blob: 09472136690ea97f014928b916495fa4446d1235 [file] [log] [blame]
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2011-2014 Intel Corporation
* Copyright (C) 2002-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <inttypes.h>
#include <time.h>
#include <sys/time.h>
#include <sys/socket.h>
#include "lib/bluetooth.h"
#include "lib/hci.h"
#include "lib/hci_lib.h"
#include "src/shared/util.h"
#include "src/shared/btsnoop.h"
#include "display.h"
#include "bt.h"
#include "ll.h"
#include "hwdb.h"
#include "keys.h"
#include "uuid.h"
#include "l2cap.h"
#include "control.h"
#include "vendor.h"
#include "intel.h"
#include "broadcom.h"
#include "packet.h"
#define COLOR_INDEX_LABEL COLOR_WHITE
#define COLOR_TIMESTAMP COLOR_YELLOW
#define COLOR_NEW_INDEX COLOR_GREEN
#define COLOR_DEL_INDEX COLOR_RED
#define COLOR_OPEN_INDEX COLOR_GREEN
#define COLOR_CLOSE_INDEX COLOR_RED
#define COLOR_INDEX_INFO COLOR_GREEN
#define COLOR_VENDOR_DIAG COLOR_YELLOW
#define COLOR_HCI_COMMAND COLOR_BLUE
#define COLOR_HCI_COMMAND_UNKNOWN COLOR_WHITE_BG
#define COLOR_HCI_EVENT COLOR_MAGENTA
#define COLOR_HCI_EVENT_UNKNOWN COLOR_WHITE_BG
#define COLOR_HCI_ACLDATA COLOR_CYAN
#define COLOR_HCI_SCODATA COLOR_YELLOW
#define COLOR_UNKNOWN_ERROR COLOR_WHITE_BG
#define COLOR_UNKNOWN_FEATURE_BIT COLOR_WHITE_BG
#define COLOR_UNKNOWN_COMMAND_BIT COLOR_WHITE_BG
#define COLOR_UNKNOWN_EVENT_MASK COLOR_WHITE_BG
#define COLOR_UNKNOWN_LE_STATES COLOR_WHITE_BG
#define COLOR_UNKNOWN_SERVICE_CLASS COLOR_WHITE_BG
#define COLOR_UNKNOWN_PKT_TYPE_BIT COLOR_WHITE_BG
#define COLOR_PHY_PACKET COLOR_BLUE
static time_t time_offset = ((time_t) -1);
static int priority_level = BTSNOOP_PRIORITY_INFO;
static unsigned long filter_mask = 0;
static bool index_filter = false;
static uint16_t index_number = 0;
static uint16_t index_current = 0;
#define UNKNOWN_MANUFACTURER 0xffff
#define MAX_CONN 16
struct conn_data {
uint16_t handle;
uint8_t type;
};
static struct conn_data conn_list[MAX_CONN];
static void assign_handle(uint16_t handle, uint8_t type)
{
int i;
for (i = 0; i < MAX_CONN; i++) {
if (conn_list[i].handle == 0x0000) {
conn_list[i].handle = handle;
conn_list[i].type = type;
break;
}
}
}
static void release_handle(uint16_t handle)
{
int i;
for (i = 0; i < MAX_CONN; i++) {
if (conn_list[i].handle == handle) {
conn_list[i].handle = 0x0000;
conn_list[i].type = 0x00;
break;
}
}
}
static uint8_t get_type(uint16_t handle)
{
int i;
for (i = 0; i < MAX_CONN; i++) {
if (conn_list[i].handle == handle)
return conn_list[i].type;
}
return 0xff;
}
void packet_set_filter(unsigned long filter)
{
filter_mask = filter;
}
void packet_add_filter(unsigned long filter)
{
if (index_filter)
filter &= ~PACKET_FILTER_SHOW_INDEX;
filter_mask |= filter;
}
void packet_del_filter(unsigned long filter)
{
filter_mask &= ~filter;
}
void packet_set_priority(const char *priority)
{
if (!priority)
return;
if (!strcasecmp(priority, "debug"))
priority_level = BTSNOOP_PRIORITY_DEBUG;
else
priority_level = atoi(priority);
}
void packet_select_index(uint16_t index)
{
filter_mask &= ~PACKET_FILTER_SHOW_INDEX;
index_filter = true;
index_number = index;
}
#define print_space(x) printf("%*c", (x), ' ');
static void print_packet(struct timeval *tv, struct ucred *cred,
uint16_t index, char ident,
const char *color, const char *label,
const char *text, const char *extra)
{
int col = num_columns();
char line[256], ts_str[64];
int n, ts_len = 0, ts_pos = 0, len = 0, pos = 0;
if ((filter_mask & PACKET_FILTER_SHOW_INDEX) &&
index != HCI_DEV_NONE) {
if (use_color()) {
n = sprintf(ts_str + ts_pos, "%s", COLOR_INDEX_LABEL);
if (n > 0)
ts_pos += n;
}
n = sprintf(ts_str + ts_pos, " [hci%d]", index);
if (n > 0) {
ts_pos += n;
ts_len += n;
}
}
if (tv) {
time_t t = tv->tv_sec;
struct tm tm;
localtime_r(&t, &tm);
if (use_color()) {
n = sprintf(ts_str + ts_pos, "%s", COLOR_TIMESTAMP);
if (n > 0)
ts_pos += n;
}
if (filter_mask & PACKET_FILTER_SHOW_DATE) {
n = sprintf(ts_str + ts_pos, " %04d-%02d-%02d",
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday);
if (n > 0) {
ts_pos += n;
ts_len += n;
}
}
if (filter_mask & PACKET_FILTER_SHOW_TIME) {
n = sprintf(ts_str + ts_pos, " %02d:%02d:%02d.%06lu",
tm.tm_hour, tm.tm_min, tm.tm_sec, tv->tv_usec);
if (n > 0) {
ts_pos += n;
ts_len += n;
}
}
if (filter_mask & PACKET_FILTER_SHOW_TIME_OFFSET) {
n = sprintf(ts_str + ts_pos, " %lu.%06lu",
tv->tv_sec - time_offset, tv->tv_usec);
if (n > 0) {
ts_pos += n;
ts_len += n;
}
}
}
if (use_color()) {
n = sprintf(ts_str + ts_pos, "%s", COLOR_OFF);
if (n > 0)
ts_pos += n;
}
if (use_color()) {
n = sprintf(line + pos, "%s", color);
if (n > 0)
pos += n;
}
n = sprintf(line + pos, "%c %s", ident, label ? label : "");
if (n > 0) {
pos += n;
len += n;
}
if (text) {
int extra_len = extra ? strlen(extra) : 0;
int max_len = col - len - extra_len - ts_len - 3;
n = snprintf(line + pos, max_len + 1, "%s%s",
label ? ": " : "", text);
if (n > max_len) {
line[pos + max_len - 1] = '.';
line[pos + max_len - 2] = '.';
if (line[pos + max_len - 3] == ' ')
line[pos + max_len - 3] = '.';
n = max_len;
}
if (n > 0) {
pos += n;
len += n;
}
}
if (use_color()) {
n = sprintf(line + pos, "%s", COLOR_OFF);
if (n > 0)
pos += n;
}
if (extra) {
n = sprintf(line + pos, " %s", extra);
if (n > 0) {
pos += n;
len += n;
}
}
if (ts_len > 0) {
printf("%s", line);
if (len < col)
print_space(col - len - ts_len - 1);
printf("%s%s\n", use_color() ? COLOR_TIMESTAMP : "", ts_str);
} else
printf("%s\n", line);
}
static const struct {
uint8_t error;
const char *str;
} error2str_table[] = {
{ 0x00, "Success" },
{ 0x01, "Unknown HCI Command" },
{ 0x02, "Unknown Connection Identifier" },
{ 0x03, "Hardware Failure" },
{ 0x04, "Page Timeout" },
{ 0x05, "Authentication Failure" },
{ 0x06, "PIN or Key Missing" },
{ 0x07, "Memory Capacity Exceeded" },
{ 0x08, "Connection Timeout" },
{ 0x09, "Connection Limit Exceeded" },
{ 0x0a, "Synchronous Connection Limit to a Device Exceeded" },
{ 0x0b, "ACL Connection Already Exists" },
{ 0x0c, "Command Disallowed" },
{ 0x0d, "Connection Rejected due to Limited Resources" },
{ 0x0e, "Connection Rejected due to Security Reasons" },
{ 0x0f, "Connection Rejected due to Unacceptable BD_ADDR" },
{ 0x10, "Connection Accept Timeout Exceeded" },
{ 0x11, "Unsupported Feature or Parameter Value" },
{ 0x12, "Invalid HCI Command Parameters" },
{ 0x13, "Remote User Terminated Connection" },
{ 0x14, "Remote Device Terminated due to Low Resources" },
{ 0x15, "Remote Device Terminated due to Power Off" },
{ 0x16, "Connection Terminated By Local Host" },
{ 0x17, "Repeated Attempts" },
{ 0x18, "Pairing Not Allowed" },
{ 0x19, "Unknown LMP PDU" },
{ 0x1a, "Unsupported Remote Feature / Unsupported LMP Feature" },
{ 0x1b, "SCO Offset Rejected" },
{ 0x1c, "SCO Interval Rejected" },
{ 0x1d, "SCO Air Mode Rejected" },
{ 0x1e, "Invalid LMP Parameters / Invalid LL Parameters" },
{ 0x1f, "Unspecified Error" },
{ 0x20, "Unsupported LMP Parameter Value / "
"Unsupported LL Parameter Value" },
{ 0x21, "Role Change Not Allowed" },
{ 0x22, "LMP Response Timeout / LL Response Timeout" },
{ 0x23, "LMP Error Transaction Collision" },
{ 0x24, "LMP PDU Not Allowed" },
{ 0x25, "Encryption Mode Not Acceptable" },
{ 0x26, "Link Key cannot be Changed" },
{ 0x27, "Requested QoS Not Supported" },
{ 0x28, "Instant Passed" },
{ 0x29, "Pairing With Unit Key Not Supported" },
{ 0x2a, "Different Transaction Collision" },
{ 0x2b, "Reserved" },
{ 0x2c, "QoS Unacceptable Parameter" },
{ 0x2d, "QoS Rejected" },
{ 0x2e, "Channel Classification Not Supported" },
{ 0x2f, "Insufficient Security" },
{ 0x30, "Parameter Out Of Manadatory Range" },
{ 0x31, "Reserved" },
{ 0x32, "Role Switch Pending" },
{ 0x33, "Reserved" },
{ 0x34, "Reserved Slot Violation" },
{ 0x35, "Role Switch Failed" },
{ 0x36, "Extended Inquiry Response Too Large" },
{ 0x37, "Secure Simple Pairing Not Supported By Host" },
{ 0x38, "Host Busy - Pairing" },
{ 0x39, "Connection Rejected due to No Suitable Channel Found" },
{ 0x3a, "Controller Busy" },
{ 0x3b, "Unacceptable Connection Parameters" },
{ 0x3c, "Directed Advertising Timeout" },
{ 0x3d, "Connection Terminated due to MIC Failure" },
{ 0x3e, "Connection Failed to be Established" },
{ 0x3f, "MAC Connection Failed" },
{ 0x40, "Coarse Clock Adjustment Rejected "
"but Will Try to Adjust Using Clock Dragging" },
{ }
};
static void print_error(const char *label, uint8_t error)
{
const char *str = "Unknown";
const char *color_on, *color_off;
bool unknown = true;
int i;
for (i = 0; error2str_table[i].str; i++) {
if (error2str_table[i].error == error) {
str = error2str_table[i].str;
unknown = false;
break;
}
}
if (use_color()) {
if (error) {
if (unknown)
color_on = COLOR_UNKNOWN_ERROR;
else
color_on = COLOR_RED;
} else
color_on = COLOR_GREEN;
color_off = COLOR_OFF;
} else {
color_on = "";
color_off = "";
}
print_field("%s: %s%s%s (0x%2.2x)", label,
color_on, str, color_off, error);
}
static void print_status(uint8_t status)
{
print_error("Status", status);
}
static void print_reason(uint8_t reason)
{
print_error("Reason", reason);
}
void packet_print_error(const char *label, uint8_t error)
{
print_error(label, error);
}
static void print_addr_type(const char *label, uint8_t addr_type)
{
const char *str;
switch (addr_type) {
case 0x00:
str = "Public";
break;
case 0x01:
str = "Random";
break;
default:
str = "Reserved";
break;
}
print_field("%s: %s (0x%2.2x)", label, str, addr_type);
}
static void print_own_addr_type(uint8_t addr_type)
{
const char *str;
switch (addr_type) {
case 0x00:
case 0x02:
str = "Public";
break;
case 0x01:
case 0x03:
str = "Random";
break;
default:
str = "Reserved";
break;
}
print_field("Own address type: %s (0x%2.2x)", str, addr_type);
}
static void print_peer_addr_type(const char *label, uint8_t addr_type)
{
const char *str;
switch (addr_type) {
case 0x00:
str = "Public";
break;
case 0x01:
str = "Random";
break;
case 0x02:
str = "Resolved Public";
break;
case 0x03:
str = "Resolved Random";
break;
default:
str = "Reserved";
break;
}
print_field("%s: %s (0x%2.2x)", label, str, addr_type);
}
static void print_addr_resolve(const char *label, const uint8_t *addr,
uint8_t addr_type, bool resolve)
{
const char *str;
char *company;
switch (addr_type) {
case 0x00:
case 0x02:
if (!hwdb_get_company(addr, &company))
company = NULL;
if (company) {
print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X"
" (%s)", label, addr[5], addr[4],
addr[3], addr[2],
addr[1], addr[0],
company);
free(company);
} else {
print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X"
" (OUI %2.2X-%2.2X-%2.2X)", label,
addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0],
addr[5], addr[4], addr[3]);
}
break;
case 0x01:
case 0x03:
switch ((addr[5] & 0xc0) >> 6) {
case 0x00:
str = "Non-Resolvable";
break;
case 0x01:
str = "Resolvable";
break;
case 0x03:
str = "Static";
break;
default:
str = "Reserved";
break;
}
print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X (%s)",
label, addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0], str);
if (resolve && (addr[5] & 0xc0) == 0x40) {
uint8_t ident[6], ident_type;
if (keys_resolve_identity(addr, ident, &ident_type)) {
print_addr_type(" Identity type", ident_type);
print_addr_resolve(" Identity", ident,
ident_type, false);
}
}
break;
default:
print_field("%s: %2.2X-%2.2X-%2.2X-%2.2X-%2.2X-%2.2X",
label, addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0]);
break;
}
}
static void print_addr(const char *label, const uint8_t *addr,
uint8_t addr_type)
{
print_addr_resolve(label, addr, addr_type, true);
}
static void print_bdaddr(const uint8_t *bdaddr)
{
print_addr("Address", bdaddr, 0x00);
}
static void print_lt_addr(uint8_t lt_addr)
{
print_field("LT address: %d", lt_addr);
}
static void print_handle(uint16_t handle)
{
print_field("Handle: %d", le16_to_cpu(handle));
}
static void print_phy_handle(uint8_t phy_handle)
{
print_field("Physical handle: %d", phy_handle);
}
static const struct {
uint8_t bit;
const char *str;
} pkt_type_table[] = {
{ 1, "2-DH1 may not be used" },
{ 2, "3-DH1 may not be used" },
{ 3, "DM1 may be used" },
{ 4, "DH1 may be used" },
{ 8, "2-DH3 may not be used" },
{ 9, "3-DH3 may not be used" },
{ 10, "DM3 may be used" },
{ 11, "DH3 may be used" },
{ 12, "3-DH5 may not be used" },
{ 13, "3-DH5 may not be used" },
{ 14, "DM5 may be used" },
{ 15, "DH5 may be used" },
{ }
};
static void print_pkt_type(uint16_t pkt_type)
{
uint16_t mask;
int i;
print_field("Packet type: 0x%4.4x", le16_to_cpu(pkt_type));
mask = le16_to_cpu(pkt_type);
for (i = 0; pkt_type_table[i].str; i++) {
if (le16_to_cpu(pkt_type) & (1 << pkt_type_table[i].bit)) {
print_field(" %s", pkt_type_table[i].str);
mask &= ~(1 << pkt_type_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_PKT_TYPE_BIT,
" Unknown packet types (0x%4.4x)", mask);
}
static const struct {
uint8_t bit;
const char *str;
} pkt_type_sco_table[] = {
{ 0, "HV1 may be used" },
{ 1, "HV2 may be used" },
{ 2, "HV3 may be used" },
{ 3, "EV3 may be used" },
{ 4, "EV4 may be used" },
{ 5, "EV5 may be used" },
{ 6, "2-EV3 may not be used" },
{ 7, "3-EV3 may not be used" },
{ 8, "2-EV5 may not be used" },
{ 9, "3-EV5 may not be used" },
{ }
};
static void print_pkt_type_sco(uint16_t pkt_type)
{
uint16_t mask;
int i;
print_field("Packet type: 0x%4.4x", le16_to_cpu(pkt_type));
mask = le16_to_cpu(pkt_type);
for (i = 0; pkt_type_sco_table[i].str; i++) {
if (le16_to_cpu(pkt_type) & (1 << pkt_type_sco_table[i].bit)) {
print_field(" %s", pkt_type_sco_table[i].str);
mask &= ~(1 << pkt_type_sco_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_PKT_TYPE_BIT,
" Unknown packet types (0x%4.4x)", mask);
}
static void print_iac(const uint8_t *lap)
{
const char *str = "";
if (lap[2] == 0x9e && lap[1] == 0x8b) {
switch (lap[0]) {
case 0x33:
str = " (General Inquiry)";
break;
case 0x00:
str = " (Limited Inquiry)";
break;
}
}
print_field("Access code: 0x%2.2x%2.2x%2.2x%s",
lap[2], lap[1], lap[0], str);
}
static void print_auth_enable(uint8_t enable)
{
const char *str;
switch (enable) {
case 0x00:
str = "Authentication not required";
break;
case 0x01:
str = "Authentication required for all connections";
break;
default:
str = "Reserved";
break;
}
print_field("Enable: %s (0x%2.2x)", str, enable);
}
static void print_encrypt_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Encryption not required";
break;
case 0x01:
str = "Encryption required for all connections";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static const struct {
uint8_t bit;
const char *str;
} svc_class_table[] = {
{ 0, "Positioning (Location identification)" },
{ 1, "Networking (LAN, Ad hoc)" },
{ 2, "Rendering (Printing, Speaker)" },
{ 3, "Capturing (Scanner, Microphone)" },
{ 4, "Object Transfer (v-Inbox, v-Folder)" },
{ 5, "Audio (Speaker, Microphone, Headset)" },
{ 6, "Telephony (Cordless telephony, Modem, Headset)" },
{ 7, "Information (WEB-server, WAP-server)" },
{ }
};
static const struct {
uint8_t val;
const char *str;
} major_class_computer_table[] = {
{ 0x00, "Uncategorized, code for device not assigned" },
{ 0x01, "Desktop workstation" },
{ 0x02, "Server-class computer" },
{ 0x03, "Laptop" },
{ 0x04, "Handheld PC/PDA (clam shell)" },
{ 0x05, "Palm sized PC/PDA" },
{ 0x06, "Wearable computer (Watch sized)" },
{ 0x07, "Tablet" },
{ }
};
static const char *major_class_computer(uint8_t minor)
{
int i;
for (i = 0; major_class_computer_table[i].str; i++) {
if (major_class_computer_table[i].val == minor)
return major_class_computer_table[i].str;
}
return NULL;
}
static const struct {
uint8_t val;
const char *str;
} major_class_phone_table[] = {
{ 0x00, "Uncategorized, code for device not assigned" },
{ 0x01, "Cellular" },
{ 0x02, "Cordless" },
{ 0x03, "Smart phone" },
{ 0x04, "Wired modem or voice gateway" },
{ 0x05, "Common ISDN Access" },
{ }
};
static const char *major_class_phone(uint8_t minor)
{
int i;
for (i = 0; major_class_phone_table[i].str; i++) {
if (major_class_phone_table[i].val == minor)
return major_class_phone_table[i].str;
}
return NULL;
}
static const struct {
uint8_t val;
const char *str;
} major_class_av_table[] = {
{ 0x00, "Uncategorized, code for device not assigned" },
{ 0x01, "Wearable Headset Device" },
{ 0x02, "Hands-free Device" },
{ 0x04, "Microphone" },
{ 0x05, "Loudspeaker" },
{ 0x06, "Headphones" },
{ 0x07, "Portable Audio" },
{ 0x08, "Car audio" },
{ 0x09, "Set-top box" },
{ 0x0a, "HiFi Audio Device" },
{ 0x0b, "VCR" },
{ 0x0c, "Video Camera" },
{ 0x0d, "Camcorder" },
{ 0x0e, "Video Monitor" },
{ 0x0f, "Video Display and Loudspeaker" },
{ 0x10, "Video Conferencing" },
{ 0x12, "Gaming/Toy" },
{ }
};
static const char *major_class_av(uint8_t minor)
{
int i;
for (i = 0; major_class_av_table[i].str; i++) {
if (major_class_av_table[i].val == minor)
return major_class_av_table[i].str;
}
return NULL;
}
static const struct {
uint8_t val;
const char *str;
} major_class_wearable_table[] = {
{ 0x01, "Wrist Watch" },
{ 0x02, "Pager" },
{ 0x03, "Jacket" },
{ 0x04, "Helmet" },
{ 0x05, "Glasses" },
{ }
};
static const char *major_class_wearable(uint8_t minor)
{
int i;
for (i = 0; major_class_wearable_table[i].str; i++) {
if (major_class_wearable_table[i].val == minor)
return major_class_wearable_table[i].str;
}
return NULL;
}
static const struct {
uint8_t val;
const char *str;
const char *(*func)(uint8_t minor);
} major_class_table[] = {
{ 0x00, "Miscellaneous" },
{ 0x01, "Computer (desktop, notebook, PDA, organizers)",
major_class_computer },
{ 0x02, "Phone (cellular, cordless, payphone, modem)",
major_class_phone },
{ 0x03, "LAN /Network Access point" },
{ 0x04, "Audio/Video (headset, speaker, stereo, video, vcr)",
major_class_av },
{ 0x05, "Peripheral (mouse, joystick, keyboards)" },
{ 0x06, "Imaging (printing, scanner, camera, display)" },
{ 0x07, "Wearable", major_class_wearable },
{ 0x08, "Toy" },
{ 0x09, "Health" },
{ 0x1f, "Uncategorized, specific device code not specified" },
{ }
};
static void print_dev_class(const uint8_t *dev_class)
{
uint8_t mask, major_cls, minor_cls;
const char *major_str = NULL;
const char *minor_str = NULL;
int i;
print_field("Class: 0x%2.2x%2.2x%2.2x",
dev_class[2], dev_class[1], dev_class[0]);
if ((dev_class[0] & 0x03) != 0x00) {
print_field(" Format type: 0x%2.2x", dev_class[0] & 0x03);
print_text(COLOR_ERROR, " invalid format type");
return;
}
major_cls = dev_class[1] & 0x1f;
minor_cls = (dev_class[0] & 0xfc) >> 2;
for (i = 0; major_class_table[i].str; i++) {
if (major_class_table[i].val == major_cls) {
major_str = major_class_table[i].str;
if (!major_class_table[i].func)
break;
minor_str = major_class_table[i].func(minor_cls);
break;
}
}
if (major_str) {
print_field(" Major class: %s", major_str);
if (minor_str)
print_field(" Minor class: %s", minor_str);
else
print_field(" Minor class: 0x%2.2x", minor_cls);
} else {
print_field(" Major class: 0x%2.2x", major_cls);
print_field(" Minor class: 0x%2.2x", minor_cls);
}
if (dev_class[1] & 0x20)
print_field(" Limited Discoverable Mode");
if ((dev_class[1] & 0xc0) != 0x00) {
print_text(COLOR_ERROR, " invalid service class");
return;
}
mask = dev_class[2];
for (i = 0; svc_class_table[i].str; i++) {
if (dev_class[2] & (1 << svc_class_table[i].bit)) {
print_field(" %s", svc_class_table[i].str);
mask &= ~(1 << svc_class_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_SERVICE_CLASS,
" Unknown service class (0x%2.2x)", mask);
}
static const struct {
uint16_t val;
bool generic;
const char *str;
} appearance_table[] = {
{ 0, true, "Unknown" },
{ 64, true, "Phone" },
{ 128, true, "Computer" },
{ 192, true, "Watch" },
{ 193, false, "Sports Watch" },
{ 256, true, "Clock" },
{ 320, true, "Display" },
{ 384, true, "Remote Control" },
{ 448, true, "Eye-glasses" },
{ 512, true, "Tag" },
{ 576, true, "Keyring" },
{ 640, true, "Media Player" },
{ 704, true, "Barcode Scanner" },
{ 768, true, "Thermometer" },
{ 769, false, "Thermometer: Ear" },
{ 832, true, "Heart Rate Sensor" },
{ 833, false, "Heart Rate Belt" },
{ 896, true, "Blood Pressure" },
{ 897, false, "Blood Pressure: Arm" },
{ 898, false, "Blood Pressure: Wrist" },
{ 960, true, "Human Interface Device" },
{ 961, false, "Keyboard" },
