine_snr_offset += SNR_INC1; |
| memcpy(bap, bap1, sizeof(bap1)); |
| } |
| while ((fine_snr_offset + 1) <= 15 && |
| bit_alloc(s, mask, psd, bap1, frame_bits, |
| coarse_snr_offset, fine_snr_offset + 1) >= 0) { |
| fine_snr_offset++; |
| memcpy(bap, bap1, sizeof(bap1)); |
| } |
| |
| s->coarse_snr_offset = coarse_snr_offset; |
| for(ch=0;ch<s->nb_all_channels;ch++) |
| s->fine_snr_offset[ch] = fine_snr_offset; |
| #if defined(DEBUG_BITALLOC) |
| { |
| int j; |
| |
| for(i=0;i<6;i++) { |
| for(ch=0;ch<s->nb_all_channels;ch++) { |
| printf("Block #%d Ch%d:\n", i, ch); |
| printf("bap="); |
| for(j=0;j<s->nb_coefs[ch];j++) { |
| printf("%d ",bap[i][ch][j]); |
| } |
| printf("\n"); |
| } |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| static av_cold int AC3_encode_init(AVCodecContext *avctx) |
| { |
| int freq = avctx->sample_rate; |
| int bitrate = avctx->bit_rate; |
| int channels = avctx->channels; |
| AC3EncodeContext *s = avctx->priv_data; |
| int i, j, ch; |
| float alpha; |
| int bw_code; |
| static const uint8_t channel_mode_defs[6] = { |
| 0x01, /* C */ |
| 0x02, /* L R */ |
| 0x03, /* L C R */ |
| 0x06, /* L R SL SR */ |
| 0x07, /* L C R SL SR */ |
| 0x07, /* L C R SL SR (+LFE) */ |
| }; |
| |
| avctx->frame_size = AC3_FRAME_SIZE; |
| |
| ac3_common_init(); |
| |
| /* number of channels */ |
| if (channels < 1 || channels > 6) |
| return -1; |
| s->channel_mode = channel_mode_defs[channels - 1]; |
| s->lfe = (channels == 6) ? 1 : 0; |
| s->nb_all_channels = channels; |
| s->nb_channels = channels > 5 ? 5 : channels; |
| s->lfe_channel = s->lfe ? 5 : -1; |
| |
| /* frequency */ |
| for(i=0;i<3;i++) { |
| for(j=0;j<3;j++) |
| if ((ff_ac3_sample_rate_tab[j] >> i) == freq) |
| goto found; |
| } |
| return -1; |
| found: |
| s->sample_rate = freq; |
| s->sr_shift = i; |
| s->sr_code = j; |
| s->bitstream_id = 8 + s->sr_shift; |
| s->bitstream_mode = 0; /* complete main audio service */ |
| |
| /* bitrate & frame size */ |
| for(i=0;i<19;i++) { |
| if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate) |
| break; |
| } |
| if (i == 19) |
| return -1; |
| s->bit_rate = bitrate; |
| s->frame_size_code = i << 1; |
| s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code]; |
| s->bits_written = 0; |
| s->samples_written = 0; |
| s->frame_size = s->frame_size_min; |
| |
| /* bit allocation init */ |
| if(avctx->cutoff) { |
| /* calculate bandwidth based on user-specified cutoff frequency */ |
| int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1); |
| int fbw_coeffs = cutoff * 512 / s->sample_rate; |
| bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
| } else { |
| /* use default bandwidth setting */ |
| /* XXX: should compute the bandwidth according to the frame |
| size, so that we avoid annoying high frequency artifacts */ |
| bw_code = 50; |
| } |
| for(ch=0;ch<s->nb_channels;ch++) { |
| /* bandwidth for each channel */ |
| s->chbwcod[ch] = bw_code; |
| s->nb_coefs[ch] = bw_code * 3 + 73; |
| } |
| if (s->lfe) { |
| s->nb_coefs[s->lfe_channel] = 7; /* fixed */ |
| } |
| /* initial snr offset */ |
| s->coarse_snr_offset = 40; |
| |
| /* mdct init */ |
| fft_init(MDCT_NBITS - 2); |
| for(i=0;i<N/4;i++) { |
| alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N; |
| xcos1[i] = fix15(-cos(alpha)); |
| xsin1[i] = fix15(-sin(alpha)); |
| } |
| |
| avctx->coded_frame= avcodec_alloc_frame(); |
| avctx->coded_frame->key_frame= 1; |
| |
| return 0; |
| } |
| |
| /* output the AC-3 frame header */ |
| static void output_frame_header(AC3EncodeContext *s, unsigned char *frame) |
| { |
| init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
| |
| put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
| put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
| put_bits(&s->pb, 2, s->sr_code); |
| put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min)); |
| put_bits(&s->pb, 5, s->bitstream_id); |
| put_bits(&s->pb, 3, s->bitstream_mode); |
| put_bits(&s->pb, 3, s->channel_mode); |
| if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
| put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
| if (s->channel_mode & 0x04) |
| put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
| if (s->channel_mode == AC3_CHMODE_STEREO) |
| put_bits(&s->pb, 2, 0); /* surround not indicated */ |
| put_bits(&s->pb, 1, s->lfe); /* LFE */ |
| put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
| put_bits(&s->pb, 1, 0); /* no compression control word */ |
| put_bits(&s->pb, 1, 0); /* no lang code */ |
| put_bits(&s->pb, 1, 0); /* no audio production info */ |
| put_bits(&s->pb, 1, 0); /* no copyright */ |
| put_bits(&s->pb, 1, 1); /* original bitstream */ |
| put_bits(&s->pb, 1, 0); /* no time code 1 */ |
| put_bits(&s->pb, 1, 0); /* no time code 2 */ |
| put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
| } |
| |
| /* symetric quantization on 'levels' levels */ |
| static inline int sym_quant(int c, int e, int levels) |
| { |
| int v; |
| |
| if (c >= 0) { |
| v = (levels * (c << e)) >> 24; |
| v = (v + 1) >> 1; |
| v = (levels >> 1) + v; |
| } else { |
| v = (levels * ((-c) << e)) >> 24; |
| v = (v + 1) >> 1; |
| v = (levels >> 1) - v; |
| } |
| assert (v >= 0 && v < levels); |
| return v; |
| } |
| |
| /* asymetric quantization on 2^qbits levels */ |
| static inline int asym_quant(int c, int e, int qbits) |
| { |
| int lshift, m, v; |
| |
| lshift = e + qbits - 24; |
| if (lshift >= 0) |
| v = c << lshift; |
| else |
| v = c >> (-lshift); |
| /* rounding */ |
| v = (v + 1) >> 1; |
| m = (1 << (qbits-1)); |
| if (v >= m) |
| v = m - 1; |
| assert(v >= -m); |
| return v & ((1 << qbits)-1); |
| } |
| |
| /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3 |
| frame */ |
| static void output_audio_block(AC3EncodeContext *s, |
| uint8_t exp_strategy[AC3_MAX_CHANNELS], |
| uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2], |
| uint8_t bap[AC3_MAX_CHANNELS][N/2], |
| int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2], |
| int8_t global_exp[AC3_MAX_CHANNELS], |
| int block_num) |
| { |
| int ch, nb_groups, group_size, i, baie, rbnd; |
| uint8_t *p; |
| uint16_t qmant[AC3_MAX_CHANNELS][N/2]; |
| int exp0, exp1; |
| int mant1_cnt, mant2_cnt, mant4_cnt; |
| uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; |
| int delta0, delta1, delta2; |
| |
| for(ch=0;ch<s->nb_channels;ch++) |
| put_bits(&s->pb, 1, 0); /* 512 point MDCT */ |
| for(ch=0;ch<s->nb_channels;ch++) |
| put_bits(&s->pb, 1, 1); /* no dither */ |
| put_bits(&s->pb, 1, 0); /* no dynamic range */ |
| if (block_num == 0) { |
| /* for block 0, even if no coupling, we must say it. This is a |
| waste of bit :-) */ |