{ 962, false, "Mouse" },
{ 963, false, "Joystick" },
{ 964, false, "Gamepad" },
{ 965, false, "Digitizer Tablet" },
{ 966, false, "Card Reader" },
{ 967, false, "Digital Pen" },
{ 968, false, "Barcode Scanner" },
{ 1024, true, "Glucose Meter" },
{ 1088, true, "Running Walking Sensor" },
{ 1089, false, "Running Walking Sensor: In-Shoe" },
{ 1090, false, "Running Walking Sensor: On-Shoe" },
{ 1091, false, "Running Walking Sensor: On-Hip" },
{ 1152, true, "Cycling" },
{ 1153, false, "Cycling: Cycling Computer" },
{ 1154, false, "Cycling: Speed Sensor" },
{ 1155, false, "Cycling: Cadence Sensor" },
{ 1156, false, "Cycling: Power Sensor" },
{ 1157, false, "Cycling: Speed and Cadence Sensor" },
{ 1216, true, "Undefined" },
{ 3136, true, "Pulse Oximeter" },
{ 3137, false, "Pulse Oximeter: Fingertip" },
{ 3138, false, "Pulse Oximeter: Wrist Worn" },
{ 3200, true, "Weight Scale" },
{ 3264, true, "Undefined" },
{ 5184, true, "Outdoor Sports Activity" },
{ 5185, false, "Location Display Device" },
{ 5186, false, "Location and Navigation Display Device" },
{ 5187, false, "Location Pod" },
{ 5188, false, "Location and Navigation Pod" },
{ 5248, true, "Undefined" },
{ }
};
static void print_appearance(uint16_t appearance)
{
const char *str = NULL;
int i, type = 0;
for (i = 0; appearance_table[i].str; i++) {
if (appearance_table[i].generic) {
if (appearance < appearance_table[i].val)
break;
type = i;
}
if (appearance_table[i].val == appearance) {
str = appearance_table[i].str;
break;
}
}
if (!str)
str = appearance_table[type].str;
print_field("Appearance: %s (0x%4.4x)", str, appearance);
}
static void print_num_broadcast_retrans(uint8_t num_retrans)
{
print_field("Number of broadcast retransmissions: %u", num_retrans);
}
static void print_hold_mode_activity(uint8_t activity)
{
print_field("Activity: 0x%2.2x", activity);
if (activity == 0x00) {
print_field(" Maintain current Power State");
return;
}
if (activity & 0x01)
print_field(" Suspend Page Scan");
if (activity & 0x02)
print_field(" Suspend Inquiry Scan");
if (activity & 0x04)
print_field(" Suspend Periodic Inquiries");
}
static void print_power_type(uint8_t type)
{
const char *str;
switch (type) {
case 0x00:
str = "Current Transmit Power Level";
break;
case 0x01:
str = "Maximum Transmit Power Level";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
}
static void print_power_level(int8_t level, const char *type)
{
print_field("TX power%s%s%s: %d dBm",
type ? " (" : "", type ? type : "", type ? ")" : "", level);
}
static void print_sync_flow_control(uint8_t enable)
{
const char *str;
switch (enable) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Flow control: %s (0x%2.2x)", str, enable);
}
static void print_host_flow_control(uint8_t enable)
{
const char *str;
switch (enable) {
case 0x00:
str = "Off";
break;
case 0x01:
str = "ACL Data Packets";
break;
case 0x02:
str = "Synchronous Data Packets";
break;
case 0x03:
str = "ACL and Synchronous Data Packets";
break;
default:
str = "Reserved";
break;
}
print_field("Flow control: %s (0x%2.2x)", str, enable);
}
static void print_voice_setting(uint16_t setting)
{
uint8_t input_coding = (le16_to_cpu(setting) & 0x0300) >> 8;
uint8_t input_data_format = (le16_to_cpu(setting) & 0xc0) >> 6;
uint8_t air_coding_format = le16_to_cpu(setting) & 0x0003;
const char *str;
print_field("Setting: 0x%4.4x", le16_to_cpu(setting));
switch (input_coding) {
case 0x00:
str = "Linear";
break;
case 0x01:
str = "u-law";
break;
case 0x02:
str = "A-law";
break;
default:
str = "Reserved";
break;
}
print_field(" Input Coding: %s", str);
switch (input_data_format) {
case 0x00:
str = "1's complement";
break;
case 0x01:
str = "2's complement";
break;
case 0x02:
str = "Sign-Magnitude";
break;
case 0x03:
str = "Unsigned";
break;
default:
str = "Reserved";
break;
}
print_field(" Input Data Format: %s", str);
if (input_coding == 0x00) {
print_field(" Input Sample Size: %s",
le16_to_cpu(setting) & 0x20 ? "16-bit" : "8-bit");
print_field(" # of bits padding at MSB: %d",
(le16_to_cpu(setting) & 0x1c) >> 2);
}
switch (air_coding_format) {
case 0x00:
str = "CVSD";
break;
case 0x01:
str = "u-law";
break;
case 0x02:
str = "A-law";
break;
case 0x03:
str = "Transparent Data";
break;
default:
str = "Reserved";
break;
}
print_field(" Air Coding Format: %s", str);
}
static void print_retransmission_effort(uint8_t effort)
{
const char *str;
switch (effort) {
case 0x00:
str = "No retransmissions";
break;
case 0x01:
str = "Optimize for power consumption";
break;
case 0x02:
str = "Optimize for link quality";
break;
case 0xff:
str = "Don't care";
break;
default:
str = "Reserved";
break;
}
print_field("Retransmission effort: %s (0x%2.2x)", str, effort);
}
static void print_scan_enable(uint8_t scan_enable)
{
const char *str;
switch (scan_enable) {
case 0x00:
str = "No Scans";
break;
case 0x01:
str = "Inquiry Scan";
break;
case 0x02:
str = "Page Scan";
break;
case 0x03:
str = "Inquiry Scan + Page Scan";
break;
default:
str = "Reserved";
break;
}
print_field("Scan enable: %s (0x%2.2x)", str, scan_enable);
}
static void print_link_policy(uint16_t link_policy)
{
uint16_t policy = le16_to_cpu(link_policy);
print_field("Link policy: 0x%4.4x", policy);
if (policy == 0x0000) {
print_field(" Disable All Modes");
return;
}
if (policy & 0x0001)
print_field(" Enable Role Switch");
if (policy & 0x0002)
print_field(" Enable Hold Mode");
if (policy & 0x0004)
print_field(" Enable Sniff Mode");
if (policy & 0x0008)
print_field(" Enable Park State");
}
static void print_air_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "u-law log";
break;
case 0x01:
str = "A-law log";
break;
case 0x02:
str = "CVSD";
break;
case 0x03:
str = "Transparent";
break;
default:
str = "Reserved";
break;
}
print_field("Air mode: %s (0x%2.2x)", str, mode);
}
static void print_codec(const char *label, uint8_t codec)
{
const char *str;
switch (codec) {
case 0x00:
str = "u-law log";
break;
case 0x01:
str = "A-law log";
break;
case 0x02:
str = "CVSD";
break;
case 0x03:
str = "Transparent";
break;
case 0x04:
str = "Linear PCM";
break;
case 0x05:
str = "mSBC";
break;
case 0xff:
str = "Vendor specific";
break;
default:
str = "Reserved";
break;
}
print_field("%s: %s (0x%2.2x)", label, str, codec);
}
static void print_inquiry_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Standard Inquiry Result";
break;
case 0x01:
str = "Inquiry Result with RSSI";
break;
case 0x02:
str = "Inquiry Result with RSSI or Extended Inquiry Result";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_inquiry_scan_type(uint8_t type)
{
const char *str;
switch (type) {
case 0x00:
str = "Standard Scan";
break;
case 0x01:
str = "Interlaced Scan";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
}
static void print_pscan_type(uint8_t type)
{
const char *str;
switch (type) {
case 0x00:
str = "Standard Scan";
break;
case 0x01:
str = "Interlaced Scan";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
}
static void print_afh_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_erroneous_reporting(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_loopback_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "No Loopback";
break;
case 0x01:
str = "Local Loopback";
break;
case 0x02:
str = "Remote Loopback";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_simple_pairing_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_ssp_debug_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Debug mode: %s (0x%2.2x)", str, mode);
}
static void print_secure_conn_support(uint8_t support)
{
const char *str;
switch (support) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Support: %s (0x%2.2x)", str, support);
}
static void print_auth_payload_timeout(uint16_t timeout)
{
print_field("Timeout: %d msec (0x%4.4x)",
le16_to_cpu(timeout) * 10, le16_to_cpu(timeout));
}
static void print_pscan_rep_mode(uint8_t pscan_rep_mode)
{
const char *str;
switch (pscan_rep_mode) {
case 0x00:
str = "R0";
break;
case 0x01:
str = "R1";
break;
case 0x02:
str = "R2";
break;
default:
str = "Reserved";
break;
}
print_field("Page scan repetition mode: %s (0x%2.2x)",
str, pscan_rep_mode);
}
static void print_pscan_period_mode(uint8_t pscan_period_mode)
{
const char *str;
switch (pscan_period_mode) {
case 0x00:
str = "P0";
break;
case 0x01:
str = "P1";
break;
case 0x02:
str = "P2";
break;
default:
str = "Reserved";
break;
}
print_field("Page period mode: %s (0x%2.2x)", str, pscan_period_mode);
}
static void print_pscan_mode(uint8_t pscan_mode)
{
const char *str;
switch (pscan_mode) {
case 0x00:
str = "Mandatory";
break;
case 0x01:
str = "Optional I";
break;
case 0x02:
str = "Optional II";
break;
case 0x03:
str = "Optional III";
break;
default:
str = "Reserved";
break;
}
print_field("Page scan mode: %s (0x%2.2x)", str, pscan_mode);
}
static void print_clock_offset(uint16_t clock_offset)
{
print_field("Clock offset: 0x%4.4x", le16_to_cpu(clock_offset));
}
static void print_clock(uint32_t clock)
{
print_field("Clock: 0x%8.8x", le32_to_cpu(clock));
}
static void print_clock_type(uint8_t type)
{
const char *str;
switch (type) {
case 0x00:
str = "Local clock";
break;
case 0x01:
str = "Piconet clock";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
}
static void print_clock_accuracy(uint16_t accuracy)
{
if (le16_to_cpu(accuracy) == 0xffff)
print_field("Accuracy: Unknown (0x%4.4x)",
le16_to_cpu(accuracy));
else
print_field("Accuracy: %.4f msec (0x%4.4x)",
le16_to_cpu(accuracy) * 0.3125,
le16_to_cpu(accuracy));
}
static void print_lpo_allowed(uint8_t lpo_allowed)
{
print_field("LPO allowed: 0x%2.2x", lpo_allowed);
}
static void print_broadcast_fragment(uint8_t fragment)
{
const char *str;
switch (fragment) {
case 0x00:
str = "Continuation fragment";
break;
case 0x01:
str = "Starting fragment";
break;
case 0x02:
str = "Ending fragment";
break;
case 0x03:
str = "No fragmentation";
break;
default:
str = "Reserved";
break;
}
print_field("Fragment: %s (0x%2.2x)", str, fragment);
}
static void print_link_type(uint8_t link_type)
{
const char *str;
switch (link_type) {
case 0x00:
str = "SCO";
break;
case 0x01:
str = "ACL";
break;
case 0x02:
str = "eSCO";
break;
default:
str = "Reserved";
break;
}
print_field("Link type: %s (0x%2.2x)", str, link_type);
}
static void print_encr_mode(uint8_t encr_mode)
{
const char *str;
switch (encr_mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Encryption: %s (0x%2.2x)", str, encr_mode);
}
static void print_encr_mode_change(uint8_t encr_mode, uint16_t handle)
{
const char *str;
uint8_t conn_type;
conn_type = get_type(le16_to_cpu(handle));
switch (encr_mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
switch (conn_type) {
case 0x00:
str = "Enabled with E0";
break;
case 0x01:
str = "Enabled with AES-CCM";
break;
default:
str = "Enabled";
break;
}
break;
case 0x02:
str = "Enabled with AES-CCM";
break;
default:
str = "Reserved";
break;
}
print_field("Encryption: %s (0x%2.2x)", str, encr_mode);
}
static void print_pin_type(uint8_t pin_type)
{
const char *str;
switch (pin_type) {
case 0x00:
str = "Variable";
break;
case 0x01:
str = "Fixed";
break;
default:
str = "Reserved";
break;
}
print_field("PIN type: %s (0x%2.2x)", str, pin_type);
}
static void print_key_flag(uint8_t key_flag)
{
const char *str;
switch (key_flag) {
case 0x00:
str = "Semi-permanent";
break;
case 0x01:
str = "Temporary";
break;
default:
str = "Reserved";
break;
}
print_field("Key flag: %s (0x%2.2x)", str, key_flag);
}
static void print_key_len(uint8_t key_len)
{
const char *str;
switch (key_len) {
case 32:
str = "802.11 PAL";
break;
default:
str = "Reserved";
break;
}
print_field("Key length: %s (%d)", str, key_len);
}
static void print_key_type(uint8_t key_type)
{
const char *str;
switch (key_type) {
case 0x00:
str = "Combination key";
break;
case 0x01:
str = "Local Unit key";
break;
case 0x02:
str = "Remote Unit key";
break;
case 0x03:
str = "Debug Combination key";
break;
case 0x04:
str = "Unauthenticated Combination key from P-192";
break;
case 0x05:
str = "Authenticated Combination key from P-192";
break;
case 0x06:
str = "Changed Combination key";
break;
case 0x07:
str = "Unauthenticated Combination key from P-256";
break;
case 0x08:
str = "Authenticated Combination key from P-256";
break;
default:
str = "Reserved";
break;
}
print_field("Key type: %s (0x%2.2x)", str, key_type);
}
static void print_key_size(uint8_t key_size)
{
print_field("Key size: %d", key_size);
}
static void print_hex_field(const char *label, const uint8_t *data,
uint8_t len)
{
char str[len * 2 + 1];
uint8_t i;
str[0] = '\0';
for (i = 0; i < len; i++)
sprintf(str + (i * 2), "%2.2x", data[i]);
print_field("%s: %s", label, str);
}
static void print_key(const char *label, const uint8_t *link_key)
{
print_hex_field(label, link_key, 16);
}
static void print_link_key(const uint8_t *link_key)
{
print_key("Link key", link_key);
}
static void print_pin_code(const uint8_t *pin_code, uint8_t pin_len)
{
char str[pin_len + 1];
uint8_t i;
for (i = 0; i < pin_len; i++)
sprintf(str + i, "%c", (const char) pin_code[i]);
print_field("PIN code: %s", str);
}
static void print_hash_p192(const uint8_t *hash)
{
print_key("Hash C from P-192", hash);
}
static void print_hash_p256(const uint8_t *hash)
{
print_key("Hash C from P-256", hash);
}
static void print_randomizer_p192(const uint8_t *randomizer)
{
print_key("Randomizer R with P-192", randomizer);
}
static void print_randomizer_p256(const uint8_t *randomizer)
{
print_key("Randomizer R with P-256", randomizer);
}
static void print_pk256(const char *label, const uint8_t *key)
{
print_field("%s:", label);
print_hex_field(" X", &key[0], 32);
print_hex_field(" Y", &key[32], 32);
}
static void print_dhkey(const uint8_t *dhkey)
{
print_hex_field("Diffie-Hellman key", dhkey, 32);
}
static void print_passkey(uint32_t passkey)
{
print_field("Passkey: %06d", le32_to_cpu(passkey));
}
static void print_io_capability(uint8_t capability)
{
const char *str;
switch (capability) {
case 0x00:
str = "DisplayOnly";
break;
case 0x01:
str = "DisplayYesNo";
break;
case 0x02:
str = "KeyboardOnly";
break;
case 0x03:
str = "NoInputNoOutput";
break;
default:
str = "Reserved";
break;
}
print_field("IO capability: %s (0x%2.2x)", str, capability);
}
static void print_oob_data(uint8_t oob_data)
{
const char *str;
switch (oob_data) {
case 0x00:
str = "Authentication data not present";
break;
case 0x01:
str = "P-192 authentication data present";
break;
case 0x02:
str = "P-256 authentication data present";
break;
case 0x03:
str = "P-192 and P-256 authentication data present";
break;
default:
str = "Reserved";
break;
}
print_field("OOB data: %s (0x%2.2x)", str, oob_data);
}
static void print_oob_data_response(uint8_t oob_data)
{
const char *str;
switch (oob_data) {
case 0x00:
str = "Authentication data not present";
break;
case 0x01:
str = "Authentication data present";
break;
default:
str = "Reserved";
break;
}
print_field("OOB data: %s (0x%2.2x)", str, oob_data);
}
static void print_authentication(uint8_t authentication)
{
const char *str;
switch (authentication) {
case 0x00:
str = "No Bonding - MITM not required";
break;
case 0x01:
str = "No Bonding - MITM required";
break;
case 0x02:
str = "Dedicated Bonding - MITM not required";
break;
case 0x03:
str = "Dedicated Bonding - MITM required";
break;
case 0x04:
str = "General Bonding - MITM not required";
break;
case 0x05:
str = "General Bonding - MITM required";
break;
default:
str = "Reserved";
break;
}
print_field("Authentication: %s (0x%2.2x)", str, authentication);
}
void packet_print_io_capability(uint8_t capability)
{
print_io_capability(capability);
}
void packet_print_io_authentication(uint8_t authentication)
{
print_authentication(authentication);
}
static void print_location_domain_aware(uint8_t aware)
{
const char *str;
switch (aware) {
case 0x00:
str = "Regulatory domain unknown";
break;
case 0x01:
str = "Regulatory domain known";
break;
default:
str = "Reserved";
break;
}
print_field("Domain aware: %s (0x%2.2x)", str, aware);
}
static void print_location_domain(const uint8_t *domain)
{
print_field("Domain: %c%c (0x%2.2x%2.2x)",
(char) domain[0], (char) domain[1], domain[0], domain[1]);
}
static void print_location_domain_options(uint8_t options)
{
print_field("Domain options: %c (0x%2.2x)", (char) options, options);
}
static void print_location_options(uint8_t options)
{
print_field("Options: 0x%2.2x", options);
}
static void print_flow_control_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Packet based";
break;
case 0x01:
str = "Data block based";
break;
default:
str = "Reserved";
break;
}
print_field("Flow control mode: %s (0x%2.2x)", str, mode);
}
static void print_flow_direction(uint8_t direction)
{
const char *str;
switch (direction) {
case 0x00:
str = "Outgoing";
break;
case 0x01:
str = "Incoming";
break;
default:
str = "Reserved";
break;
}
print_field("Flow direction: %s (0x%2.2x)", str, direction);
}
static void print_service_type(uint8_t service_type)
{
const char *str;
switch (service_type) {
case 0x00:
str = "No Traffic";
break;
case 0x01:
str = "Best Effort";
break;
case 0x02:
str = "Guaranteed";
break;
default:
str = "Reserved";
break;
}
print_field("Service type: %s (0x%2.2x)", str, service_type);
}
static void print_flow_spec(const char *label, const uint8_t *data)
{
const char *str;
switch (data[1]) {
case 0x00:
str = "No traffic";
break;
case 0x01:
str = "Best effort";
break;
case 0x02:
str = "Guaranteed";
break;
default:
str = "Reserved";
break;
}
print_field("%s flow spec: 0x%2.2x", label, data[0]);
print_field(" Service type: %s (0x%2.2x)", str, data[1]);
print_field(" Maximum SDU size: 0x%4.4x", get_le16(data + 2));
print_field(" SDU inter-arrival time: 0x%8.8x", get_le32(data + 4));
print_field(" Access latency: 0x%8.8x", get_le32(data + 8));
print_field(" Flush timeout: 0x%8.8x", get_le32(data + 12));
}
static void print_short_range_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Short range mode: %s (0x%2.2x)", str, mode);
}
static void print_amp_status(uint8_t amp_status)
{
const char *str;
switch (amp_status) {
case 0x00:
str = "Present";
break;
case 0x01:
str = "Bluetooth only";
break;
case 0x02:
str = "No capacity";
break;
case 0x03:
str = "Low capacity";
break;
case 0x04:
str = "Medium capacity";
break;
case 0x05:
str = "High capacity";
break;
case 0x06:
str = "Full capacity";
break;
default:
str = "Reserved";
break;
}
print_field("AMP status: %s (0x%2.2x)", str, amp_status);
}
static void print_num_resp(uint8_t num_resp)
{
print_field("Num responses: %d", num_resp);
}
static void print_num_reports(uint8_t num_reports)
{
print_field("Num reports: %d", num_reports);
}
static void print_adv_event_type(uint8_t type)
{
const char *str;
switch (type) {
case 0x00:
str = "Connectable undirected - ADV_IND";
break;
case 0x01:
str = "Connectable directed - ADV_DIRECT_IND";
break;
case 0x02:
str = "Scannable undirected - ADV_SCAN_IND";
break;
case 0x03:
str = "Non connectable undirected - ADV_NONCONN_IND";
break;
case 0x04:
str = "Scan response - SCAN_RSP";
break;
default:
str = "Reserved";
break;
}
print_field("Event type: %s (0x%2.2x)", str, type);
}
static void print_rssi(int8_t rssi)
{
if ((uint8_t) rssi == 0x99 || rssi == 127)
print_field("RSSI: invalid (0x%2.2x)", (uint8_t) rssi);
else
print_field("RSSI: %d dBm (0x%2.2x)", rssi, (uint8_t) rssi);
}
static void print_slot_625(const char *label, uint16_t value)
{
print_field("%s: %.3f msec (0x%4.4x)", label,
le16_to_cpu(value) * 0.625, le16_to_cpu(value));
}
static void print_slot_125(const char *label, uint16_t value)
{
print_field("%s: %.2f msec (0x%4.4x)", label,
le16_to_cpu(value) * 1.25, le16_to_cpu(value));
}
static void print_timeout(uint16_t timeout)
{
print_slot_625("Timeout", timeout);
}
static void print_interval(uint16_t interval)
{
print_slot_625("Interval", interval);
}
static void print_window(uint16_t window)
{
print_slot_625("Window", window);
}
static void print_role(uint8_t role)
{
const char *str;
switch (role) {
case 0x00:
str = "Master";
break;
case 0x01:
str = "Slave";
break;
default:
str = "Reserved";
break;
}
print_field("Role: %s (0x%2.2x)", str, role);
}
static void print_mode(uint8_t mode)
{
const char *str;
switch (mode) {
case 0x00:
str = "Active";
break;
case 0x01:
str = "Hold";
break;
case 0x02:
str = "Sniff";
break;
case 0x03:
str = "Park";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
}
static void print_name(const uint8_t *name)
{
char str[249];
memcpy(str, name, 248);
str[248] = '\0';
print_field("Name: %s", str);
}
static void print_channel_map(const uint8_t *map)
{
unsigned int count = 0, start = 0;
char str[21];
int i, n;
for (i = 0; i < 10; i++)
sprintf(str + (i * 2), "%2.2x", map[i]);
print_field("Channel map: 0x%s", str);
for (i = 0; i < 10; i++) {
for (n = 0; n < 8; n++) {
if (map[i] & (1 << n)) {
if (count == 0)
start = (i * 8) + n;
count++;
continue;
}
if (count > 1) {
print_field(" Channel %u-%u",
start, start + count - 1);
count = 0;
} else if (count > 0) {
print_field(" Channel %u", start);
count = 0;
}
}
}
}
void packet_print_channel_map_lmp(const uint8_t *map)
{
print_channel_map(map);
}
static void print_flush_timeout(uint16_t timeout)
{
if (timeout)
print_timeout(timeout);
else
print_field("Timeout: No Automatic Flush");
}
void packet_print_version(const char *label, uint8_t version,
const char *sublabel, uint16_t subversion)
{
const char *str;
switch (version) {
case 0x00:
str = "Bluetooth 1.0b";
break;
case 0x01:
str = "Bluetooth 1.1";
break;
case 0x02:
str = "Bluetooth 1.2";
break;
case 0x03:
str = "Bluetooth 2.0";
break;
case 0x04:
str = "Bluetooth 2.1";
break;
case 0x05:
str = "Bluetooth 3.0";
break;
case 0x06:
str = "Bluetooth 4.0";
break;
case 0x07:
str = "Bluetooth 4.1";
break;
case 0x08:
str = "Bluetooth 4.2";
break;
default:
str = "Reserved";
break;
}
print_field("%s: %s (0x%2.2x) - %s %d (0x%4.4x)", label, str, version,
sublabel, subversion, subversion);
}
static void print_hci_version(uint8_t version, uint16_t revision)
{
packet_print_version("HCI version", version,
"Revision", le16_to_cpu(revision));
}
static void print_lmp_version(uint8_t version, uint16_t subversion)
{
packet_print_version("LMP version", version,
"Subversion", le16_to_cpu(subversion));
}
static void print_pal_version(uint8_t version, uint16_t subversion)
{
const char *str;
switch (version) {
case 0x01:
str = "Bluetooth 3.0";
break;
default:
str = "Reserved";
break;
}
print_field("PAL version: %s (0x%2.2x) - Subversion %d (0x%4.4x)",
str, version,
le16_to_cpu(subversion),
le16_to_cpu(subversion));
}
void packet_print_company(const char *label, uint16_t company)
{
print_field("%s: %s (%d)", label, bt_compidtostr(company), company);
}
static void print_manufacturer(uint16_t manufacturer)
{
packet_print_company("Manufacturer", le16_to_cpu(manufacturer));
}
static const struct {
uint16_t ver;
const char *str;
} broadcom_uart_subversion_table[] = {
{ 0x210b, "BCM43142A0" }, /* 001.001.011 */
{ 0x410e, "BCM43341B0" }, /* 002.001.014 */
{ 0x4406, "BCM4324B3" }, /* 002.004.006 */
{ }
};
static const struct {
uint16_t ver;
const char *str;
} broadcom_usb_subversion_table[] = {
{ 0x210b, "BCM43142A0" }, /* 001.001.011 */
{ 0x2112, "BCM4314A0" }, /* 001.001.018 */
{ 0x2118, "BCM20702A0" }, /* 001.001.024 */
{ 0x2126, "BCM4335A0" }, /* 001.001.038 */
{ 0x220e, "BCM20702A1" }, /* 001.002.014 */
{ 0x230f, "BCM4354A2" }, /* 001.003.015 */
{ 0x4106, "BCM4335B0" }, /* 002.001.006 */
{ 0x410e, "BCM20702B0" }, /* 002.001.014 */
{ 0x6109, "BCM4335C0" }, /* 003.001.009 */
{ 0x610c, "BCM4354" }, /* 003.001.012 */
{ }
};
static void print_manufacturer_broadcom(uint16_t subversion, uint16_t revision)
{
uint16_t ver = le16_to_cpu(subversion);
uint16_t rev = le16_to_cpu(revision);
const char *str = NULL;
int i;
switch ((rev & 0xf000) >> 12) {
case 0:
case 3:
for (i = 0; broadcom_uart_subversion_table[i].str; i++) {
if (broadcom_uart_subversion_table[i].ver == ver) {
str = broadcom_uart_subversion_table[i].str;
break;
}
}
break;
case 1:
case 2:
for (i = 0; broadcom_usb_subversion_table[i].str; i++) {
if (broadcom_usb_subversion_table[i].ver == ver) {
str = broadcom_usb_subversion_table[i].str;
break;
}
}
break;
}
if (str)
print_field(" Firmware: %3.3u.%3.3u.%3.3u (%s)",
(ver & 0xe000) >> 13,
(ver & 0x1f00) >> 8, ver & 0x00ff, str);
else
print_field(" Firmware: %3.3u.%3.3u.%3.3u",
(ver & 0xe000) >> 13,
(ver & 0x1f00) >> 8, ver & 0x00ff);
if (rev != 0xffff)
print_field(" Build: %4.4u", rev & 0x0fff);
}
static const char *get_supported_command(int bit);
static void print_commands(const uint8_t *commands)
{
unsigned int count = 0;
int i, n;
for (i = 0; i < 64; i++) {
for (n = 0; n < 8; n++) {
if (commands[i] & (1 << n))
count++;
}
}
print_field("Commands: %u entr%s", count, count == 1 ? "y" : "ies");
for (i = 0; i < 64; i++) {
for (n = 0; n < 8; n++) {
const char *cmd;
if (!(commands[i] & (1 << n)))
continue;
cmd = get_supported_command((i * 8) + n);
if (cmd)
print_field(" %s (Octet %d - Bit %d)",
cmd, i, n);
else
print_text(COLOR_UNKNOWN_COMMAND_BIT,
" Octet %d - Bit %d ", i, n);
}
}
}
struct features_data {
uint8_t bit;
const char *str;
};
static const struct features_data features_page0[] = {
{ 0, "3 slot packets" },
{ 1, "5 slot packets" },
{ 2, "Encryption" },
{ 3, "Slot offset" },
{ 4, "Timing accuracy" },
{ 5, "Role switch" },
{ 6, "Hold mode" },
{ 7, "Sniff mode" },
{ 8, "Park state" },
{ 9, "Power control requests" },
{ 10, "Channel quality driven data rate (CQDDR)"},
{ 11, "SCO link" },
{ 12, "HV2 packets" },
{ 13, "HV3 packets" },
{ 14, "u-law log synchronous data" },
{ 15, "A-law log synchronous data" },
{ 16, "CVSD synchronous data" },
{ 17, "Paging parameter negotiation" },
{ 18, "Power control" },
{ 19, "Transparent synchronous data" },
{ 20, "Flow control lag (least significant bit)"},
{ 21, "Flow control lag (middle bit)" },
{ 22, "Flow control lag (most significant bit)" },
{ 23, "Broadcast Encryption" },
{ 25, "Enhanced Data Rate ACL 2 Mbps mode" },
{ 26, "Enhanced Data Rate ACL 3 Mbps mode" },
{ 27, "Enhanced inquiry scan" },
{ 28, "Interlaced inquiry scan" },
{ 29, "Interlaced page scan" },
{ 30, "RSSI with inquiry results" },
{ 31, "Extended SCO link (EV3 packets)" },
{ 32, "EV4 packets" },
{ 33, "EV5 packets" },
{ 35, "AFH capable slave" },
{ 36, "AFH classification slave" },
{ 37, "BR/EDR Not Supported" },
{ 38, "LE Supported (Controller)" },
{ 39, "3-slot Enhanced Data Rate ACL packets" },
{ 40, "5-slot Enhanced Data Rate ACL packets" },
{ 41, "Sniff subrating" },
{ 42, "Pause encryption" },
{ 43, "AFH capable master" },
{ 44, "AFH classification master" },
{ 45, "Enhanced Data Rate eSCO 2 Mbps mode" },
{ 46, "Enhanced Data Rate eSCO 3 Mbps mode" },
{ 47, "3-slot Enhanced Data Rate eSCO packets" },
{ 48, "Extended Inquiry Response" },
{ 49, "Simultaneous LE and BR/EDR (Controller)" },
{ 51, "Secure Simple Pairing" },
{ 52, "Encapsulated PDU" },
{ 53, "Erroneous Data Reporting" },
{ 54, "Non-flushable Packet Boundary Flag" },
{ 56, "Link Supervision Timeout Changed Event" },
{ 57, "Inquiry TX Power Level" },
{ 58, "Enhanced Power Control" },
{ 63, "Extended features" },
{ }
};
static const struct features_data features_page1[] = {
{ 0, "Secure Simple Pairing (Host Support)" },
{ 1, "LE Supported (Host)" },
{ 2, "Simultaneous LE and BR/EDR (Host)" },
{ 3, "Secure Connections (Host Support)" },
{ }
};
static const struct features_data features_page2[] = {
{ 0, "Connectionless Slave Broadcast - Master" },
{ 1, "Connectionless Slave Broadcast - Slave" },
{ 2, "Synchronization Train" },
{ 3, "Synchronization Scan" },
{ 4, "Inquiry Response Notification Event" },
{ 5, "Generalized interlaced scan" },
{ 6, "Coarse Clock Adjustment" },
{ 8, "Secure Connections (Controller Support)" },
{ 9, "Ping" },
{ 11, "Train nudging" },
{ }
};
static const struct features_data features_le[] = {
{ 0, "LE Encryption" },
{ 1, "Connection Parameter Request Procedure" },
{ 2, "Extended Reject Indication" },
{ 3, "Slave-initiated Features Exchange" },
{ 4, "LE Ping" },
{ 5, "LE Data Packet Length Extension" },
{ 6, "LL Privacy" },
{ 7, "Extended Scanner Filter Policies" },
{ }
};
static void print_features(uint8_t page, const uint8_t *features_array,
uint8_t type)
{
const struct features_data *features_table = NULL;
uint64_t mask, features = 0;
char str[41];
int i;
for (i = 0; i < 8; i++) {
sprintf(str + (i * 5), " 0x%2.2x", features_array[i]);
features |= ((uint64_t) features_array[i]) << (i * 8);
}
print_field("Features:%s", str);
switch (type) {
case 0x00:
switch (page) {
case 0:
features_table = features_page0;
break;
case 1:
features_table = features_page1;
break;
case 2:
features_table = features_page2;
break;
}
break;
case 0x01:
switch (page) {
case 0:
features_table = features_le;
break;
}
break;
}
if (!features_table)
return;
mask = features;
for (i = 0; features_table[i].str; i++) {
if (features & (((uint64_t) 1) << features_table[i].bit)) {
print_field(" %s", features_table[i].str);
mask &= ~(((uint64_t) 1) << features_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features "
"(0x%16.16" PRIx64 ")", mask);
}
void packet_print_features_lmp(const uint8_t *features, uint8_t page)
{
print_features(page, features, 0x00);
}
void packet_print_features_ll(const uint8_t *features)
{
print_features(0, features, 0x01);
}
#define LE_STATE_SCAN_ADV 0x0001
#define LE_STATE_CONN_ADV 0x0002
#define LE_STATE_NONCONN_ADV 0x0004
#define LE_STATE_HIGH_DIRECT_ADV 0x0008
#define LE_STATE_LOW_DIRECT_ADV 0x0010
#define LE_STATE_ACTIVE_SCAN 0x0020
#define LE_STATE_PASSIVE_SCAN 0x0040
#define LE_STATE_INITIATING 0x0080
#define LE_STATE_CONN_MASTER 0x0100
#define LE_STATE_CONN_SLAVE 0x0200
#define LE_STATE_MASTER_MASTER 0x0400
#define LE_STATE_SLAVE_SLAVE 0x0800
#define LE_STATE_MASTER_SLAVE 0x1000
static const struct {
uint8_t bit;
const char *str;
} le_states_desc_table[] = {
{ 0, "Scannable Advertising State" },
{ 1, "Connectable Advertising State" },
{ 2, "Non-connectable Advertising State" },
{ 3, "High Duty Cycle Directed Advertising State" },
{ 4, "Low Duty Cycle Directed Advertising State" },
{ 5, "Active Scanning State" },
{ 6, "Passive Scanning State" },
{ 7, "Initiating State" },
{ 8, "Connection State (Master Role)" },
{ 9, "Connection State (Slave Role)" },
{ 10, "Master Role & Master Role" },
{ 11, "Slave Role & Slave Role" },
{ 12, "Master Role & Slave Role" },
{ }
};
static const struct {
uint8_t bit;
uint16_t states;
} le_states_comb_table[] = {
{ 0, LE_STATE_NONCONN_ADV },
{ 1, LE_STATE_SCAN_ADV },
{ 2, LE_STATE_CONN_ADV },
{ 3, LE_STATE_HIGH_DIRECT_ADV },
{ 4, LE_STATE_PASSIVE_SCAN },
{ 5, LE_STATE_ACTIVE_SCAN },
{ 6, LE_STATE_INITIATING | LE_STATE_CONN_MASTER },
{ 7, LE_STATE_CONN_SLAVE },
{ 8, LE_STATE_PASSIVE_SCAN | LE_STATE_NONCONN_ADV },
{ 9, LE_STATE_PASSIVE_SCAN | LE_STATE_SCAN_ADV },
{ 10, LE_STATE_PASSIVE_SCAN | LE_STATE_CONN_ADV },
{ 11, LE_STATE_PASSIVE_SCAN | LE_STATE_HIGH_DIRECT_ADV },
{ 12, LE_STATE_ACTIVE_SCAN | LE_STATE_NONCONN_ADV },
{ 13, LE_STATE_ACTIVE_SCAN | LE_STATE_SCAN_ADV },
{ 14, LE_STATE_ACTIVE_SCAN | LE_STATE_CONN_ADV },
{ 15, LE_STATE_ACTIVE_SCAN | LE_STATE_HIGH_DIRECT_ADV },
{ 16, LE_STATE_INITIATING | LE_STATE_NONCONN_ADV },
{ 17, LE_STATE_INITIATING | LE_STATE_SCAN_ADV },
{ 18, LE_STATE_CONN_MASTER | LE_STATE_NONCONN_ADV },
{ 19, LE_STATE_CONN_MASTER | LE_STATE_SCAN_ADV },
{ 20, LE_STATE_CONN_SLAVE | LE_STATE_NONCONN_ADV },
{ 21, LE_STATE_CONN_SLAVE | LE_STATE_SCAN_ADV },
{ 22, LE_STATE_INITIATING | LE_STATE_PASSIVE_SCAN },
{ 23, LE_STATE_INITIATING | LE_STATE_ACTIVE_SCAN },
{ 24, LE_STATE_CONN_MASTER | LE_STATE_PASSIVE_SCAN },
{ 25, LE_STATE_CONN_MASTER | LE_STATE_ACTIVE_SCAN },
{ 26, LE_STATE_CONN_SLAVE | LE_STATE_PASSIVE_SCAN },
{ 27, LE_STATE_CONN_SLAVE | LE_STATE_ACTIVE_SCAN },
{ 28, LE_STATE_INITIATING | LE_STATE_CONN_MASTER |
LE_STATE_MASTER_MASTER },
{ 29, LE_STATE_LOW_DIRECT_ADV },
{ 30, LE_STATE_LOW_DIRECT_ADV | LE_STATE_PASSIVE_SCAN },
{ 31, LE_STATE_LOW_DIRECT_ADV | LE_STATE_ACTIVE_SCAN },
{ 32, LE_STATE_INITIATING | LE_STATE_CONN_ADV |
LE_STATE_MASTER_SLAVE },
{ 33, LE_STATE_INITIATING | LE_STATE_HIGH_DIRECT_ADV |
LE_STATE_MASTER_SLAVE },
{ 34, LE_STATE_INITIATING | LE_STATE_LOW_DIRECT_ADV |
LE_STATE_MASTER_SLAVE },
{ 35, LE_STATE_CONN_MASTER | LE_STATE_CONN_ADV |
LE_STATE_MASTER_SLAVE },
{ 36, LE_STATE_CONN_MASTER | LE_STATE_HIGH_DIRECT_ADV |
LE_STATE_MASTER_SLAVE },
{ 37, LE_STATE_CONN_MASTER | LE_STATE_LOW_DIRECT_ADV |
LE_STATE_MASTER_SLAVE },
{ 38, LE_STATE_CONN_SLAVE | LE_STATE_CONN_ADV |
LE_STATE_MASTER_SLAVE },
{ 39, LE_STATE_CONN_SLAVE | LE_STATE_HIGH_DIRECT_ADV |
LE_STATE_SLAVE_SLAVE },
{ 40, LE_STATE_CONN_SLAVE | LE_STATE_LOW_DIRECT_ADV |
LE_STATE_SLAVE_SLAVE },
{ 41, LE_STATE_INITIATING | LE_STATE_CONN_SLAVE |
LE_STATE_MASTER_SLAVE },
{ }
};
static void print_le_states(const uint8_t *states_array)
{
uint64_t mask, states = 0;
int i, n;
for (i = 0; i < 8; i++)
states |= ((uint64_t) states_array[i]) << (i * 8);
print_field("States: 0x%16.16" PRIx64, states);
mask = states;
for (i = 0; le_states_comb_table[i].states; i++) {
uint64_t val = (((uint64_t) 1) << le_states_comb_table[i].bit);
const char *str[3] = { NULL, };
int num = 0;
if (!(states & val))
continue;
for (n = 0; n < 16; n++) {
if (le_states_comb_table[i].states & (1 << n))
str[num++] = le_states_desc_table[n].str;
}
if (num > 0) {
print_field(" %s", str[0]);
for (n = 1; n < num; n++)
print_field(" and %s", str[n]);
}
mask &= ~val;
}
if (mask)
print_text(COLOR_UNKNOWN_LE_STATES, " Unknown states "
"(0x%16.16" PRIx64 ")", mask);
}
static void print_le_channel_map(const uint8_t *map)
{
unsigned int count = 0, start = 0;
char str[11];
int i, n;
for (i = 0; i < 5; i++)
sprintf(str + (i * 2), "%2.2x", map[i]);
print_field("Channel map: 0x%s", str);
for (i = 0; i < 5; i++) {
for (n = 0; n < 8; n++) {
if (map[i] & (1 << n)) {
if (count == 0)
start = (i * 8) + n;
count++;
continue;
}
if (count > 1) {
print_field(" Channel %u-%u",
start, start + count - 1);
count = 0;
} else if (count > 0) {
print_field(" Channel %u", start);
count = 0;
}
}
}
}
void packet_print_channel_map_ll(const uint8_t *map)
{
print_le_channel_map(map);
}
static void print_random_number(uint64_t rand)
{
print_field("Random number: 0x%16.16" PRIx64, le64_to_cpu(rand));
}
static void print_encrypted_diversifier(uint16_t ediv)
{
print_field("Encrypted diversifier: 0x%4.4x", le16_to_cpu(ediv));
}
static const struct {
uint8_t bit;
const char *str;
} events_table[] = {
{ 0, "Inquiry Complete" },
{ 1, "Inquiry Result" },
{ 2, "Connection Complete" },
{ 3, "Connection Request" },
{ 4, "Disconnection Complete" },
{ 5, "Authentication Complete" },
{ 6, "Remote Name Request Complete" },
{ 7, "Encryption Change" },
{ 8, "Change Connection Link Key Complete" },
{ 9, "Master Link Key Complete" },
{ 10, "Read Remote Supported Features Complete" },
{ 11, "Read Remote Version Information Complete" },
{ 12, "QoS Setup Complete" },
{ 13, "Command Complete" },
{ 14, "Command Status" },
{ 15, "Hardware Error" },
{ 16, "Flush Occurred" },
{ 17, "Role Change" },
{ 18, "Number of Completed Packets" },
{ 19, "Mode Change" },
{ 20, "Return Link Keys" },
{ 21, "PIN Code Request" },
{ 22, "Link Key Request" },
{ 23, "Link Key Notification" },
{ 24, "Loopback Command" },
{ 25, "Data Buffer Overflow" },
{ 26, "Max Slots Change" },
{ 27, "Read Clock Offset Complete" },
{ 28, "Connection Packet Type Changed" },
{ 29, "QoS Violation" },
{ 30, "Page Scan Mode Change" },
{ 31, "Page Scan Repetition Mode Change" },
{ 32, "Flow Specification Complete" },
{ 33, "Inquiry Result with RSSI" },
{ 34, "Read Remote Extended Features Complete" },
{ 43, "Synchronous Connection Complete" },
{ 44, "Synchronous Connection Changed" },
{ 45, "Sniff Subrating" },
{ 46, "Extended Inquiry Result" },
{ 47, "Encryption Key Refresh Complete" },
{ 48, "IO Capability Request" },
{ 49, "IO Capability Request Reply" },
{ 50, "User Confirmation Request" },
{ 51, "User Passkey Request" },
{ 52, "Remote OOB Data Request" },
{ 53, "Simple Pairing Complete" },
{ 55, "Link Supervision Timeout Changed" },
{ 56, "Enhanced Flush Complete" },
{ 58, "User Passkey Notification" },
{ 59, "Keypress Notification" },
{ 60, "Remote Host Supported Features Notification" },
{ 61, "LE Meta" },
{ }
};
static void print_event_mask(const uint8_t *events_array)
{
uint64_t mask, events = 0;
int i;
for (i = 0; i < 8; i++)
events |= ((uint64_t) events_array[i]) << (i * 8);
print_field("Mask: 0x%16.16" PRIx64, events);
mask = events;
for (i = 0; events_table[i].str; i++) {
if (events & (((uint64_t) 1) << events_table[i].bit)) {
print_field(" %s", events_table[i].str);
mask &= ~(((uint64_t) 1) << events_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask "
"(0x%16.16" PRIx64 ")", mask);
}
static const struct {
uint8_t bit;
const char *str;
} events_page2_table[] = {
{ 0, "Physical Link Complete" },
{ 1, "Channel Selected" },
{ 2, "Disconnection Physical Link Complete" },
{ 3, "Physical Link Loss Early Warning" },
{ 4, "Physical Link Recovery" },
{ 5, "Logical Link Complete" },
{ 6, "Disconnection Logical Link Complete" },
{ 7, "Flow Specification Modify Complete" },
{ 8, "Number of Completed Data Blocks" },
{ 9, "AMP Start Test" },
{ 10, "AMP Test End" },
{ 11, "AMP Receiver Report" },
{ 12, "Short Range Mode Change Complete" },
{ 13, "AMP Status Change" },
{ 14, "Triggered Clock Capture" },
{ 15, "Synchronization Train Complete" },
{ 16, "Synchronization Train Received" },
{ 17, "Connectionless Slave Broadcast Receive" },
{ 18, "Connectionless Slave Broadcast Timeout" },
{ 19, "Truncated Page Complete" },
{ 20, "Slave Page Response Timeout" },
{ 21, "Connectionless Slave Broadcast Channel Map Change" },
{ 22, "Inquiry Response Notification" },
{ 23, "Authenticated Payload Timeout Expired" },
{ }
};
static void print_event_mask_page2(const uint8_t *events_array)
{
uint64_t mask, events = 0;
int i;
for (i = 0; i < 8; i++)
events |= ((uint64_t) events_array[i]) << (i * 8);
print_field("Mask: 0x%16.16" PRIx64, events);
mask = events;
for (i = 0; events_page2_table[i].str; i++) {
if (events & (((uint64_t) 1) << events_page2_table[i].bit)) {
print_field(" %s", events_page2_table[i].str);
mask &= ~(((uint64_t) 1) << events_page2_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask "
"(0x%16.16" PRIx64 ")", mask);
}
static const struct {
uint8_t bit;
const char *str;
} events_le_table[] = {
{ 0, "LE Connection Complete" },
{ 1, "LE Advertising Report" },
{ 2, "LE Connection Update Complete" },
{ 3, "LE Read Remote Used Features Complete" },
{ 4, "LE Long Term Key Request" },
{ 5, "LE Remote Connection Parameter Request" },
{ 6, "LE Data Length Change" },
{ 7, "LE Read Local P-256 Public Key Complete" },
{ 8, "LE Generate DHKey Complete" },
{ 9, "LE Enhanced Connection Complete" },
{ 10, "LE Direct Advertising Report" },
{ }
};
static void print_event_mask_le(const uint8_t *events_array)
{
uint64_t mask, events = 0;
int i;
for (i = 0; i < 8; i++)
events |= ((uint64_t) events_array[i]) << (i * 8);
print_field("Mask: 0x%16.16" PRIx64, events);
mask = events;
for (i = 0; events_le_table[i].str; i++) {
if (events & (((uint64_t) 1) << events_le_table[i].bit)) {
print_field(" %s", events_le_table[i].str);
mask &= ~(((uint64_t) 1) << events_le_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask "
"(0x%16.16" PRIx64 ")", mask);
}
static void print_fec(uint8_t fec)
{
const char *str;
switch (fec) {
case 0x00:
str = "Not required";
break;
case 0x01:
str = "Required";
break;
default:
str = "Reserved";
break;
}
print_field("FEC: %s (0x%02x)", str, fec);
}
#define BT_EIR_FLAGS 0x01
#define BT_EIR_UUID16_SOME 0x02
#define BT_EIR_UUID16_ALL 0x03
#define BT_EIR_UUID32_SOME 0x04
#define BT_EIR_UUID32_ALL 0x05
#define BT_EIR_UUID128_SOME 0x06
#define BT_EIR_UUID128_ALL 0x07
#define BT_EIR_NAME_SHORT 0x08
#define BT_EIR_NAME_COMPLETE 0x09
#define BT_EIR_TX_POWER 0x0a
#define BT_EIR_CLASS_OF_DEV 0x0d
#define BT_EIR_SSP_HASH_P192 0x0e
#define BT_EIR_SSP_RANDOMIZER_P192 0x0f
#define BT_EIR_DEVICE_ID 0x10
#define BT_EIR_SMP_TK 0x10
#define BT_EIR_SMP_OOB_FLAGS 0x11
#define BT_EIR_SLAVE_CONN_INTERVAL 0x12
#define BT_EIR_SERVICE_UUID16 0x14
#define BT_EIR_SERVICE_UUID128 0x15
#define BT_EIR_SERVICE_DATA 0x16
#define BT_EIR_PUBLIC_ADDRESS 0x17
#define BT_EIR_RANDOM_ADDRESS 0x18