| put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
| put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
| } else { |
| put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
| } |
| |
| if (s->channel_mode == AC3_CHMODE_STEREO) |
| { |
| if(block_num==0) |
| { |
| /* first block must define rematrixing (rematstr) */ |
| put_bits(&s->pb, 1, 1); |
| |
| /* dummy rematrixing rematflg(1:4)=0 */ |
| for (rbnd=0;rbnd<4;rbnd++) |
| put_bits(&s->pb, 1, 0); |
| } |
| else |
| { |
| /* no matrixing (but should be used in the future) */ |
| put_bits(&s->pb, 1, 0); |
| } |
| } |
| |
| #if defined(DEBUG) |
| { |
| static int count = 0; |
| av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++); |
| } |
| #endif |
| /* exponent strategy */ |
| for(ch=0;ch<s->nb_channels;ch++) { |
| put_bits(&s->pb, 2, exp_strategy[ch]); |
| } |
| |
| if (s->lfe) { |
| put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]); |
| } |
| |
| for(ch=0;ch<s->nb_channels;ch++) { |
| if (exp_strategy[ch] != EXP_REUSE) |
| put_bits(&s->pb, 6, s->chbwcod[ch]); |
| } |
| |
| /* exponents */ |
| for (ch = 0; ch < s->nb_all_channels; ch++) { |
| switch(exp_strategy[ch]) { |
| case EXP_REUSE: |
| continue; |
| case EXP_D15: |
| group_size = 1; |
| break; |
| case EXP_D25: |
| group_size = 2; |
| break; |
| default: |
| case EXP_D45: |
| group_size = 4; |
| break; |
| } |
| nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size); |
| p = encoded_exp[ch]; |
| |
| /* first exponent */ |
| exp1 = *p++; |
| put_bits(&s->pb, 4, exp1); |
| |
| /* next ones are delta encoded */ |
| for(i=0;i<nb_groups;i++) { |
| /* merge three delta in one code */ |
| exp0 = exp1; |
| exp1 = p[0]; |
| p += group_size; |
| delta0 = exp1 - exp0 + 2; |
| |
| exp0 = exp1; |
| exp1 = p[0]; |
| p += group_size; |
| delta1 = exp1 - exp0 + 2; |
| |
| exp0 = exp1; |
| exp1 = p[0]; |
| p += group_size; |
| delta2 = exp1 - exp0 + 2; |
| |
| put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2); |
| } |
| |
| if (ch != s->lfe_channel) |
| put_bits(&s->pb, 2, 0); /* no gain range info */ |
| } |
| |
| /* bit allocation info */ |
| baie = (block_num == 0); |
| put_bits(&s->pb, 1, baie); |
| if (baie) { |
| put_bits(&s->pb, 2, s->slow_decay_code); |
| put_bits(&s->pb, 2, s->fast_decay_code); |
| put_bits(&s->pb, 2, s->slow_gain_code); |
| put_bits(&s->pb, 2, s->db_per_bit_code); |
| put_bits(&s->pb, 3, s->floor_code); |
| } |
| |
| /* snr offset */ |
| put_bits(&s->pb, 1, baie); /* always present with bai */ |
| if (baie) { |
| put_bits(&s->pb, 6, s->coarse_snr_offset); |
| for(ch=0;ch<s->nb_all_channels;ch++) { |
| put_bits(&s->pb, 4, s->fine_snr_offset[ch]); |
| put_bits(&s->pb, 3, s->fast_gain_code[ch]); |
| } |
| } |
| |
| put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
| put_bits(&s->pb, 1, 0); /* no data to skip */ |
| |
| /* mantissa encoding : we use two passes to handle the grouping. A |
| one pass method may be faster, but it would necessitate to |
| modify the output stream. */ |
| |
| /* first pass: quantize */ |
| mant1_cnt = mant2_cnt = mant4_cnt = 0; |
| qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL; |
| |
| for (ch = 0; ch < s->nb_all_channels; ch++) { |
| int b, c, e, v; |
| |
| for(i=0;i<s->nb_coefs[ch];i++) { |
| c = mdct_coefs[ch][i]; |
| e = encoded_exp[ch][i] - global_exp[ch]; |