#define BT_EIR_GAP_APPEARANCE 0x19
#define BT_EIR_ADVERTISING_INTERVAL 0x1a
#define BT_EIR_LE_DEVICE_ADDRESS 0x1b
#define BT_EIR_LE_ROLE 0x1c
#define BT_EIR_SSP_HASH_P256 0x1d
#define BT_EIR_SSP_RANDOMIZER_P256 0x1e
#define BT_EIR_3D_INFO_DATA 0x3d
#define BT_EIR_MANUFACTURER_DATA 0xff
static void print_manufacturer_apple(const void *data, uint8_t data_len)
{
uint8_t type = *((uint8_t *) data);
if (data_len < 1)
return;
if (type == 0x01) {
char identifier[100];
snprintf(identifier, sizeof(identifier) - 1, "%s",
(const char *) (data + 1));
print_field(" Identifier: %s", identifier);
return;
}
while (data_len > 0) {
uint8_t len;
const char *str;
type = *((uint8_t *) data);
data++;
data_len--;
if (type == 0x00)
continue;
if (data_len < 1)
break;
switch (type) {
case 0x02:
str = "iBeacon";
break;
case 0x05:
str = "AirDrop";
break;
case 0x09:
str = "Apple TV";
break;
default:
str = "Unknown";
break;
}
print_field(" Type: %s (%u)", str, type);
len = *((uint8_t *) data);
data++;
data_len--;
if (len < 1)
continue;
if (len > data_len)
break;
if (type == 0x02 && len == 0x15) {
const uint8_t *uuid;
uint16_t minor, major;
int8_t tx_power;
uuid = data;
print_field(" UUID: %8.8x-%4.4x-%4.4x-%4.4x-%8.8x%4.4x",
get_be32(&uuid[0]), get_be16(&uuid[4]),
get_be16(&uuid[6]), get_be16(&uuid[8]),
get_be32(&uuid[10]), get_be16(&uuid[14]));
major = get_be16(data + 16);
minor = get_be16(data + 18);
print_field(" Version: %u.%u", major, minor);
tx_power = *(int8_t *) (data + 20);
print_field(" TX power: %d dB", tx_power);
} else
print_hex_field(" Data", data, len);
data += len;
data_len -= len;
}
packet_hexdump(data, data_len);
}
static void print_manufacturer_data(const void *data, uint8_t data_len)
{
uint16_t company = get_le16(data);
packet_print_company("Company", company);
switch (company) {
case 76:
case 19456:
print_manufacturer_apple(data + 2, data_len - 2);
break;
default:
print_hex_field(" Data", data + 2, data_len - 2);
break;
}
}
static void print_device_id(const void *data, uint8_t data_len)
{
uint16_t source, vendor, product, version;
char modalias[26], *vendor_str, *product_str;
const char *str;
if (data_len < 8)
return;
source = get_le16(data);
vendor = get_le16(data + 2);
product = get_le16(data + 4);
version = get_le16(data + 6);
switch (source) {
case 0x0001:
str = "Bluetooth SIG assigned";
sprintf(modalias, "bluetooth:v%04Xp%04Xd%04X",
vendor, product, version);
break;
case 0x0002:
str = "USB Implementer's Forum assigned";
sprintf(modalias, "usb:v%04Xp%04Xd%04X",
vendor, product, version);
break;
default:
str = "Reserved";
modalias[0] = '\0';
break;
}
print_field("Device ID: %s (0x%4.4x)", str, source);
if (!hwdb_get_vendor_model(modalias, &vendor_str, &product_str)) {
vendor_str = NULL;
product_str = NULL;
}
if (source != 0x0001) {
if (vendor_str)
print_field(" Vendor: %s (0x%4.4x)",
vendor_str, vendor);
else
print_field(" Vendor: 0x%4.4x", vendor);
} else
packet_print_company(" Vendor", vendor);
if (product_str)
print_field(" Product: %s (0x%4.4x)", product_str, product);
else
print_field(" Product: 0x%4.4x", product);
print_field(" Version: %u.%u.%u (0x%4.4x)",
(version & 0xff00) >> 8,
(version & 0x00f0) >> 4,
(version & 0x000f), version);
free(vendor_str);
free(product_str);
}
static void print_uuid16_list(const char *label, const void *data,
uint8_t data_len)
{
uint8_t count = data_len / sizeof(uint16_t);
unsigned int i;
print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies");
for (i = 0; i < count; i++) {
uint16_t uuid = get_le16(data + (i * 2));
print_field(" %s (0x%4.4x)", uuid16_to_str(uuid), uuid);
}
}
static void print_uuid32_list(const char *label, const void *data,
uint8_t data_len)
{
uint8_t count = data_len / sizeof(uint32_t);
unsigned int i;
print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies");
for (i = 0; i < count; i++) {
uint32_t uuid = get_le32(data + (i * 4));
print_field(" %s (0x%8.8x)", uuid32_to_str(uuid), uuid);
}
}
static void print_uuid128_list(const char *label, const void *data,
uint8_t data_len)
{
uint8_t count = data_len / 16;
unsigned int i;
print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies");
for (i = 0; i < count; i++) {
const uint8_t *uuid = data + (i * 16);
print_field(" %8.8x-%4.4x-%4.4x-%4.4x-%8.8x%4.4x",
get_le32(&uuid[12]), get_le16(&uuid[10]),
get_le16(&uuid[8]), get_le16(&uuid[6]),
get_le32(&uuid[2]), get_le16(&uuid[0]));
}
}
static const struct {
uint8_t bit;
const char *str;
} eir_flags_table[] = {
{ 0, "LE Limited Discoverable Mode" },
{ 1, "LE General Discoverable Mode" },
{ 2, "BR/EDR Not Supported" },
{ 3, "Simultaneous LE and BR/EDR (Controller)" },
{ 4, "Simultaneous LE and BR/EDR (Host)" },
{ }
};
static const struct {
uint8_t bit;
const char *str;
} eir_3d_table[] = {
{ 0, "Association Notification" },
{ 1, "Battery Level Reporting" },
{ 2, "Send Battery Level Report on Start-up Synchronization" },
{ 7, "Factory Test Mode" },
{ }
};
static void print_eir(const uint8_t *eir, uint8_t eir_len, bool le)
{
uint16_t len = 0;
if (eir_len == 0)
return;
while (len < eir_len - 1) {
uint8_t field_len = eir[0];
const uint8_t *data = &eir[2];
uint8_t data_len;
char name[239], label[100];
uint8_t flags, mask;
int i;
/* Check for the end of EIR */
if (field_len == 0)
break;
len += field_len + 1;
/* Do not continue EIR Data parsing if got incorrect length */
if (len > eir_len) {
len -= field_len + 1;
break;
}
data_len = field_len - 1;
switch (eir[1]) {
case BT_EIR_FLAGS:
flags = *data;
mask = flags;
print_field("Flags: 0x%2.2x", flags);
for (i = 0; eir_flags_table[i].str; i++) {
if (flags & (1 << eir_flags_table[i].bit)) {
print_field(" %s",
eir_flags_table[i].str);
mask &= ~(1 << eir_flags_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_SERVICE_CLASS,
" Unknown flags (0x%2.2x)", mask);
break;
case BT_EIR_UUID16_SOME:
if (data_len < sizeof(uint16_t))
break;
print_uuid16_list("16-bit Service UUIDs (partial)",
data, data_len);
break;
case BT_EIR_UUID16_ALL:
if (data_len < sizeof(uint16_t))
break;
print_uuid16_list("16-bit Service UUIDs (complete)",
data, data_len);
break;
case BT_EIR_UUID32_SOME:
if (data_len < sizeof(uint32_t))
break;
print_uuid32_list("32-bit Service UUIDs (partial)",
data, data_len);
break;
case BT_EIR_UUID32_ALL:
if (data_len < sizeof(uint32_t))
break;
print_uuid32_list("32-bit Service UUIDs (complete)",
data, data_len);
break;
case BT_EIR_UUID128_SOME:
if (data_len < 16)
break;
print_uuid128_list("128-bit Service UUIDs (partial)",
data, data_len);
break;
case BT_EIR_UUID128_ALL:
if (data_len < 16)
break;
print_uuid128_list("128-bit Service UUIDs (complete)",
data, data_len);
break;
case BT_EIR_NAME_SHORT:
memset(name, 0, sizeof(name));
memcpy(name, data, data_len);
print_field("Name (short): %s", name);
break;
case BT_EIR_NAME_COMPLETE:
memset(name, 0, sizeof(name));
memcpy(name, data, data_len);
print_field("Name (complete): %s", name);
break;
case BT_EIR_TX_POWER:
if (data_len < 1)
break;
print_field("TX power: %d dBm", (int8_t) *data);
break;
case BT_EIR_CLASS_OF_DEV:
if (data_len < 3)
break;
print_dev_class(data);
break;
case BT_EIR_SSP_HASH_P192:
if (data_len < 16)
break;
print_hash_p192(data);
break;
case BT_EIR_SSP_RANDOMIZER_P192:
if (data_len < 16)
break;
print_randomizer_p192(data);
break;
case BT_EIR_DEVICE_ID:
/* SMP TK has the same value as Device ID */
if (le)
print_hex_field("SMP TK", data, data_len);
else if (data_len >= 8)
print_device_id(data, data_len);
break;
case BT_EIR_SMP_OOB_FLAGS:
print_field("SMP OOB Flags: 0x%2.2x", *data);
break;
case BT_EIR_SLAVE_CONN_INTERVAL:
if (data_len < 4)
break;
print_field("Slave Conn. Interval: 0x%4.4x - 0x%4.4x",
get_le16(&data[0]),
get_le16(&data[2]));
break;
case BT_EIR_SERVICE_UUID16:
if (data_len < sizeof(uint16_t))
break;
print_uuid16_list("16-bit Service UUIDs",
data, data_len);
break;
case BT_EIR_SERVICE_UUID128:
if (data_len < 16)
break;
print_uuid128_list("128-bit Service UUIDs",
data, data_len);
break;
case BT_EIR_SERVICE_DATA:
if (data_len < 2)
break;
sprintf(label, "Service Data (UUID 0x%4.4x)",
get_le16(&data[0]));
print_hex_field(label, &data[2], data_len - 2);
break;
case BT_EIR_RANDOM_ADDRESS:
if (data_len < 6)
break;
print_addr("Random Address", data, 0x01);
break;
case BT_EIR_PUBLIC_ADDRESS:
if (data_len < 6)
break;
print_addr("Public Address", data, 0x00);
break;
case BT_EIR_GAP_APPEARANCE:
if (data_len < 2)
break;
print_appearance(get_le16(data));
break;
case BT_EIR_SSP_HASH_P256:
if (data_len < 16)
break;
print_hash_p256(data);
break;
case BT_EIR_SSP_RANDOMIZER_P256:
if (data_len < 16)
break;
print_randomizer_p256(data);
break;
case BT_EIR_3D_INFO_DATA:
print_hex_field("3D Information Data", data, data_len);
if (data_len < 2)
break;
flags = *data;
mask = flags;
print_field(" Features: 0x%2.2x", flags);
for (i = 0; eir_3d_table[i].str; i++) {
if (flags & (1 << eir_3d_table[i].bit)) {
print_field(" %s",
eir_3d_table[i].str);
mask &= ~(1 << eir_3d_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_FEATURE_BIT,
" Unknown features (0x%2.2x)", mask);
print_field(" Path Loss Threshold: %d", data[1]);
break;
case BT_EIR_MANUFACTURER_DATA:
if (data_len < 2)
break;
print_manufacturer_data(data, data_len);
break;
default:
sprintf(label, "Unknown EIR field 0x%2.2x", eir[1]);
print_hex_field(label, data, data_len);
break;
}
eir += field_len + 1;
}
if (len < eir_len && eir[0] != 0)
packet_hexdump(eir, eir_len - len);
}
void packet_print_addr(const char *label, const void *data, bool random)
{
print_addr(label ? : "Address", data, random ? 0x01 : 0x00);
}
void packet_print_ad(const void *data, uint8_t size)
{
print_eir(data, size, true);
}
struct broadcast_message {
uint32_t frame_sync_instant;
uint16_t bluetooth_clock_phase;
uint16_t left_open_offset;
uint16_t left_close_offset;
uint16_t right_open_offset;
uint16_t right_close_offset;
uint16_t frame_sync_period;
uint8_t frame_sync_period_fraction;
} __attribute__ ((packed));
static void print_3d_broadcast(const void *data, uint8_t size)
{
const struct broadcast_message *msg = data;
uint32_t instant;
uint16_t left_open, left_close, right_open, right_close;
uint16_t phase, period;
uint8_t period_frac;
bool mode;
instant = le32_to_cpu(msg->frame_sync_instant);
mode = !!(instant & 0x40000000);
phase = le16_to_cpu(msg->bluetooth_clock_phase);
left_open = le16_to_cpu(msg->left_open_offset);
left_close = le16_to_cpu(msg->left_close_offset);
right_open = le16_to_cpu(msg->right_open_offset);
right_close = le16_to_cpu(msg->right_close_offset);
period = le16_to_cpu(msg->frame_sync_period);
period_frac = msg->frame_sync_period_fraction;
print_field(" Frame sync instant: 0x%8.8x", instant & 0x7fffffff);
print_field(" Video mode: %s (%d)", mode ? "Dual View" : "3D", mode);
print_field(" Bluetooth clock phase: %d usec (0x%4.4x)",
phase, phase);
print_field(" Left lense shutter open offset: %d usec (0x%4.4x)",
left_open, left_open);
print_field(" Left lense shutter close offset: %d usec (0x%4.4x)",
left_close, left_close);
print_field(" Right lense shutter open offset: %d usec (0x%4.4x)",
right_open, right_open);
print_field(" Right lense shutter close offset: %d usec (0x%4.4x)",
right_close, right_close);
print_field(" Frame sync period: %d.%d usec (0x%4.4x 0x%2.2x)",
period, period_frac * 256,
period, period_frac);
}
void packet_hexdump(const unsigned char *buf, uint16_t len)
{
static const char hexdigits[] = "0123456789abcdef";
char str[68];
uint16_t i;
if (!len)
return;
for (i = 0; i < len; i++) {
str[((i % 16) * 3) + 0] = hexdigits[buf[i] >> 4];
str[((i % 16) * 3) + 1] = hexdigits[buf[i] & 0xf];
str[((i % 16) * 3) + 2] = ' ';
str[(i % 16) + 49] = isprint(buf[i]) ? buf[i] : '.';
if ((i + 1) % 16 == 0) {
str[47] = ' ';
str[48] = ' ';
str[65] = '\0';
print_text(COLOR_WHITE, "%s", str);
str[0] = ' ';
}
}
if (i % 16 > 0) {
uint16_t j;
for (j = (i % 16); j < 16; j++) {
str[(j * 3) + 0] = ' ';
str[(j * 3) + 1] = ' ';
str[(j * 3) + 2] = ' ';
str[j + 49] = ' ';
}
str[47] = ' ';
str[48] = ' ';
str[65] = '\0';
print_text(COLOR_WHITE, "%s", str);
}
}
void packet_control(struct timeval *tv, struct ucred *cred,
uint16_t index, uint16_t opcode,
const void *data, uint16_t size)
{
if (index_filter && index_number != index)
return;
control_message(opcode, data, size);
}
static int addr2str(const uint8_t *addr, char *str)
{
return sprintf(str, "%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X",
addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]);
}
#define MAX_INDEX 16
struct index_data {
uint8_t type;
uint8_t bdaddr[6];
uint16_t manufacturer;
};
static struct index_data index_list[MAX_INDEX];
void packet_monitor(struct timeval *tv, struct ucred *cred,
uint16_t index, uint16_t opcode,
const void *data, uint16_t size)
{
const struct btsnoop_opcode_new_index *ni;
const struct btsnoop_opcode_index_info *ii;
const struct btsnoop_opcode_user_logging *ul;
char str[18], extra_str[24];
uint16_t manufacturer;
const char *ident;
if (index_filter && index_number != index)
return;
index_current = index;
if (tv && time_offset == ((time_t) -1))
time_offset = tv->tv_sec;
switch (opcode) {
case BTSNOOP_OPCODE_NEW_INDEX:
ni = data;
if (index < MAX_INDEX) {
index_list[index].type = ni->type;
memcpy(index_list[index].bdaddr, ni->bdaddr, 6);
index_list[index].manufacturer = UNKNOWN_MANUFACTURER;
}
addr2str(ni->bdaddr, str);
packet_new_index(tv, index, str, ni->type, ni->bus, ni->name);
break;
case BTSNOOP_OPCODE_DEL_INDEX:
if (index < MAX_INDEX)
addr2str(index_list[index].bdaddr, str);
else
sprintf(str, "00:00:00:00:00:00");
packet_del_index(tv, index, str);
break;
case BTSNOOP_OPCODE_COMMAND_PKT:
packet_hci_command(tv, cred, index, data, size);
break;
case BTSNOOP_OPCODE_EVENT_PKT:
packet_hci_event(tv, cred, index, data, size);
break;
case BTSNOOP_OPCODE_ACL_TX_PKT:
packet_hci_acldata(tv, cred, index, false, data, size);
break;
case BTSNOOP_OPCODE_ACL_RX_PKT:
packet_hci_acldata(tv, cred, index, true, data, size);
break;
case BTSNOOP_OPCODE_SCO_TX_PKT:
packet_hci_scodata(tv, cred, index, false, data, size);
break;
case BTSNOOP_OPCODE_SCO_RX_PKT:
packet_hci_scodata(tv, cred, index, true, data, size);
break;
case BTSNOOP_OPCODE_OPEN_INDEX:
if (index < MAX_INDEX)
addr2str(index_list[index].bdaddr, str);
else
sprintf(str, "00:00:00:00:00:00");
packet_open_index(tv, index, str);
break;
case BTSNOOP_OPCODE_CLOSE_INDEX:
if (index < MAX_INDEX)
addr2str(index_list[index].bdaddr, str);
else
sprintf(str, "00:00:00:00:00:00");
packet_close_index(tv, index, str);
break;
case BTSNOOP_OPCODE_INDEX_INFO:
ii = data;
manufacturer = le16_to_cpu(ii->manufacturer);
if (index < MAX_INDEX) {
memcpy(index_list[index].bdaddr, ii->bdaddr, 6);
index_list[index].manufacturer = manufacturer;
}
addr2str(ii->bdaddr, str);
packet_index_info(tv, index, str, manufacturer);
break;
case BTSNOOP_OPCODE_VENDOR_DIAG:
if (index < MAX_INDEX)
manufacturer = index_list[index].manufacturer;
else
manufacturer = UNKNOWN_MANUFACTURER;
packet_vendor_diag(tv, index, manufacturer, data, size);
break;
case BTSNOOP_OPCODE_SYSTEM_NOTE:
packet_system_note(tv, cred, index, data);
break;
case BTSNOOP_OPCODE_USER_LOGGING:
ul = data;
ident = ul->ident_len ? data + sizeof(*ul) : NULL;
packet_user_logging(tv, cred, index, ul->priority, ident,
data + sizeof(*ul) + ul->ident_len);
break;
default:
sprintf(extra_str, "(code %d len %d)", opcode, size);
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Unknown packet", NULL, extra_str);
packet_hexdump(data, size);
break;
}
}
void packet_simulator(struct timeval *tv, uint16_t frequency,
const void *data, uint16_t size)
{
char str[10];
if (tv && time_offset == ((time_t) -1))
time_offset = tv->tv_sec;
sprintf(str, "%u MHz", frequency);
print_packet(tv, NULL, 0, '*', COLOR_PHY_PACKET,
"Physical packet:", NULL, str);
ll_packet(frequency, data, size, false);
}
static void null_cmd(const void *data, uint8_t size)
{
}
static void status_rsp(const void *data, uint8_t size)
{
uint8_t status = *((const uint8_t *) data);
print_status(status);
}
static void status_bdaddr_rsp(const void *data, uint8_t size)
{
uint8_t status = *((const uint8_t *) data);
print_status(status);
print_bdaddr(data + 1);
}
static void inquiry_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_inquiry *cmd = data;
print_iac(cmd->lap);
print_field("Length: %.2fs (0x%2.2x)",
cmd->length * 1.28, cmd->length);
print_num_resp(cmd->num_resp);
}
static void periodic_inquiry_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_periodic_inquiry *cmd = data;
print_field("Max period: %.2fs (0x%2.2x)",
cmd->max_period * 1.28, cmd->max_period);
print_field("Min period: %.2fs (0x%2.2x)",
cmd->min_period * 1.28, cmd->min_period);
print_iac(cmd->lap);
print_field("Length: %.2fs (0x%2.2x)",
cmd->length * 1.28, cmd->length);
print_num_resp(cmd->num_resp);
}
static void create_conn_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_create_conn *cmd = data;
const char *str;
print_bdaddr(cmd->bdaddr);
print_pkt_type(cmd->pkt_type);
print_pscan_rep_mode(cmd->pscan_rep_mode);
print_pscan_mode(cmd->pscan_mode);
print_clock_offset(cmd->clock_offset);
switch (cmd->role_switch) {
case 0x00:
str = "Stay master";
break;
case 0x01:
str = "Allow slave";
break;
default:
str = "Reserved";
break;
}
print_field("Role switch: %s (0x%2.2x)", str, cmd->role_switch);
}
static void disconnect_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_disconnect *cmd = data;
print_handle(cmd->handle);
print_reason(cmd->reason);
}
static void add_sco_conn_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_add_sco_conn *cmd = data;
print_handle(cmd->handle);
print_pkt_type_sco(cmd->pkt_type);
}
static void create_conn_cancel_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_create_conn_cancel *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void accept_conn_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_accept_conn_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_role(cmd->role);
}
static void reject_conn_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_reject_conn_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_reason(cmd->reason);
}
static void link_key_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_link_key_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_link_key(cmd->link_key);
}
static void link_key_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_link_key_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void pin_code_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_pin_code_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_field("PIN length: %d", cmd->pin_len);
print_pin_code(cmd->pin_code, cmd->pin_len);
}
static void pin_code_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_pin_code_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void change_conn_pkt_type_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_change_conn_pkt_type *cmd = data;
print_handle(cmd->handle);
print_pkt_type(cmd->pkt_type);
}
static void auth_requested_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_auth_requested *cmd = data;
print_handle(cmd->handle);
}
static void set_conn_encrypt_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_conn_encrypt *cmd = data;
print_handle(cmd->handle);
print_encr_mode(cmd->encr_mode);
}
static void change_conn_link_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_change_conn_link_key *cmd = data;
print_handle(cmd->handle);
}
static void master_link_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_master_link_key *cmd = data;
print_key_flag(cmd->key_flag);
}
static void remote_name_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_remote_name_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_pscan_rep_mode(cmd->pscan_rep_mode);
print_pscan_mode(cmd->pscan_mode);
print_clock_offset(cmd->clock_offset);
}
static void remote_name_request_cancel_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_remote_name_request_cancel *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void read_remote_features_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_remote_features *cmd = data;
print_handle(cmd->handle);
}
static void read_remote_ext_features_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_remote_ext_features *cmd = data;
print_handle(cmd->handle);
print_field("Page: %d", cmd->page);
}
static void read_remote_version_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_remote_version *cmd = data;
print_handle(cmd->handle);
}
static void read_clock_offset_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_clock_offset *cmd = data;
print_handle(cmd->handle);
}
static void read_lmp_handle_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_lmp_handle *cmd = data;
print_handle(cmd->handle);
}
static void read_lmp_handle_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_lmp_handle *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_field("LMP handle: %d", rsp->lmp_handle);
print_field("Reserved: %d", le32_to_cpu(rsp->reserved));
}
static void setup_sync_conn_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_setup_sync_conn *cmd = data;
print_handle(cmd->handle);
print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth));
print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth));
print_field("Max latency: %d", le16_to_cpu(cmd->max_latency));
print_voice_setting(cmd->voice_setting);
print_retransmission_effort(cmd->retrans_effort);
print_pkt_type_sco(cmd->pkt_type);
}
static void accept_sync_conn_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_accept_sync_conn_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth));
print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth));
print_field("Max latency: %d", le16_to_cpu(cmd->max_latency));
print_voice_setting(cmd->voice_setting);
print_retransmission_effort(cmd->retrans_effort);
print_pkt_type_sco(cmd->pkt_type);
}
static void reject_sync_conn_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_reject_sync_conn_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_reason(cmd->reason);
}
static void io_capability_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_io_capability_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_io_capability(cmd->capability);
print_oob_data(cmd->oob_data);
print_authentication(cmd->authentication);
}
static void user_confirm_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_user_confirm_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void user_confirm_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_user_confirm_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void user_passkey_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_user_passkey_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_passkey(cmd->passkey);
}
static void user_passkey_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_user_passkey_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void remote_oob_data_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_remote_oob_data_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_hash_p192(cmd->hash);
print_randomizer_p192(cmd->randomizer);
}
static void remote_oob_data_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_remote_oob_data_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void io_capability_request_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_io_capability_request_neg_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_reason(cmd->reason);
}
static void create_phy_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_create_phy_link *cmd = data;
print_phy_handle(cmd->phy_handle);
print_key_len(cmd->key_len);
print_key_type(cmd->key_type);
packet_hexdump(data + 3, size - 3);
}
static void accept_phy_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_accept_phy_link *cmd = data;
print_phy_handle(cmd->phy_handle);
print_key_len(cmd->key_len);
print_key_type(cmd->key_type);
packet_hexdump(data + 3, size - 3);
}
static void disconn_phy_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_disconn_phy_link *cmd = data;
print_phy_handle(cmd->phy_handle);
print_reason(cmd->reason);
}
static void create_logic_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_create_logic_link *cmd = data;
print_phy_handle(cmd->phy_handle);
print_flow_spec("TX", cmd->tx_flow_spec);
print_flow_spec("RX", cmd->rx_flow_spec);
}
static void accept_logic_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_accept_logic_link *cmd = data;
print_phy_handle(cmd->phy_handle);
print_flow_spec("TX", cmd->tx_flow_spec);
print_flow_spec("RX", cmd->rx_flow_spec);
}
static void disconn_logic_link_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_disconn_logic_link *cmd = data;
print_handle(cmd->handle);
}
static void logic_link_cancel_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_logic_link_cancel *cmd = data;
print_phy_handle(cmd->phy_handle);
print_field("TX flow spec: 0x%2.2x", cmd->flow_spec);
}
static void logic_link_cancel_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_logic_link_cancel *rsp = data;
print_status(rsp->status);
print_phy_handle(rsp->phy_handle);
print_field("TX flow spec: 0x%2.2x", rsp->flow_spec);
}
static void flow_spec_modify_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_flow_spec_modify *cmd = data;
print_handle(cmd->handle);
print_flow_spec("TX", cmd->tx_flow_spec);
print_flow_spec("RX", cmd->rx_flow_spec);
}
static void enhanced_setup_sync_conn_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_enhanced_setup_sync_conn *cmd = data;
print_handle(cmd->handle);
print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth));
print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth));
/* TODO */
print_field("Max latency: %d", le16_to_cpu(cmd->max_latency));
print_pkt_type_sco(cmd->pkt_type);
print_retransmission_effort(cmd->retrans_effort);
}
static void enhanced_accept_sync_conn_request_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_enhanced_accept_sync_conn_request *cmd = data;
print_bdaddr(cmd->bdaddr);
print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth));
print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth));
/* TODO */
print_field("Max latency: %d", le16_to_cpu(cmd->max_latency));
print_pkt_type_sco(cmd->pkt_type);
print_retransmission_effort(cmd->retrans_effort);
}
static void truncated_page_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_truncated_page *cmd = data;
print_bdaddr(cmd->bdaddr);
print_pscan_rep_mode(cmd->pscan_rep_mode);
print_clock_offset(cmd->clock_offset);
}
static void truncated_page_cancel_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_truncated_page_cancel *cmd = data;
print_bdaddr(cmd->bdaddr);
}
static void set_slave_broadcast_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_slave_broadcast *cmd = data;
print_field("Enable: 0x%2.2x", cmd->enable);
print_lt_addr(cmd->lt_addr);
print_lpo_allowed(cmd->lpo_allowed);
print_pkt_type(cmd->pkt_type);
print_slot_625("Min interval", cmd->min_interval);
print_slot_625("Max interval", cmd->max_interval);
print_slot_625("Supervision timeout", cmd->timeout);
}
static void set_slave_broadcast_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_set_slave_broadcast *rsp = data;
print_status(rsp->status);
print_lt_addr(rsp->lt_addr);
print_interval(rsp->interval);
}
static void set_slave_broadcast_receive_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_slave_broadcast_receive *cmd = data;
print_field("Enable: 0x%2.2x", cmd->enable);
print_bdaddr(cmd->bdaddr);
print_lt_addr(cmd->lt_addr);
print_interval(cmd->interval);
print_field("Offset: 0x%8.8x", le32_to_cpu(cmd->offset));
print_field("Next broadcast instant: 0x%4.4x",
le16_to_cpu(cmd->instant));
print_slot_625("Supervision timeout", cmd->timeout);
print_field("Remote timing accuracy: %d ppm", cmd->accuracy);
print_field("Skip: 0x%2.2x", cmd->skip);
print_pkt_type(cmd->pkt_type);
print_channel_map(cmd->map);
}
static void set_slave_broadcast_receive_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_set_slave_broadcast_receive *rsp = data;
print_status(rsp->status);
print_bdaddr(rsp->bdaddr);
print_lt_addr(rsp->lt_addr);
}
static void receive_sync_train_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_receive_sync_train *cmd = data;
print_bdaddr(cmd->bdaddr);
print_timeout(cmd->timeout);
print_window(cmd->window);
print_interval(cmd->interval);
}
static void remote_oob_ext_data_request_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_remote_oob_ext_data_request_reply *cmd = data;
print_bdaddr(cmd->bdaddr);
print_hash_p192(cmd->hash192);
print_randomizer_p192(cmd->randomizer192);
print_hash_p256(cmd->hash256);
print_randomizer_p256(cmd->randomizer256);
}
static void hold_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_hold_mode *cmd = data;
print_handle(cmd->handle);
print_slot_625("Hold max interval", cmd->max_interval);
print_slot_625("Hold min interval", cmd->min_interval);
}
static void sniff_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_sniff_mode *cmd = data;
print_handle(cmd->handle);
print_slot_625("Sniff max interval", cmd->max_interval);
print_slot_625("Sniff min interval", cmd->min_interval);
print_slot_125("Sniff attempt", cmd->attempt);
print_slot_125("Sniff timeout", cmd->timeout);
}
static void exit_sniff_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_exit_sniff_mode *cmd = data;
print_handle(cmd->handle);
}
static void park_state_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_park_state *cmd = data;
print_handle(cmd->handle);
print_slot_625("Beacon max interval", cmd->max_interval);
print_slot_625("Beacon min interval", cmd->min_interval);
}
static void exit_park_state_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_exit_park_state *cmd = data;
print_handle(cmd->handle);
}
static void qos_setup_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_qos_setup *cmd = data;
print_handle(cmd->handle);
print_field("Flags: 0x%2.2x", cmd->flags);
print_service_type(cmd->service_type);
print_field("Token rate: %d", le32_to_cpu(cmd->token_rate));
print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth));
print_field("Latency: %d", le32_to_cpu(cmd->latency));
print_field("Delay variation: %d", le32_to_cpu(cmd->delay_variation));
}
static void role_discovery_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_role_discovery *cmd = data;
print_handle(cmd->handle);
}
static void role_discovery_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_role_discovery *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_role(rsp->role);
}
static void switch_role_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_switch_role *cmd = data;
print_bdaddr(cmd->bdaddr);
print_role(cmd->role);
}
static void read_link_policy_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_link_policy *cmd = data;
print_handle(cmd->handle);
}
static void read_link_policy_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_link_policy *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_link_policy(rsp->policy);
}
static void write_link_policy_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_link_policy *cmd = data;
print_handle(cmd->handle);
print_link_policy(cmd->policy);
}
static void write_link_policy_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_link_policy *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_default_link_policy_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_default_link_policy *rsp = data;
print_status(rsp->status);
print_link_policy(rsp->policy);
}
static void write_default_link_policy_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_default_link_policy *cmd = data;
print_link_policy(cmd->policy);
}
static void flow_spec_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_flow_spec *cmd = data;
print_handle(cmd->handle);
print_field("Flags: 0x%2.2x", cmd->flags);
print_flow_direction(cmd->direction);
print_service_type(cmd->service_type);
print_field("Token rate: %d", le32_to_cpu(cmd->token_rate));
print_field("Token bucket size: %d",
le32_to_cpu(cmd->token_bucket_size));
print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth));
print_field("Access latency: %d", le32_to_cpu(cmd->access_latency));
}
static void sniff_subrating_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_sniff_subrating *cmd = data;
print_handle(cmd->handle);
print_slot_625("Max latency", cmd->max_latency);
print_slot_625("Min remote timeout", cmd->min_remote_timeout);
print_slot_625("Min local timeout", cmd->min_local_timeout);
}
static void sniff_subrating_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_sniff_subrating *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void set_event_mask_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_event_mask *cmd = data;
print_event_mask(cmd->mask);
}
static void set_event_filter_cmd(const void *data, uint8_t size)
{
uint8_t type = *((const uint8_t *) data);
uint8_t filter;
const char *str;
switch (type) {
case 0x00:
str = "Clear All Filters";
break;
case 0x01:
str = "Inquiry Result";
break;
case 0x02:
str = "Connection Setup";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
switch (type) {
case 0x00:
if (size > 1) {
print_text(COLOR_ERROR, " invalid parameter size");
packet_hexdump(data + 1, size - 1);
}
break;
case 0x01:
filter = *((const uint8_t *) (data + 1));
switch (filter) {
case 0x00:
str = "Return responses from all devices";
break;
case 0x01:
str = "Device with specific Class of Device";
break;
case 0x02:
str = "Device with specific BD_ADDR";
break;
default:
str = "Reserved";
break;
}
print_field("Filter: %s (0x%2.2x)", str, filter);
packet_hexdump(data + 2, size - 2);
break;
case 0x02:
filter = *((const uint8_t *) (data + 1));
switch (filter) {
case 0x00:
str = "Allow connections all devices";
break;
case 0x01:
str = "Allow connections with specific Class of Device";
break;
case 0x02:
str = "Allow connections with specific BD_ADDR";
break;
default:
str = "Reserved";
break;
}
print_field("Filter: %s (0x%2.2x)", str, filter);
packet_hexdump(data + 2, size - 2);
break;
default:
filter = *((const uint8_t *) (data + 1));
print_field("Filter: Reserved (0x%2.2x)", filter);
packet_hexdump(data + 2, size - 2);
break;
}
}
static void flush_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_flush *cmd = data;
print_handle(cmd->handle);
}
static void flush_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_flush *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_pin_type_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_pin_type *rsp = data;
print_status(rsp->status);
print_pin_type(rsp->pin_type);
}
static void write_pin_type_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_pin_type *cmd = data;
print_pin_type(cmd->pin_type);
}
static void read_stored_link_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_stored_link_key *cmd = data;
print_bdaddr(cmd->bdaddr);
print_field("Read all: 0x%2.2x", cmd->read_all);
}
static void read_stored_link_key_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_stored_link_key *rsp = data;
print_status(rsp->status);
print_field("Max num keys: %d", le16_to_cpu(rsp->max_num_keys));
print_field("Num keys: %d", le16_to_cpu(rsp->num_keys));
}
static void write_stored_link_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_stored_link_key *cmd = data;
print_field("Num keys: %d", cmd->num_keys);
packet_hexdump(data + 1, size - 1);
}
static void write_stored_link_key_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_stored_link_key *rsp = data;
print_status(rsp->status);
print_field("Num keys: %d", rsp->num_keys);
}
static void delete_stored_link_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_delete_stored_link_key *cmd = data;
print_bdaddr(cmd->bdaddr);
print_field("Delete all: 0x%2.2x", cmd->delete_all);
}
static void delete_stored_link_key_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_delete_stored_link_key *rsp = data;
print_status(rsp->status);
print_field("Num keys: %d", le16_to_cpu(rsp->num_keys));
}
static void write_local_name_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_local_name *cmd = data;
print_name(cmd->name);
}
static void read_local_name_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_name *rsp = data;
print_status(rsp->status);
print_name(rsp->name);
}
static void read_conn_accept_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_conn_accept_timeout *rsp = data;
print_status(rsp->status);
print_timeout(rsp->timeout);
}
static void write_conn_accept_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_conn_accept_timeout *cmd = data;
print_timeout(cmd->timeout);
}
static void read_page_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_page_timeout *rsp = data;
print_status(rsp->status);
print_timeout(rsp->timeout);
}
static void write_page_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_page_timeout *cmd = data;
print_timeout(cmd->timeout);
}
static void read_scan_enable_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_scan_enable *rsp = data;
print_status(rsp->status);
print_scan_enable(rsp->enable);
}
static void write_scan_enable_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_scan_enable *cmd = data;
print_scan_enable(cmd->enable);
}
static void read_page_scan_activity_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_page_scan_activity *rsp = data;
print_status(rsp->status);
print_interval(rsp->interval);
print_window(rsp->window);
}
static void write_page_scan_activity_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_page_scan_activity *cmd = data;
print_interval(cmd->interval);
print_window(cmd->window);
}
static void read_inquiry_scan_activity_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_inquiry_scan_activity *rsp = data;
print_status(rsp->status);
print_interval(rsp->interval);
print_window(rsp->window);
}
static void write_inquiry_scan_activity_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_inquiry_scan_activity *cmd = data;
print_interval(cmd->interval);
print_window(cmd->window);
}
static void read_auth_enable_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_auth_enable *rsp = data;
print_status(rsp->status);
print_auth_enable(rsp->enable);
}
static void write_auth_enable_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_auth_enable *cmd = data;
print_auth_enable(cmd->enable);
}
static void read_encrypt_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_encrypt_mode *rsp = data;
print_status(rsp->status);
print_encrypt_mode(rsp->mode);
}
static void write_encrypt_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_encrypt_mode *cmd = data;
print_encrypt_mode(cmd->mode);
}
static void read_class_of_dev_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_class_of_dev *rsp = data;
print_status(rsp->status);
print_dev_class(rsp->dev_class);
}
static void write_class_of_dev_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_class_of_dev *cmd = data;
print_dev_class(cmd->dev_class);
}
static void read_voice_setting_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_voice_setting *rsp = data;
print_status(rsp->status);
print_voice_setting(rsp->setting);
}
static void write_voice_setting_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_voice_setting *cmd = data;
print_voice_setting(cmd->setting);
}
static void read_auto_flush_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_auto_flush_timeout *cmd = data;
print_handle(cmd->handle);
}
static void read_auto_flush_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_auto_flush_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_flush_timeout(rsp->timeout);
}
static void write_auto_flush_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_auto_flush_timeout *cmd = data;
print_handle(cmd->handle);
print_flush_timeout(cmd->timeout);
}
static void write_auto_flush_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_auto_flush_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_num_broadcast_retrans_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_num_broadcast_retrans *rsp = data;
print_status(rsp->status);
print_num_broadcast_retrans(rsp->num_retrans);
}
static void write_num_broadcast_retrans_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_num_broadcast_retrans *cmd = data;
print_num_broadcast_retrans(cmd->num_retrans);
}