| b = bap[ch][i]; |
| switch(b) { |
| case 0: |
| v = 0; |
| break; |
| case 1: |
| v = sym_quant(c, e, 3); |
| switch(mant1_cnt) { |
| case 0: |
| qmant1_ptr = &qmant[ch][i]; |
| v = 9 * v; |
| mant1_cnt = 1; |
| break; |
| case 1: |
| *qmant1_ptr += 3 * v; |
| mant1_cnt = 2; |
| v = 128; |
| break; |
| default: |
| *qmant1_ptr += v; |
| mant1_cnt = 0; |
| v = 128; |
| break; |
| } |
| break; |
| case 2: |
| v = sym_quant(c, e, 5); |
| switch(mant2_cnt) { |
| case 0: |
| qmant2_ptr = &qmant[ch][i]; |
| v = 25 * v; |
| mant2_cnt = 1; |
| break; |
| case 1: |
| *qmant2_ptr += 5 * v; |
| mant2_cnt = 2; |
| v = 128; |
| break; |
| default: |
| *qmant2_ptr += v; |
| mant2_cnt = 0; |
| v = 128; |
| break; |
| } |
| break; |
| case 3: |
| v = sym_quant(c, e, 7); |
| break; |
| case 4: |
| v = sym_quant(c, e, 11); |
| switch(mant4_cnt) { |
| case 0: |
| qmant4_ptr = &qmant[ch][i]; |
| v = 11 * v; |
| mant4_cnt = 1; |
| break; |
| default: |
| *qmant4_ptr += v; |
| mant4_cnt = 0; |
| v = 128; |
| break; |
| } |
| break; |
| case 5: |
| v = sym_quant(c, e, 15); |
| break; |
| case 14: |
| v = asym_quant(c, e, 14); |
| break; |
| case 15: |
| v = asym_quant(c, e, 16); |
| break; |
| default: |
| v = asym_quant(c, e, b - 1); |
| break; |
| } |
| qmant[ch][i] = v; |
| } |
| } |
| |
| /* second pass : output the values */ |
| for (ch = 0; ch < s->nb_all_channels; ch++) { |
| int b, q; |
| |
| for(i=0;i<s->nb_coefs[ch];i++) { |
| q = qmant[ch][i]; |
| b = bap[ch][i]; |
| switch(b) { |
| case 0: |
| break; |
| case 1: |
| if (q != 128) |
| put_bits(&s->pb, 5, q); |
| break; |
| case 2: |
| if (q != 128) |
| put_bits(&s->pb, 7, q); |
| break; |
| case 3: |
| put_bits(&s->pb, 3, q); |
| break; |
| case 4: |
| if (q != 128) |
| put_bits(&s->pb, 7, q); |
| break; |
| case 14: |
| put_bits(&s->pb, 14, q); |
| break; |
| case 15: |
| put_bits(&s->pb, 16, q); |
| break; |
| default: |
| put_bits(&s->pb, b - 1, q); |
| break; |
| } |
| } |
| } |
| } |
| |
| #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
| |
| static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
| { |
| unsigned int c; |
| |
| c = 0; |
| while (a) { |
| if (a & 1) |
| c ^= b; |
| a = a >> 1; |
| b = b << 1; |
| if (b & (1 << 16)) |
| b ^= poly; |
| } |
| return c; |
| } |
| |
| static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
| { |
| unsigned int r; |
| r = 1; |
| while (n) { |
| if (n & 1) |
| r = mul_poly(r, a, poly); |
| a = mul_poly(a, a, poly); |
| n >>= 1; |
| } |
| return r; |
| } |
| |
| |
| /* compute log2(max(abs(tab[]))) */ |
| static int log2_tab(int16_t *tab, int n) |
| { |
| int i, v; |
| |
| v = 0; |
| for(i=0;i<n;i++) { |
| v |= abs(tab[i]); |
| } |
| return av_log2(v); |
| } |
| |
| static void lshift_tab(int16_t *tab, int n, int lshift) |
| { |
| int i; |
| |
| if (lshift > 0) { |
| for(i=0;i<n;i++) { |
| tab[i] <<= lshift; |
| } |
| } else if (lshift < 0) { |
| lshift = -lshift; |
| for(i=0;i<n;i++) { |
| tab[i] >>= lshift; |
| } |
| } |
| } |
| |
| /* fill the end of the frame and compute the two crcs */ |
| static int output_frame_end(AC3EncodeContext *s) |
| { |
| int frame_size, frame_size_58, n, crc1, crc2, crc_inv; |
| uint8_t *frame; |
| |
| frame_size = s->frame_size; /* frame size in words */ |
| /* align to 8 bits */ |
| flush_put_bits(&s->pb); |
| /* add zero bytes to reach the frame size */ |