static void read_hold_mode_activity_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_hold_mode_activity *rsp = data;
print_status(rsp->status);
print_hold_mode_activity(rsp->activity);
}
static void write_hold_mode_activity_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_hold_mode_activity *cmd = data;
print_hold_mode_activity(cmd->activity);
}
static void read_tx_power_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_tx_power *cmd = data;
print_handle(cmd->handle);
print_power_type(cmd->type);
}
static void read_tx_power_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_tx_power *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_power_level(rsp->level, NULL);
}
static void read_sync_flow_control_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_sync_flow_control *rsp = data;
print_status(rsp->status);
print_sync_flow_control(rsp->enable);
}
static void write_sync_flow_control_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_sync_flow_control *cmd = data;
print_sync_flow_control(cmd->enable);
}
static void set_host_flow_control_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_host_flow_control *cmd = data;
print_host_flow_control(cmd->enable);
}
static void host_buffer_size_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_host_buffer_size *cmd = data;
print_field("ACL MTU: %-4d ACL max packet: %d",
le16_to_cpu(cmd->acl_mtu),
le16_to_cpu(cmd->acl_max_pkt));
print_field("SCO MTU: %-4d SCO max packet: %d",
cmd->sco_mtu,
le16_to_cpu(cmd->sco_max_pkt));
}
static void host_num_completed_packets_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_host_num_completed_packets *cmd = data;
print_field("Num handles: %d", cmd->num_handles);
print_handle(cmd->handle);
print_field("Count: %d", le16_to_cpu(cmd->count));
if (size > sizeof(*cmd))
packet_hexdump(data + sizeof(*cmd), size - sizeof(*cmd));
}
static void read_link_supv_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_link_supv_timeout *cmd = data;
print_handle(cmd->handle);
}
static void read_link_supv_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_link_supv_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_timeout(rsp->timeout);
}
static void write_link_supv_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_link_supv_timeout *cmd = data;
print_handle(cmd->handle);
print_timeout(cmd->timeout);
}
static void write_link_supv_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_link_supv_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_num_supported_iac_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_num_supported_iac *rsp = data;
print_status(rsp->status);
print_field("Number of IAC: %d", rsp->num_iac);
}
static void read_current_iac_lap_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_current_iac_lap *rsp = data;
uint8_t i;
print_status(rsp->status);
print_field("Number of IAC: %d", rsp->num_iac);
for (i = 0; i < rsp->num_iac; i++)
print_iac(rsp->iac_lap + (i * 3));
}
static void write_current_iac_lap_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_current_iac_lap *cmd = data;
uint8_t i;
print_field("Number of IAC: %d", cmd->num_iac);
for (i = 0; i < cmd->num_iac; i++)
print_iac(cmd->iac_lap + (i * 3));
}
static void read_page_scan_period_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_page_scan_period_mode *rsp = data;
print_status(rsp->status);
print_pscan_period_mode(rsp->mode);
}
static void write_page_scan_period_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_page_scan_period_mode *cmd = data;
print_pscan_period_mode(cmd->mode);
}
static void read_page_scan_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_page_scan_mode *rsp = data;
print_status(rsp->status);
print_pscan_mode(rsp->mode);
}
static void write_page_scan_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_page_scan_mode *cmd = data;
print_pscan_mode(cmd->mode);
}
static void set_afh_host_classification_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_afh_host_classification *cmd = data;
print_channel_map(cmd->map);
}
static void read_inquiry_scan_type_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_inquiry_scan_type *rsp = data;
print_status(rsp->status);
print_inquiry_scan_type(rsp->type);
}
static void write_inquiry_scan_type_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_inquiry_scan_type *cmd = data;
print_inquiry_scan_type(cmd->type);
}
static void read_inquiry_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_inquiry_mode *rsp = data;
print_status(rsp->status);
print_inquiry_mode(rsp->mode);
}
static void write_inquiry_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_inquiry_mode *cmd = data;
print_inquiry_mode(cmd->mode);
}
static void read_page_scan_type_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_page_scan_type *rsp = data;
print_status(rsp->status);
print_pscan_type(rsp->type);
}
static void write_page_scan_type_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_page_scan_type *cmd = data;
print_pscan_type(cmd->type);
}
static void read_afh_assessment_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_afh_assessment_mode *rsp = data;
print_status(rsp->status);
print_afh_mode(rsp->mode);
}
static void write_afh_assessment_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_afh_assessment_mode *cmd = data;
print_afh_mode(cmd->mode);
}
static void read_ext_inquiry_response_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_ext_inquiry_response *rsp = data;
print_status(rsp->status);
print_fec(rsp->fec);
print_eir(rsp->data, sizeof(rsp->data), false);
}
static void write_ext_inquiry_response_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_ext_inquiry_response *cmd = data;
print_fec(cmd->fec);
print_eir(cmd->data, sizeof(cmd->data), false);
}
static void refresh_encrypt_key_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_refresh_encrypt_key *cmd = data;
print_handle(cmd->handle);
}
static void read_simple_pairing_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_simple_pairing_mode *rsp = data;
print_status(rsp->status);
print_simple_pairing_mode(rsp->mode);
}
static void write_simple_pairing_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_simple_pairing_mode *cmd = data;
print_simple_pairing_mode(cmd->mode);
}
static void read_local_oob_data_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_oob_data *rsp = data;
print_status(rsp->status);
print_hash_p192(rsp->hash);
print_randomizer_p192(rsp->randomizer);
}
static void read_inquiry_resp_tx_power_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_inquiry_resp_tx_power *rsp = data;
print_status(rsp->status);
print_power_level(rsp->level, NULL);
}
static void write_inquiry_tx_power_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_inquiry_tx_power *cmd = data;
print_power_level(cmd->level, NULL);
}
static void read_erroneous_reporting_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_erroneous_reporting *rsp = data;
print_status(rsp->status);
print_erroneous_reporting(rsp->mode);
}
static void write_erroneous_reporting_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_erroneous_reporting *cmd = data;
print_erroneous_reporting(cmd->mode);
}
static void enhanced_flush_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_enhanced_flush *cmd = data;
const char *str;
print_handle(cmd->handle);
switch (cmd->type) {
case 0x00:
str = "Automatic flushable only";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, cmd->type);
}
static void send_keypress_notify_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_send_keypress_notify *cmd = data;
const char *str;
print_bdaddr(cmd->bdaddr);
switch (cmd->type) {
case 0x00:
str = "Passkey entry started";
break;
case 0x01:
str = "Passkey digit entered";
break;
case 0x02:
str = "Passkey digit erased";
break;
case 0x03:
str = "Passkey cleared";
break;
case 0x04:
str = "Passkey entry completed";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, cmd->type);
}
static void send_keypress_notify_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_send_keypress_notify *rsp = data;
print_status(rsp->status);
print_bdaddr(rsp->bdaddr);
}
static void set_event_mask_page2_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_event_mask_page2 *cmd = data;
print_event_mask_page2(cmd->mask);
}
static void read_location_data_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_location_data *rsp = data;
print_status(rsp->status);
print_location_domain_aware(rsp->domain_aware);
print_location_domain(rsp->domain);
print_location_domain_options(rsp->domain_options);
print_location_options(rsp->options);
}
static void write_location_data_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_location_data *cmd = data;
print_location_domain_aware(cmd->domain_aware);
print_location_domain(cmd->domain);
print_location_domain_options(cmd->domain_options);
print_location_options(cmd->options);
}
static void read_flow_control_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_flow_control_mode *rsp = data;
print_status(rsp->status);
print_flow_control_mode(rsp->mode);
}
static void write_flow_control_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_flow_control_mode *cmd = data;
print_flow_control_mode(cmd->mode);
}
static void read_enhanced_tx_power_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_enhanced_tx_power *cmd = data;
print_handle(cmd->handle);
print_power_type(cmd->type);
}
static void read_enhanced_tx_power_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_enhanced_tx_power *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_power_level(rsp->level_gfsk, "GFSK");
print_power_level(rsp->level_dqpsk, "DQPSK");
print_power_level(rsp->level_8dpsk, "8DPSK");
}
static void short_range_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_short_range_mode *cmd = data;
print_phy_handle(cmd->phy_handle);
print_short_range_mode(cmd->mode);
}
static void read_le_host_supported_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_le_host_supported *rsp = data;
print_status(rsp->status);
print_field("Supported: 0x%2.2x", rsp->supported);
print_field("Simultaneous: 0x%2.2x", rsp->simultaneous);
}
static void write_le_host_supported_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_le_host_supported *cmd = data;
print_field("Supported: 0x%2.2x", cmd->supported);
print_field("Simultaneous: 0x%2.2x", cmd->simultaneous);
}
static void set_reserved_lt_addr_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_reserved_lt_addr *cmd = data;
print_lt_addr(cmd->lt_addr);
}
static void set_reserved_lt_addr_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_set_reserved_lt_addr *rsp = data;
print_status(rsp->status);
print_lt_addr(rsp->lt_addr);
}
static void delete_reserved_lt_addr_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_delete_reserved_lt_addr *cmd = data;
print_lt_addr(cmd->lt_addr);
}
static void delete_reserved_lt_addr_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_delete_reserved_lt_addr *rsp = data;
print_status(rsp->status);
print_lt_addr(rsp->lt_addr);
}
static void set_slave_broadcast_data_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_slave_broadcast_data *cmd = data;
print_lt_addr(cmd->lt_addr);
print_broadcast_fragment(cmd->fragment);
print_field("Length: %d", cmd->length);
if (size - 3 != cmd->length)
print_text(COLOR_ERROR, "invalid data size (%d != %d)",
size - 3, cmd->length);
packet_hexdump(data + 3, size - 3);
}
static void set_slave_broadcast_data_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_set_slave_broadcast_data *rsp = data;
print_status(rsp->status);
print_lt_addr(rsp->lt_addr);
}
static void read_sync_train_params_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_sync_train_params *rsp = data;
print_status(rsp->status);
print_interval(rsp->interval);
print_field("Timeout: %.3f msec (0x%8.8x)",
le32_to_cpu(rsp->timeout) * 0.625,
le32_to_cpu(rsp->timeout));
print_field("Service data: 0x%2.2x", rsp->service_data);
}
static void write_sync_train_params_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_sync_train_params *cmd = data;
print_slot_625("Min interval", cmd->min_interval);
print_slot_625("Max interval", cmd->max_interval);
print_field("Timeout: %.3f msec (0x%8.8x)",
le32_to_cpu(cmd->timeout) * 0.625,
le32_to_cpu(cmd->timeout));
print_field("Service data: 0x%2.2x", cmd->service_data);
}
static void write_sync_train_params_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_sync_train_params *rsp = data;
print_status(rsp->status);
print_interval(rsp->interval);
}
static void read_secure_conn_support_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_secure_conn_support *rsp = data;
print_status(rsp->status);
print_secure_conn_support(rsp->support);
}
static void write_secure_conn_support_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_secure_conn_support *cmd = data;
print_secure_conn_support(cmd->support);
}
static void read_auth_payload_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_auth_payload_timeout *cmd = data;
print_handle(cmd->handle);
}
static void read_auth_payload_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_auth_payload_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_auth_payload_timeout(rsp->timeout);
}
static void write_auth_payload_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_auth_payload_timeout *cmd = data;
print_handle(cmd->handle);
print_auth_payload_timeout(cmd->timeout);
}
static void write_auth_payload_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_auth_payload_timeout *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_local_oob_ext_data_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_oob_ext_data *rsp = data;
print_status(rsp->status);
print_hash_p192(rsp->hash192);
print_randomizer_p192(rsp->randomizer192);
print_hash_p256(rsp->hash256);
print_randomizer_p256(rsp->randomizer256);
}
static void read_ext_page_timeout_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_ext_page_timeout *rsp = data;
print_status(rsp->status);
print_timeout(rsp->timeout);
}
static void write_ext_page_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_ext_page_timeout *cmd = data;
print_timeout(cmd->timeout);
}
static void read_ext_inquiry_length_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_ext_inquiry_length *rsp = data;
print_status(rsp->status);
print_interval(rsp->interval);
}
static void write_ext_inquiry_length_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_ext_inquiry_length *cmd = data;
print_interval(cmd->interval);
}
static void read_local_version_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_version *rsp = data;
uint16_t manufacturer;
print_status(rsp->status);
print_hci_version(rsp->hci_ver, rsp->hci_rev);
manufacturer = le16_to_cpu(rsp->manufacturer);
if (index_current < MAX_INDEX) {
switch (index_list[index_current].type) {
case HCI_PRIMARY:
print_lmp_version(rsp->lmp_ver, rsp->lmp_subver);
break;
case HCI_AMP:
print_pal_version(rsp->lmp_ver, rsp->lmp_subver);
break;
}
index_list[index_current].manufacturer = manufacturer;
}
print_manufacturer(rsp->manufacturer);
switch (manufacturer) {
case 15:
print_manufacturer_broadcom(rsp->lmp_subver, rsp->hci_rev);
break;
}
}
static void read_local_commands_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_commands *rsp = data;
print_status(rsp->status);
print_commands(rsp->commands);
}
static void read_local_features_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_features *rsp = data;
print_status(rsp->status);
print_features(0, rsp->features, 0x00);
}
static void read_local_ext_features_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_local_ext_features *cmd = data;
print_field("Page: %d", cmd->page);
}
static void read_local_ext_features_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_ext_features *rsp = data;
print_status(rsp->status);
print_field("Page: %d/%d", rsp->page, rsp->max_page);
print_features(rsp->page, rsp->features, 0x00);
}
static void read_buffer_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_buffer_size *rsp = data;
print_status(rsp->status);
print_field("ACL MTU: %-4d ACL max packet: %d",
le16_to_cpu(rsp->acl_mtu),
le16_to_cpu(rsp->acl_max_pkt));
print_field("SCO MTU: %-4d SCO max packet: %d",
rsp->sco_mtu,
le16_to_cpu(rsp->sco_max_pkt));
}
static void read_country_code_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_country_code *rsp = data;
const char *str;
print_status(rsp->status);
switch (rsp->code) {
case 0x00:
str = "North America, Europe*, Japan";
break;
case 0x01:
str = "France";
break;
default:
str = "Reserved";
break;
}
print_field("Country code: %s (0x%2.2x)", str, rsp->code);
}
static void read_bd_addr_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_bd_addr *rsp = data;
print_status(rsp->status);
print_bdaddr(rsp->bdaddr);
if (index_current < MAX_INDEX)
memcpy(index_list[index_current].bdaddr, rsp->bdaddr, 6);
}
static void read_data_block_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_data_block_size *rsp = data;
print_status(rsp->status);
print_field("Max ACL length: %d", le16_to_cpu(rsp->max_acl_len));
print_field("Block length: %d", le16_to_cpu(rsp->block_len));
print_field("Num blocks: %d", le16_to_cpu(rsp->num_blocks));
}
static void read_local_codecs_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_codecs *rsp = data;
uint8_t i, num_vnd_codecs;
print_status(rsp->status);
print_field("Number of supported codecs: %d", rsp->num_codecs);
for (i = 0; i < rsp->num_codecs; i++)
print_codec(" Codec", rsp->codec[i]);
num_vnd_codecs = rsp->codec[rsp->num_codecs];
print_field("Number of vendor codecs: %d", num_vnd_codecs);
packet_hexdump(data + rsp->num_codecs + 3,
size - rsp->num_codecs - 3);
}
static void read_failed_contact_counter_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_failed_contact_counter *cmd = data;
print_handle(cmd->handle);
}
static void read_failed_contact_counter_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_failed_contact_counter *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_field("Counter: %u", le16_to_cpu(rsp->counter));
}
static void reset_failed_contact_counter_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_reset_failed_contact_counter *cmd = data;
print_handle(cmd->handle);
}
static void reset_failed_contact_counter_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_reset_failed_contact_counter *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void read_link_quality_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_link_quality *cmd = data;
print_handle(cmd->handle);
}
static void read_link_quality_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_link_quality *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_field("Link quality: 0x%2.2x", rsp->link_quality);
}
static void read_rssi_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_rssi *cmd = data;
print_handle(cmd->handle);
}
static void read_rssi_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_rssi *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_rssi(rsp->rssi);
}
static void read_afh_channel_map_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_afh_channel_map *cmd = data;
print_handle(cmd->handle);
}
static void read_afh_channel_map_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_afh_channel_map *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_afh_mode(rsp->mode);
print_channel_map(rsp->map);
}
static void read_clock_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_clock *cmd = data;
print_handle(cmd->handle);
print_clock_type(cmd->type);
}
static void read_clock_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_clock *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_clock(rsp->clock);
print_clock_accuracy(rsp->accuracy);
}
static void read_encrypt_key_size_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_encrypt_key_size *cmd = data;
print_handle(cmd->handle);
}
static void read_encrypt_key_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_encrypt_key_size *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_key_size(rsp->key_size);
}
static void read_local_amp_info_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_amp_info *rsp = data;
const char *str;
print_status(rsp->status);
print_amp_status(rsp->amp_status);
print_field("Total bandwidth: %d kbps", le32_to_cpu(rsp->total_bw));
print_field("Max guaranteed bandwidth: %d kbps",
le32_to_cpu(rsp->max_bw));
print_field("Min latency: %d", le32_to_cpu(rsp->min_latency));
print_field("Max PDU size: %d", le32_to_cpu(rsp->max_pdu));
switch (rsp->amp_type) {
case 0x00:
str = "Primary BR/EDR Controller";
break;
case 0x01:
str = "802.11 AMP Controller";
break;
default:
str = "Reserved";
break;
}
print_field("Controller type: %s (0x%2.2x)", str, rsp->amp_type);
print_field("PAL capabilities: 0x%4.4x", le16_to_cpu(rsp->pal_cap));
print_field("Max ASSOC length: %d", le16_to_cpu(rsp->max_assoc_len));
print_field("Max flush timeout: %d", le32_to_cpu(rsp->max_flush_to));
print_field("Best effort flush timeout: %d",
le32_to_cpu(rsp->be_flush_to));
}
static void read_local_amp_assoc_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_read_local_amp_assoc *cmd = data;
print_phy_handle(cmd->phy_handle);
print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far));
print_field("Max ASSOC length: %d", le16_to_cpu(cmd->max_assoc_len));
}
static void read_local_amp_assoc_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_local_amp_assoc *rsp = data;
print_status(rsp->status);
print_phy_handle(rsp->phy_handle);
print_field("Remaining ASSOC length: %d",
le16_to_cpu(rsp->remain_assoc_len));
packet_hexdump(data + 4, size - 4);
}
static void write_remote_amp_assoc_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_remote_amp_assoc *cmd = data;
print_phy_handle(cmd->phy_handle);
print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far));
print_field("Remaining ASSOC length: %d",
le16_to_cpu(cmd->remain_assoc_len));
packet_hexdump(data + 5, size - 5);
}
static void write_remote_amp_assoc_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_write_remote_amp_assoc *rsp = data;
print_status(rsp->status);
print_phy_handle(rsp->phy_handle);
}
static void get_mws_transport_config_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_get_mws_transport_config *rsp = data;
uint8_t sum_baud_rates = 0;
int i;
print_status(rsp->status);
print_field("Number of transports: %d", rsp->num_transports);
for (i = 0; i < rsp->num_transports; i++) {
uint8_t transport = rsp->transport[0];
uint8_t num_baud_rates = rsp->transport[1];
const char *str;
switch (transport) {
case 0x00:
str = "Disbabled";
break;
case 0x01:
str = "WCI-1";
break;
case 0x02:
str = "WCI-2";
break;
default:
str = "Reserved";
break;
}
print_field(" Transport layer: %s (0x%2.2x)", str, transport);
print_field(" Number of baud rates: %d", num_baud_rates);
sum_baud_rates += num_baud_rates;
}
print_field("Baud rate list: %u entr%s", sum_baud_rates,
sum_baud_rates == 1 ? "y" : "ies");
for (i = 0; i < sum_baud_rates; i++) {
uint32_t to_baud_rate, from_baud_rate;
to_baud_rate = get_le32(data + 2 +
rsp->num_transports * 2 + i * 4);
from_baud_rate = get_le32(data + 2 +
rsp->num_transports * 2 +
sum_baud_rates * 4 + i * 4);
print_field(" Bluetooth to MWS: %d", to_baud_rate);
print_field(" MWS to Bluetooth: %d", from_baud_rate);
}
packet_hexdump(data + 2 + rsp->num_transports * 2 + sum_baud_rates * 8,
size - 2 - rsp->num_transports * 2 - sum_baud_rates * 8);
}
static void set_triggered_clock_capture_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_set_triggered_clock_capture *cmd = data;
const char *str;
print_handle(cmd->handle);
switch (cmd->enable) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Capture: %s (0x%2.2x)", str, cmd->enable);
print_clock_type(cmd->type);
print_lpo_allowed(cmd->lpo_allowed);
print_field("Clock captures to filter: %u", cmd->num_filter);
}
static void read_loopback_mode_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_read_loopback_mode *rsp = data;
print_status(rsp->status);
print_loopback_mode(rsp->mode);
}
static void write_loopback_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_loopback_mode *cmd = data;
print_loopback_mode(cmd->mode);
}
static void write_ssp_debug_mode_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_write_ssp_debug_mode *cmd = data;
print_ssp_debug_mode(cmd->mode);
}
static void le_set_event_mask_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_event_mask *cmd = data;
print_event_mask_le(cmd->mask);
}
static void le_read_buffer_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_buffer_size *rsp = data;
print_status(rsp->status);
print_field("Data packet length: %d", le16_to_cpu(rsp->le_mtu));
print_field("Num data packets: %d", rsp->le_max_pkt);
}
static void le_read_local_features_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_local_features *rsp = data;
print_status(rsp->status);
print_features(0, rsp->features, 0x01);
}
static void le_set_random_address_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_random_address *cmd = data;
print_addr("Address", cmd->addr, 0x01);
}
static void le_set_adv_parameters_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_adv_parameters *cmd = data;
const char *str;
print_slot_625("Min advertising interval", cmd->min_interval);
print_slot_625("Max advertising interval", cmd->max_interval);
switch (cmd->type) {
case 0x00:
str = "Connectable undirected - ADV_IND";
break;
case 0x01:
str = "Connectable directed - ADV_DIRECT_IND (high duty cycle)";
break;
case 0x02:
str = "Scannable undirected - ADV_SCAN_IND";
break;
case 0x03:
str = "Non connectable undirected - ADV_NONCONN_IND";
break;
case 0x04:
str = "Connectable directed - ADV_DIRECT_IND (low duty cycle)";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, cmd->type);
print_own_addr_type(cmd->own_addr_type);
print_addr_type("Direct address type", cmd->direct_addr_type);
print_addr("Direct address", cmd->direct_addr, cmd->direct_addr_type);
switch (cmd->channel_map) {
case 0x01:
str = "37";
break;
case 0x02:
str = "38";
break;
case 0x03:
str = "37, 38";
break;
case 0x04:
str = "39";
break;
case 0x05:
str = "37, 39";
break;
case 0x06:
str = "38, 39";
break;
case 0x07:
str = "37, 38, 39";
break;
default:
str = "Reserved";
break;
}
print_field("Channel map: %s (0x%2.2x)", str, cmd->channel_map);
switch (cmd->filter_policy) {
case 0x00:
str = "Allow Scan Request from Any, "
"Allow Connect Request from Any";
break;
case 0x01:
str = "Allow Scan Request from White List Only, "
"Allow Connect Request from Any";
break;
case 0x02:
str = "Allow Scan Request from Any, "
"Allow Connect Request from White List Only";
break;
case 0x03:
str = "Allow Scan Request from White List Only, "
"Allow Connect Request from White List Only";
break;
default:
str = "Reserved";
break;
}
print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy);
}
static void le_read_adv_tx_power_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_adv_tx_power *rsp = data;
print_status(rsp->status);
print_power_level(rsp->level, NULL);
}
static void le_set_adv_data_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_adv_data *cmd = data;
print_field("Length: %d", cmd->len);
print_eir(cmd->data, cmd->len, true);
}
static void le_set_scan_rsp_data_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_scan_rsp_data *cmd = data;
print_field("Length: %d", cmd->len);
print_eir(cmd->data, cmd->len, true);
}
static void le_set_adv_enable_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_adv_enable *cmd = data;
const char *str;
switch (cmd->enable) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Advertising: %s (0x%2.2x)", str, cmd->enable);
}
static void le_set_scan_parameters_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_scan_parameters *cmd = data;
const char *str;
switch (cmd->type) {
case 0x00:
str = "Passive";
break;
case 0x01:
str = "Active";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, cmd->type);
print_interval(cmd->interval);
print_window(cmd->window);
print_own_addr_type(cmd->own_addr_type);
switch (cmd->filter_policy) {
case 0x00:
str = "Accept all advertisement";
break;
case 0x01:
str = "Ignore not in white list";
break;
default:
str = "Reserved";
break;
}
print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy);
}
static void le_set_scan_enable_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_scan_enable *cmd = data;
const char *str;
switch (cmd->enable) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Scanning: %s (0x%2.2x)", str, cmd->enable);
switch (cmd->filter_dup) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Filter duplicates: %s (0x%2.2x)", str, cmd->filter_dup);
}
static void le_create_conn_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_create_conn *cmd = data;
const char *str;
print_slot_625("Scan interval", cmd->scan_interval);
print_slot_625("Scan window", cmd->scan_window);
switch (cmd->filter_policy) {
case 0x00:
str = "White list is not used";
break;
case 0x01:
str = "White list is used";
break;
default:
str = "Reserved";
break;
}
print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy);
print_peer_addr_type("Peer address type", cmd->peer_addr_type);
print_addr("Peer address", cmd->peer_addr, cmd->peer_addr_type);
print_own_addr_type(cmd->own_addr_type);
print_slot_125("Min connection interval", cmd->min_interval);
print_slot_125("Max connection interval", cmd->max_interval);
print_field("Connection latency: 0x%4.4x", le16_to_cpu(cmd->latency));
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(cmd->supv_timeout) * 10,
le16_to_cpu(cmd->supv_timeout));
print_slot_625("Min connection length", cmd->min_length);
print_slot_625("Max connection length", cmd->max_length);
}
static void le_read_white_list_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_white_list_size *rsp = data;
print_status(rsp->status);
print_field("Size: %u", rsp->size);
}
static void le_add_to_white_list_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_add_to_white_list *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
}
static void le_remove_from_white_list_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_remove_from_white_list *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
}
static void le_conn_update_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_conn_update *cmd = data;
print_handle(cmd->handle);
print_slot_125("Min connection interval", cmd->min_interval);
print_slot_125("Max connection interval", cmd->max_interval);
print_field("Connection latency: 0x%4.4x", le16_to_cpu(cmd->latency));
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(cmd->supv_timeout) * 10,
le16_to_cpu(cmd->supv_timeout));
print_slot_625("Min connection length", cmd->min_length);
print_slot_625("Max connection length", cmd->max_length);
}
static void le_set_host_classification_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_host_classification *cmd = data;
print_le_channel_map(cmd->map);
}
static void le_read_channel_map_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_read_channel_map *cmd = data;
print_handle(cmd->handle);
}
static void le_read_channel_map_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_channel_map *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
print_le_channel_map(rsp->map);
}
static void le_read_remote_features_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_read_remote_features *cmd = data;
print_handle(cmd->handle);
}
static void le_encrypt_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_encrypt *cmd = data;
print_key("Key", cmd->key);
print_key("Plaintext data", cmd->plaintext);
}
static void le_encrypt_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_encrypt *rsp = data;
print_status(rsp->status);
print_key("Encrypted data", rsp->data);
}
static void le_rand_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_rand *rsp = data;
print_status(rsp->status);
print_random_number(rsp->number);
}
static void le_start_encrypt_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_start_encrypt *cmd = data;
print_handle(cmd->handle);
print_random_number(cmd->rand);
print_encrypted_diversifier(cmd->ediv);
print_key("Long term key", cmd->ltk);
}
static void le_ltk_req_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_ltk_req_reply *cmd = data;
print_handle(cmd->handle);
print_key("Long term key", cmd->ltk);
}
static void le_ltk_req_reply_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_ltk_req_reply *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void le_ltk_req_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_ltk_req_neg_reply *cmd = data;
print_handle(cmd->handle);
}
static void le_ltk_req_neg_reply_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_ltk_req_neg_reply *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void le_read_supported_states_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_supported_states *rsp = data;
print_status(rsp->status);
print_le_states(rsp->states);
}
static void le_receiver_test_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_receiver_test *cmd = data;
print_field("RX frequency: %d MHz (0x%2.2x)",
(cmd->frequency * 2) + 2402, cmd->frequency);
}
static void le_transmitter_test_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_transmitter_test *cmd = data;
print_field("TX frequency: %d MHz (0x%2.2x)",
(cmd->frequency * 2) + 2402, cmd->frequency);
print_field("Test data length: %d bytes", cmd->data_len);
print_field("Packet payload: 0x%2.2x", cmd->payload);
}
static void le_test_end_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_test_end *rsp = data;
print_status(rsp->status);
print_field("Number of packets: %d", le16_to_cpu(rsp->num_packets));
}
static void le_conn_param_req_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_conn_param_req_reply *cmd = data;
print_handle(cmd->handle);
print_slot_125("Min connection interval", cmd->min_interval);
print_slot_125("Max connection interval", cmd->max_interval);
print_field("Connection latency: 0x%4.4x", le16_to_cpu(cmd->latency));
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(cmd->supv_timeout) * 10,
le16_to_cpu(cmd->supv_timeout));
print_slot_625("Min connection length", cmd->min_length);
print_slot_625("Max connection length", cmd->max_length);
}
static void le_conn_param_req_reply_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_conn_param_req_reply *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void le_conn_param_req_neg_reply_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_conn_param_req_neg_reply *cmd = data;
print_handle(cmd->handle);
print_reason(cmd->reason);
}
static void le_conn_param_req_neg_reply_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_conn_param_req_neg_reply *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void le_set_data_length_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_data_length *cmd = data;
print_handle(cmd->handle);
print_field("TX octets: %d", le16_to_cpu(cmd->tx_len));
print_field("TX time: %d", le16_to_cpu(cmd->tx_time));
}
static void le_set_data_length_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_set_data_length *rsp = data;
print_status(rsp->status);
print_handle(rsp->handle);
}
static void le_read_default_data_length_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_default_data_length *rsp = data;
print_status(rsp->status);
print_field("TX octets: %d", le16_to_cpu(rsp->tx_len));
print_field("TX time: %d", le16_to_cpu(rsp->tx_time));
}
static void le_write_default_data_length_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_write_default_data_length *cmd = data;
print_field("TX octets: %d", le16_to_cpu(cmd->tx_len));
print_field("TX time: %d", le16_to_cpu(cmd->tx_time));
}
static void le_generate_dhkey_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_generate_dhkey *cmd = data;
print_pk256("Remote P-256 public key", cmd->remote_pk256);
}
static void le_add_to_resolv_list_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_add_to_resolv_list *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
print_key("Peer identity resolving key", cmd->peer_irk);
print_key("Local identity resolving key", cmd->local_irk);
}
static void le_remove_from_resolv_list_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_remove_from_resolv_list *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
}
static void le_read_resolv_list_size_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_resolv_list_size *rsp = data;
print_status(rsp->status);
print_field("Size: %u", rsp->size);
}
static void le_read_peer_resolv_addr_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_read_peer_resolv_addr *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
}
static void le_read_peer_resolv_addr_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_peer_resolv_addr *rsp = data;
print_status(rsp->status);
print_addr("Address", rsp->addr, 0x01);
}
static void le_read_local_resolv_addr_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_read_local_resolv_addr *cmd = data;
print_addr_type("Address type", cmd->addr_type);
print_addr("Address", cmd->addr, cmd->addr_type);
}
static void le_read_local_resolv_addr_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_local_resolv_addr *rsp = data;
print_status(rsp->status);
print_addr("Address", rsp->addr, 0x01);
}
static void le_set_resolv_enable_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_resolv_enable *cmd = data;
const char *str;
switch (cmd->enable) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Address resolution: %s (0x%2.2x)", str, cmd->enable);
}
static void le_set_resolv_timeout_cmd(const void *data, uint8_t size)
{
const struct bt_hci_cmd_le_set_resolv_timeout *cmd = data;
print_field("Timeout: %u seconds", le16_to_cpu(cmd->timeout));
}
static void le_read_max_data_length_rsp(const void *data, uint8_t size)
{
const struct bt_hci_rsp_le_read_max_data_length *rsp = data;
print_status(rsp->status);
print_field("Max TX octets: %d", le16_to_cpu(rsp->max_tx_len));
print_field("Max TX time: %d", le16_to_cpu(rsp->max_tx_time));
print_field("Max RX octets: %d", le16_to_cpu(rsp->max_rx_len));
print_field("Max RX time: %d", le16_to_cpu(rsp->max_rx_time));
}
struct opcode_data {
uint16_t opcode;
int bit;
const char *str;
void (*cmd_func) (const void *data, uint8_t size);
uint8_t cmd_size;
bool cmd_fixed;
void (*rsp_func) (const void *data, uint8_t size);
uint8_t rsp_size;
bool rsp_fixed;
};
static const struct opcode_data opcode_table[] = {
{ 0x0000, -1, "NOP" },
/* OGF 1 - Link Control */
{ 0x0401, 0, "Inquiry",
inquiry_cmd, 5, true },
{ 0x0402, 1, "Inquiry Cancel",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x0403, 2, "Periodic Inquiry Mode",
periodic_inquiry_cmd, 9, true,
status_rsp, 1, true },
{ 0x0404, 3, "Exit Periodic Inquiry Mode",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x0405, 4, "Create Connection",
create_conn_cmd, 13, true },
{ 0x0406, 5, "Disconnect",
disconnect_cmd, 3, true },
{ 0x0407, 6, "Add SCO Connection",
add_sco_conn_cmd, 4, true },
{ 0x0408, 7, "Create Connection Cancel",
create_conn_cancel_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x0409, 8, "Accept Connection Request",
accept_conn_request_cmd, 7, true },
{ 0x040a, 9, "Reject Connection Request",
reject_conn_request_cmd, 7, true },
{ 0x040b, 10, "Link Key Request Reply",
link_key_request_reply_cmd, 22, true,
status_bdaddr_rsp, 7, true },
{ 0x040c, 11, "Link Key Request Negative Reply",
link_key_request_neg_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x040d, 12, "PIN Code Request Reply",
pin_code_request_reply_cmd, 23, true,
status_bdaddr_rsp, 7, true },
{ 0x040e, 13, "PIN Code Request Negative Reply",
pin_code_request_neg_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x040f, 14, "Change Connection Packet Type",
change_conn_pkt_type_cmd, 4, true },
{ 0x0411, 15, "Authentication Requested",
auth_requested_cmd, 2, true },
{ 0x0413, 16, "Set Connection Encryption",
set_conn_encrypt_cmd, 3, true },
{ 0x0415, 17, "Change Connection Link Key",
change_conn_link_key_cmd, 2, true },
{ 0x0417, 18, "Master Link Key",
master_link_key_cmd, 1, true },
{ 0x0419, 19, "Remote Name Request",
remote_name_request_cmd, 10, true },
{ 0x041a, 20, "Remote Name Request Cancel",