| frame = s->pb.buf; |
| n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2; |
| assert(n >= 0); |
| if(n>0) |
| memset(pbBufPtr(&s->pb), 0, n); |
| |
| /* Now we must compute both crcs : this is not so easy for crc1 |
| because it is at the beginning of the data... */ |
| frame_size_58 = (frame_size >> 1) + (frame_size >> 3); |
| crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, |
| frame + 4, 2 * frame_size_58 - 4)); |
| /* XXX: could precompute crc_inv */ |
| crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY); |
| crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
| AV_WB16(frame+2,crc1); |
| |
| crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, |
| frame + 2 * frame_size_58, |
| (frame_size - frame_size_58) * 2 - 2)); |
| AV_WB16(frame+2*frame_size-2,crc2); |
| |
| // printf("n=%d frame_size=%d\n", n, frame_size); |
| return frame_size * 2; |
| } |
| |
| static int AC3_encode_frame(AVCodecContext *avctx, |
| unsigned char *frame, int buf_size, void *data) |
| { |
| AC3EncodeContext *s = avctx->priv_data; |
| int16_t *samples = data; |
| int i, j, k, v, ch; |
| int16_t input_samples[N]; |
| int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS]; |
| uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2]; |
| int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS]; |
| int frame_bits; |
| |
| frame_bits = 0; |
| for(ch=0;ch<s->nb_all_channels;ch++) { |
| /* fixed mdct to the six sub blocks & exponent computation */ |
| for(i=0;i<NB_BLOCKS;i++) { |
| int16_t *sptr; |
| int sinc; |
| |
| /* compute input samples */ |
| memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t)); |
| sinc = s->nb_all_channels; |
| sptr = samples + (sinc * (N/2) * i) + ch; |
| for(j=0;j<N/2;j++) { |
| v = *sptr; |
| input_samples[j + N/2] = v; |
| s->last_samples[ch][j] = v; |
| sptr += sinc; |
| } |
| |
| /* apply the MDCT window */ |
| for(j=0;j<N/2;j++) { |
| input_samples[j] = MUL16(input_samples[j], |
| ff_ac3_window[j]) >> 15; |
| input_samples[N-j-1] = MUL16(input_samples[N-j-1], |
| ff_ac3_window[j]) >> 15; |
| } |
| |
| /* Normalize the samples to use the maximum available |
| precision */ |
| v = 14 - log2_tab(input_samples, N); |
| if (v < 0) |
| v = 0; |
| exp_samples[i][ch] = v - 9; |
| lshift_tab(input_samples, N, v); |
| |
| /* do the MDCT */ |
| mdct512(mdct_coef[i][ch], input_samples); |
| |
| /* compute "exponents". We take into account the |
| normalization there */ |
| for(j=0;j<N/2;j++) { |
| int e; |
| v = abs(mdct_coef[i][ch][j]); |
| if (v == 0) |
| e = 24; |
| else { |
| e = 23 - av_log2(v) + exp_samples[i][ch]; |
| if (e >= 24) { |
| e = 24; |
| mdct_coef[i][ch][j] = 0; |
| } |
| } |
| exp[i][ch][j] = e; |
| } |
| } |
| |
| compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel); |
| |
| /* compute the exponents as the decoder will see them. The |
| EXP_REUSE case must be handled carefully : we select the |
| min of the exponents */ |
| i = 0; |
| while (i < NB_BLOCKS) { |
| j = i + 1; |
| while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) { |
| exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]); |
| j++; |
| } |
| frame_bits += encode_exp(encoded_exp[i][ch], |
| exp[i][ch], s->nb_coefs[ch], |
| exp_strategy[i][ch]); |
| /* copy encoded exponents for reuse case */ |
| for(k=i+1;k<j;k++) { |
| memcpy(encoded_exp[k][ch], encoded_exp[i][ch], |
| s->nb_coefs[ch] * sizeof(uint8_t)); |
| } |
| i = j; |
| } |
| } |
| |
| /* adjust for fractional frame sizes */ |
| while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) { |
| s->bits_written -= s->bit_rate; |
| s->samples_written -= s->sample_rate; |
| } |
| s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); |
| s->bits_written += s->frame_size * 16; |
| s->samples_written += AC3_FRAME_SIZE; |
| |
| compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits); |
| /* everything is known... let's output the frame */ |
| output_frame_header(s, frame); |
| |
| for(i=0;i<NB_BLOCKS;i++) { |
| output_audio_block(s, exp_strategy[i], encoded_exp[i], |
| bap[i], mdct_coef[i], exp_samples[i], i); |
| } |
| return output_frame_end(s); |
| } |
| |
| static av_cold int AC3_encode_close(AVCodecContext *avctx) |
| { |
| av_freep(&avctx->coded_frame); |
| return 0; |
| } |
| |
| #if 0 |
| /*************************************************************************/ |
| /* TEST */ |
| |
| #undef random |
| #define FN (N/4) |
| |
| void fft_test(void) |
| { |
| IComplex in[FN], in1[FN]; |
| int k, n, i; |
| float sum_re, sum_im, a; |
| |
| /* FFT test */ |
| |
| for(i=0;i<FN;i++) { |
| in[i].re = random() % 65535 - 32767; |
| in[i].im = random() % 65535 - 32767; |
| in1[i] = in[i]; |
| } |
| fft(in, 7); |
| |
| /* do it by hand */ |
| for(k=0;k<FN;k++) { |
| sum_re = 0; |
| sum_im = 0; |
| for(n=0;n<FN;n++) { |
| a = -2 * M_PI * (n * k) / FN; |
| sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
| sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
| } |
| printf("%3d: %6d,%6d %6.0f,%6.0f\n", |
| k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
| } |
| } |
| |
| void mdct_test(void) |
| { |
| int16_t input[N]; |
| int32_t output[N/2]; |
| float input1[N]; |
| float output1[N/2]; |
| float s, a, err, e, emax; |
| int i, k, n; |
| |
| for(i=0;i<N;i++) { |
| input[i] = (random() % 65535 - 32767) * 9 / 10; |
| input1[i] = input[i]; |
| } |
| |
| mdct512(output, input); |
| |
| /* do it by hand */ |
| for(k=0;k<N/2;k++) { |
| s = 0; |
| for(n=0;n<N;n++) { |
| a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N)); |
| s += input1[n] * cos(a); |
| } |
| output1[k] = -2 * s / N; |
| } |
| |
| err = 0; |
| emax = 0; |
| for(i=0;i<N/2;i++) { |
| printf("%3d: %7d %7.0f\n", i, output[i], output1[i]); |
| e = output[i] - output1[i]; |
| if (e > emax) |
| emax = e; |
| err += e * e; |
| } |
| printf("err2=%f emax=%f\n", err / (N/2), emax); |
| } |
| |
| void test_ac3(void) |
| { |
| AC3EncodeContext ctx; |
| unsigned char frame[AC3_MAX_CODED_FRAME_SIZE]; |
| short samples[AC3_FRAME_SIZE]; |
| int ret, i; |
| |
| AC3_encode_init(&ctx, 44100, 64000, 1); |
| |
| fft_test(); |
| mdct_test(); |
| |
| for(i=0;i<AC3_FRAME_SIZE;i++) |
| samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000); |
| ret = AC3_encode_frame(&ctx, frame, samples); |
| printf("ret=%d\n", ret); |
| } |
| #endif |
| |
| AVCodec ac3_encoder = { |
| "ac3", |
| CODEC_TYPE_AUDIO, |
| CODEC_ID_AC3, |
| sizeof(AC3EncodeContext), |
| AC3_encode_init, |
| AC3_encode_frame, |
| AC3_encode_close, |
| NULL, |
| .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, |
| .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"), |
| }; |