remote_name_request_cancel_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x041b, 21, "Read Remote Supported Features",
read_remote_features_cmd, 2, true },
{ 0x041c, 22, "Read Remote Extended Features",
read_remote_ext_features_cmd, 3, true },
{ 0x041d, 23, "Read Remote Version Information",
read_remote_version_cmd, 2, true },
{ 0x041f, 24, "Read Clock Offset",
read_clock_offset_cmd, 2, true },
{ 0x0420, 25, "Read LMP Handle",
read_lmp_handle_cmd, 2, true,
read_lmp_handle_rsp, 8, true },
{ 0x0428, 131, "Setup Synchronous Connection",
setup_sync_conn_cmd, 17, true },
{ 0x0429, 132, "Accept Synchronous Connection Request",
accept_sync_conn_request_cmd, 21, true },
{ 0x042a, 133, "Reject Synchronous Connection Request",
reject_sync_conn_request_cmd, 7, true },
{ 0x042b, 151, "IO Capability Request Reply",
io_capability_request_reply_cmd, 9, true,
status_bdaddr_rsp, 7, true },
{ 0x042c, 152, "User Confirmation Request Reply",
user_confirm_request_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x042d, 153, "User Confirmation Request Neg Reply",
user_confirm_request_neg_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x042e, 154, "User Passkey Request Reply",
user_passkey_request_reply_cmd, 10, true,
status_bdaddr_rsp, 7, true },
{ 0x042f, 155, "User Passkey Request Negative Reply",
user_passkey_request_neg_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x0430, 156, "Remote OOB Data Request Reply",
remote_oob_data_request_reply_cmd, 38, true,
status_bdaddr_rsp, 7, true },
{ 0x0433, 159, "Remote OOB Data Request Neg Reply",
remote_oob_data_request_neg_reply_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x0434, 163, "IO Capability Request Negative Reply",
io_capability_request_neg_reply_cmd, 7, true,
status_bdaddr_rsp, 7, true },
{ 0x0435, 168, "Create Physical Link",
create_phy_link_cmd, 3, false },
{ 0x0436, 169, "Accept Physical Link",
accept_phy_link_cmd, 3, false },
{ 0x0437, 170, "Disconnect Physical Link",
disconn_phy_link_cmd, 2, true },
{ 0x0438, 171, "Create Logical Link",
create_logic_link_cmd, 33, true },
{ 0x0439, 172, "Accept Logical Link",
accept_logic_link_cmd, 33, true },
{ 0x043a, 173, "Disconnect Logical Link",
disconn_logic_link_cmd, 2, true },
{ 0x043b, 174, "Logical Link Cancel",
logic_link_cancel_cmd, 2, true,
logic_link_cancel_rsp, 3, true },
{ 0x043c, 175, "Flow Specifcation Modify",
flow_spec_modify_cmd, 34, true },
{ 0x043d, 235, "Enhanced Setup Synchronous Connection",
enhanced_setup_sync_conn_cmd, 59, true },
{ 0x043e, 236, "Enhanced Accept Synchronous Connection Request",
enhanced_accept_sync_conn_request_cmd, 63, true },
{ 0x043f, 246, "Truncated Page",
truncated_page_cmd, 9, true },
{ 0x0440, 247, "Truncated Page Cancel",
truncated_page_cancel_cmd, 6, true,
status_bdaddr_rsp, 7, true },
{ 0x0441, 248, "Set Connectionless Slave Broadcast",
set_slave_broadcast_cmd, 11, true,
set_slave_broadcast_rsp, 4, true },
{ 0x0442, 249, "Set Connectionless Slave Broadcast Receive",
set_slave_broadcast_receive_cmd, 34, true,
set_slave_broadcast_receive_rsp, 8, true },
{ 0x0443, 250, "Start Synchronization Train",
null_cmd, 0, true },
{ 0x0444, 251, "Receive Synchronization Train",
receive_sync_train_cmd, 12, true },
{ 0x0445, 257, "Remote OOB Extended Data Request Reply",
remote_oob_ext_data_request_reply_cmd, 70, true,
status_bdaddr_rsp, 7, true },
/* OGF 2 - Link Policy */
{ 0x0801, 33, "Hold Mode",
hold_mode_cmd, 6, true },
{ 0x0803, 34, "Sniff Mode",
sniff_mode_cmd, 10, true },
{ 0x0804, 35, "Exit Sniff Mode",
exit_sniff_mode_cmd, 2, true },
{ 0x0805, 36, "Park State",
park_state_cmd, 6, true },
{ 0x0806, 37, "Exit Park State",
exit_park_state_cmd, 2, true },
{ 0x0807, 38, "QoS Setup",
qos_setup_cmd, 20, true },
{ 0x0809, 39, "Role Discovery",
role_discovery_cmd, 2, true,
role_discovery_rsp, 4, true },
{ 0x080b, 40, "Switch Role",
switch_role_cmd, 7, true },
{ 0x080c, 41, "Read Link Policy Settings",
read_link_policy_cmd, 2, true,
read_link_policy_rsp, 5, true },
{ 0x080d, 42, "Write Link Policy Settings",
write_link_policy_cmd, 4, true,
write_link_policy_rsp, 3, true },
{ 0x080e, 43, "Read Default Link Policy Settings",
null_cmd, 0, true,
read_default_link_policy_rsp, 3, true },
{ 0x080f, 44, "Write Default Link Policy Settings",
write_default_link_policy_cmd, 2, true,
status_rsp, 1, true },
{ 0x0810, 45, "Flow Specification",
flow_spec_cmd, 21, true },
{ 0x0811, 140, "Sniff Subrating",
sniff_subrating_cmd, 8, true,
sniff_subrating_rsp, 3, true },
/* OGF 3 - Host Control */
{ 0x0c01, 46, "Set Event Mask",
set_event_mask_cmd, 8, true,
status_rsp, 1, true },
{ 0x0c03, 47, "Reset",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x0c05, 48, "Set Event Filter",
set_event_filter_cmd, 1, false,
status_rsp, 1, true },
{ 0x0c08, 49, "Flush",
flush_cmd, 2, true,
flush_rsp, 3, true },
{ 0x0c09, 50, "Read PIN Type",
null_cmd, 0, true,
read_pin_type_rsp, 2, true },
{ 0x0c0a, 51, "Write PIN Type",
write_pin_type_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c0b, 52, "Create New Unit Key",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x0c0d, 53, "Read Stored Link Key",
read_stored_link_key_cmd, 7, true,
read_stored_link_key_rsp, 5, true },
{ 0x0c11, 54, "Write Stored Link Key",
write_stored_link_key_cmd, 1, false,
write_stored_link_key_rsp, 2, true },
{ 0x0c12, 55, "Delete Stored Link Key",
delete_stored_link_key_cmd, 7, true,
delete_stored_link_key_rsp, 3, true },
{ 0x0c13, 56, "Write Local Name",
write_local_name_cmd, 248, true,
status_rsp, 1, true },
{ 0x0c14, 57, "Read Local Name",
null_cmd, 0, true,
read_local_name_rsp, 249, true },
{ 0x0c15, 58, "Read Connection Accept Timeout",
null_cmd, 0, true,
read_conn_accept_timeout_rsp, 3, true },
{ 0x0c16, 59, "Write Connection Accept Timeout",
write_conn_accept_timeout_cmd, 2, true,
status_rsp, 1, true },
{ 0x0c17, 60, "Read Page Timeout",
null_cmd, 0, true,
read_page_timeout_rsp, 3, true },
{ 0x0c18, 61, "Write Page Timeout",
write_page_timeout_cmd, 2, true,
status_rsp, 1, true },
{ 0x0c19, 62, "Read Scan Enable",
null_cmd, 0, true,
read_scan_enable_rsp, 2, true },
{ 0x0c1a, 63, "Write Scan Enable",
write_scan_enable_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c1b, 64, "Read Page Scan Activity",
null_cmd, 0, true,
read_page_scan_activity_rsp, 5, true },
{ 0x0c1c, 65, "Write Page Scan Activity",
write_page_scan_activity_cmd, 4, true,
status_rsp, 1, true },
{ 0x0c1d, 66, "Read Inquiry Scan Activity",
null_cmd, 0, true,
read_inquiry_scan_activity_rsp, 5, true },
{ 0x0c1e, 67, "Write Inquiry Scan Activity",
write_inquiry_scan_activity_cmd, 4, true,
status_rsp, 1, true },
{ 0x0c1f, 68, "Read Authentication Enable",
null_cmd, 0, true,
read_auth_enable_rsp, 2, true },
{ 0x0c20, 69, "Write Authentication Enable",
write_auth_enable_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c21, 70, "Read Encryption Mode",
null_cmd, 0, true,
read_encrypt_mode_rsp, 2, true },
{ 0x0c22, 71, "Write Encryption Mode",
write_encrypt_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c23, 72, "Read Class of Device",
null_cmd, 0, true,
read_class_of_dev_rsp, 4, true },
{ 0x0c24, 73, "Write Class of Device",
write_class_of_dev_cmd, 3, true,
status_rsp, 1, true },
{ 0x0c25, 74, "Read Voice Setting",
null_cmd, 0, true,
read_voice_setting_rsp, 3, true },
{ 0x0c26, 75, "Write Voice Setting",
write_voice_setting_cmd, 2, true,
status_rsp, 1, true },
{ 0x0c27, 76, "Read Automatic Flush Timeout",
read_auto_flush_timeout_cmd, 2, true,
read_auto_flush_timeout_rsp, 5, true },
{ 0x0c28, 77, "Write Automatic Flush Timeout",
write_auto_flush_timeout_cmd, 4, true,
write_auto_flush_timeout_rsp, 3, true },
{ 0x0c29, 78, "Read Num Broadcast Retransmissions",
null_cmd, 0, true,
read_num_broadcast_retrans_rsp, 2, true },
{ 0x0c2a, 79, "Write Num Broadcast Retransmissions",
write_num_broadcast_retrans_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c2b, 80, "Read Hold Mode Activity",
null_cmd, 0, true,
read_hold_mode_activity_rsp, 2, true },
{ 0x0c2c, 81, "Write Hold Mode Activity",
write_hold_mode_activity_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c2d, 82, "Read Transmit Power Level",
read_tx_power_cmd, 3, true,
read_tx_power_rsp, 4, true },
{ 0x0c2e, 83, "Read Sync Flow Control Enable",
null_cmd, 0, true,
read_sync_flow_control_rsp, 2, true },
{ 0x0c2f, 84, "Write Sync Flow Control Enable",
write_sync_flow_control_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c31, 85, "Set Controller To Host Flow Control",
set_host_flow_control_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c33, 86, "Host Buffer Size",
host_buffer_size_cmd, 7, true,
status_rsp, 1, true },
{ 0x0c35, 87, "Host Number of Completed Packets",
host_num_completed_packets_cmd, 5, false },
{ 0x0c36, 88, "Read Link Supervision Timeout",
read_link_supv_timeout_cmd, 2, true,
read_link_supv_timeout_rsp, 5, true },
{ 0x0c37, 89, "Write Link Supervision Timeout",
write_link_supv_timeout_cmd, 4, true,
write_link_supv_timeout_rsp, 3, true },
{ 0x0c38, 90, "Read Number of Supported IAC",
null_cmd, 0, true,
read_num_supported_iac_rsp, 2, true },
{ 0x0c39, 91, "Read Current IAC LAP",
null_cmd, 0, true,
read_current_iac_lap_rsp, 2, false },
{ 0x0c3a, 92, "Write Current IAC LAP",
write_current_iac_lap_cmd, 1, false,
status_rsp, 1, true },
{ 0x0c3b, 93, "Read Page Scan Period Mode",
null_cmd, 0, true,
read_page_scan_period_mode_rsp, 2, true },
{ 0x0c3c, 94, "Write Page Scan Period Mode",
write_page_scan_period_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c3d, 95, "Read Page Scan Mode",
null_cmd, 0, true,
read_page_scan_mode_rsp, 2, true },
{ 0x0c3e, 96, "Write Page Scan Mode",
write_page_scan_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c3f, 97, "Set AFH Host Channel Classification",
set_afh_host_classification_cmd, 10, true,
status_rsp, 1, true },
{ 0x0c42, 100, "Read Inquiry Scan Type",
null_cmd, 0, true,
read_inquiry_scan_type_rsp, 2, true },
{ 0x0c43, 101, "Write Inquiry Scan Type",
write_inquiry_scan_type_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c44, 102, "Read Inquiry Mode",
null_cmd, 0, true,
read_inquiry_mode_rsp, 2, true },
{ 0x0c45, 103, "Write Inquiry Mode",
write_inquiry_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c46, 104, "Read Page Scan Type",
null_cmd, 0, true,
read_page_scan_type_rsp, 2, true },
{ 0x0c47, 105, "Write Page Scan Type",
write_page_scan_type_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c48, 106, "Read AFH Channel Assessment Mode",
null_cmd, 0, true,
read_afh_assessment_mode_rsp, 2, true },
{ 0x0c49, 107, "Write AFH Channel Assessment Mode",
write_afh_assessment_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c51, 136, "Read Extended Inquiry Response",
null_cmd, 0, true,
read_ext_inquiry_response_rsp, 242, true },
{ 0x0c52, 137, "Write Extended Inquiry Response",
write_ext_inquiry_response_cmd, 241, true,
status_rsp, 1, true },
{ 0x0c53, 138, "Refresh Encryption Key",
refresh_encrypt_key_cmd, 2, true },
{ 0x0c55, 141, "Read Simple Pairing Mode",
null_cmd, 0, true,
read_simple_pairing_mode_rsp, 2, true },
{ 0x0c56, 142, "Write Simple Pairing Mode",
write_simple_pairing_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c57, 143, "Read Local OOB Data",
null_cmd, 0, true,
read_local_oob_data_rsp, 33, true },
{ 0x0c58, 144, "Read Inquiry Response TX Power Level",
null_cmd, 0, true,
read_inquiry_resp_tx_power_rsp, 2, true },
{ 0x0c59, 145, "Write Inquiry Transmit Power Level",
write_inquiry_tx_power_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c5a, 146, "Read Default Erroneous Data Reporting",
null_cmd, 0, true,
read_erroneous_reporting_rsp, 2, true },
{ 0x0c5b, 147, "Write Default Erroneous Data Reporting",
write_erroneous_reporting_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c5f, 158, "Enhanced Flush",
enhanced_flush_cmd, 3, true },
{ 0x0c60, 162, "Send Keypress Notification",
send_keypress_notify_cmd, 7, true,
send_keypress_notify_rsp, 7, true },
{ 0x0c61, 176, "Read Logical Link Accept Timeout" },
{ 0x0c62, 177, "Write Logical Link Accept Timeout" },
{ 0x0c63, 178, "Set Event Mask Page 2",
set_event_mask_page2_cmd, 8, true,
status_rsp, 1, true },
{ 0x0c64, 179, "Read Location Data",
null_cmd, 0, true,
read_location_data_rsp, 6, true },
{ 0x0c65, 180, "Write Location Data",
write_location_data_cmd, 5, true,
status_rsp, 1, true },
{ 0x0c66, 184, "Read Flow Control Mode",
null_cmd, 0, true,
read_flow_control_mode_rsp, 2, true },
{ 0x0c67, 185, "Write Flow Control Mode",
write_flow_control_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c68, 192, "Read Enhanced Transmit Power Level",
read_enhanced_tx_power_cmd, 3, true,
read_enhanced_tx_power_rsp, 6, true },
{ 0x0c69, 194, "Read Best Effort Flush Timeout" },
{ 0x0c6a, 195, "Write Best Effort Flush Timeout" },
{ 0x0c6b, 196, "Short Range Mode",
short_range_mode_cmd, 2, true },
{ 0x0c6c, 197, "Read LE Host Supported",
null_cmd, 0, true,
read_le_host_supported_rsp, 3, true },
{ 0x0c6d, 198, "Write LE Host Supported",
write_le_host_supported_cmd, 2, true,
status_rsp, 1, true },
{ 0x0c6e, 238, "Set MWS Channel Parameters" },
{ 0x0c6f, 239, "Set External Frame Configuration" },
{ 0x0c70, 240, "Set MWS Signaling" },
{ 0x0c71, 241, "Set MWS Transport Layer" },
{ 0x0c72, 242, "Set MWS Scan Frequency Table" },
{ 0x0c73, 244, "Set MWS Pattern Configuration" },
{ 0x0c74, 252, "Set Reserved LT_ADDR",
set_reserved_lt_addr_cmd, 1, true,
set_reserved_lt_addr_rsp, 2, true },
{ 0x0c75, 253, "Delete Reserved LT_ADDR",
delete_reserved_lt_addr_cmd, 1, true,
delete_reserved_lt_addr_rsp, 2, true },
{ 0x0c76, 254, "Set Connectionless Slave Broadcast Data",
set_slave_broadcast_data_cmd, 3, false,
set_slave_broadcast_data_rsp, 2, true },
{ 0x0c77, 255, "Read Synchronization Train Parameters",
null_cmd, 0, true,
read_sync_train_params_rsp, 8, true },
{ 0x0c78, 256, "Write Synchronization Train Parameters",
write_sync_train_params_cmd, 9, true,
write_sync_train_params_rsp, 3, true },
{ 0x0c79, 258, "Read Secure Connections Host Support",
null_cmd, 0, true,
read_secure_conn_support_rsp, 2, true },
{ 0x0c7a, 259, "Write Secure Connections Host Support",
write_secure_conn_support_cmd, 1, true,
status_rsp, 1, true },
{ 0x0c7b, 260, "Read Authenticated Payload Timeout",
read_auth_payload_timeout_cmd, 2, true,
read_auth_payload_timeout_rsp, 5, true },
{ 0x0c7c, 261, "Write Authenticated Payload Timeout",
write_auth_payload_timeout_cmd, 4, true,
write_auth_payload_timeout_rsp, 3, true },
{ 0x0c7d, 262, "Read Local OOB Extended Data",
null_cmd, 0, true,
read_local_oob_ext_data_rsp, 65, true },
{ 0x0c7e, 264, "Read Extended Page Timeout",
null_cmd, 0, true,
read_ext_page_timeout_rsp, 3, true },
{ 0x0c7f, 265, "Write Extended Page Timeout",
write_ext_page_timeout_cmd, 2, true,
status_rsp, 1, true },
{ 0x0c80, 266, "Read Extended Inquiry Length",
null_cmd, 0, true,
read_ext_inquiry_length_rsp, 3, true },
{ 0x0c81, 267, "Write Extended Inquiry Length",
write_ext_inquiry_length_cmd, 2, true,
status_rsp, 1, true },
/* OGF 4 - Information Parameter */
{ 0x1001, 115, "Read Local Version Information",
null_cmd, 0, true,
read_local_version_rsp, 9, true },
{ 0x1002, 116, "Read Local Supported Commands",
null_cmd, 0, true,
read_local_commands_rsp, 65, true },
{ 0x1003, 117, "Read Local Supported Features",
null_cmd, 0, true,
read_local_features_rsp, 9, true },
{ 0x1004, 118, "Read Local Extended Features",
read_local_ext_features_cmd, 1, true,
read_local_ext_features_rsp, 11, true },
{ 0x1005, 119, "Read Buffer Size",
null_cmd, 0, true,
read_buffer_size_rsp, 8, true },
{ 0x1007, 120, "Read Country Code",
null_cmd, 0, true,
read_country_code_rsp, 2, true },
{ 0x1009, 121, "Read BD ADDR",
null_cmd, 0, true,
read_bd_addr_rsp, 7, true },
{ 0x100a, 186, "Read Data Block Size",
null_cmd, 0, true,
read_data_block_size_rsp, 7, true },
{ 0x100b, 237, "Read Local Supported Codecs",
null_cmd, 0, true,
read_local_codecs_rsp, 3, false },
/* OGF 5 - Status Parameter */
{ 0x1401, 122, "Read Failed Contact Counter",
read_failed_contact_counter_cmd, 2, true,
read_failed_contact_counter_rsp, 5, true },
{ 0x1402, 123, "Reset Failed Contact Counter",
reset_failed_contact_counter_cmd, 2, true,
reset_failed_contact_counter_rsp, 3, true },
{ 0x1403, 124, "Read Link Quality",
read_link_quality_cmd, 2, true,
read_link_quality_rsp, 4, true },
{ 0x1405, 125, "Read RSSI",
read_rssi_cmd, 2, true,
read_rssi_rsp, 4, true },
{ 0x1406, 126, "Read AFH Channel Map",
read_afh_channel_map_cmd, 2, true,
read_afh_channel_map_rsp, 14, true },
{ 0x1407, 127, "Read Clock",
read_clock_cmd, 3, true,
read_clock_rsp, 9, true },
{ 0x1408, 164, "Read Encryption Key Size",
read_encrypt_key_size_cmd, 2, true,
read_encrypt_key_size_rsp, 4, true },
{ 0x1409, 181, "Read Local AMP Info",
null_cmd, 0, true,
read_local_amp_info_rsp, 31, true },
{ 0x140a, 182, "Read Local AMP ASSOC",
read_local_amp_assoc_cmd, 5, true,
read_local_amp_assoc_rsp, 5, false },
{ 0x140b, 183, "Write Remote AMP ASSOC",
write_remote_amp_assoc_cmd, 6, false,
write_remote_amp_assoc_rsp, 2, true },
{ 0x140c, 243, "Get MWS Transport Layer Configuration",
null_cmd, 0, true,
get_mws_transport_config_rsp, 2, false },
{ 0x140d, 245, "Set Triggered Clock Capture",
set_triggered_clock_capture_cmd, 6, true,
status_rsp, 1, true },
/* OGF 6 - Testing */
{ 0x1801, 128, "Read Loopback Mode",
null_cmd, 0, true,
read_loopback_mode_rsp, 2, true },
{ 0x1802, 129, "Write Loopback Mode",
write_loopback_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x1803, 130, "Enable Device Under Test Mode",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x1804, 157, "Write Simple Pairing Debug Mode",
write_ssp_debug_mode_cmd, 1, true,
status_rsp, 1, true },
{ 0x1807, 189, "Enable AMP Receiver Reports" },
{ 0x1808, 190, "AMP Test End" },
{ 0x1809, 191, "AMP Test" },
{ 0x180a, 263, "Write Secure Connections Test Mode" },
/* OGF 8 - LE Control */
{ 0x2001, 200, "LE Set Event Mask",
le_set_event_mask_cmd, 8, true,
status_rsp, 1, true },
{ 0x2002, 201, "LE Read Buffer Size",
null_cmd, 0, true,
le_read_buffer_size_rsp, 4, true },
{ 0x2003, 202, "LE Read Local Supported Features",
null_cmd, 0, true,
le_read_local_features_rsp, 9, true },
{ 0x2005, 204, "LE Set Random Address",
le_set_random_address_cmd, 6, true,
status_rsp, 1, true },
{ 0x2006, 205, "LE Set Advertising Parameters",
le_set_adv_parameters_cmd, 15, true,
status_rsp, 1, true },
{ 0x2007, 206, "LE Read Advertising Channel TX Power",
null_cmd, 0, true,
le_read_adv_tx_power_rsp, 2, true },
{ 0x2008, 207, "LE Set Advertising Data",
le_set_adv_data_cmd, 32, true,
status_rsp, 1, true },
{ 0x2009, 208, "LE Set Scan Response Data",
le_set_scan_rsp_data_cmd, 32, true,
status_rsp, 1, true },
{ 0x200a, 209, "LE Set Advertise Enable",
le_set_adv_enable_cmd, 1, true,
status_rsp, 1, true },
{ 0x200b, 210, "LE Set Scan Parameters",
le_set_scan_parameters_cmd, 7, true,
status_rsp, 1, true },
{ 0x200c, 211, "LE Set Scan Enable",
le_set_scan_enable_cmd, 2, true,
status_rsp, 1, true },
{ 0x200d, 212, "LE Create Connection",
le_create_conn_cmd, 25, true },
{ 0x200e, 213, "LE Create Connection Cancel",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x200f, 214, "LE Read White List Size",
null_cmd, 0, true,
le_read_white_list_size_rsp, 2, true },
{ 0x2010, 215, "LE Clear White List",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x2011, 216, "LE Add Device To White List",
le_add_to_white_list_cmd, 7, true,
status_rsp, 1, true },
{ 0x2012, 217, "LE Remove Device From White List",
le_remove_from_white_list_cmd, 7, true,
status_rsp, 1, true },
{ 0x2013, 218, "LE Connection Update",
le_conn_update_cmd, 14, true },
{ 0x2014, 219, "LE Set Host Channel Classification",
le_set_host_classification_cmd, 5, true,
status_rsp, 1, true },
{ 0x2015, 220, "LE Read Channel Map",
le_read_channel_map_cmd, 2, true,
le_read_channel_map_rsp, 8, true },
{ 0x2016, 221, "LE Read Remote Used Features",
le_read_remote_features_cmd, 2, true },
{ 0x2017, 222, "LE Encrypt",
le_encrypt_cmd, 32, true,
le_encrypt_rsp, 17, true },
{ 0x2018, 223, "LE Rand",
null_cmd, 0, true,
le_rand_rsp, 9, true },
{ 0x2019, 224, "LE Start Encryption",
le_start_encrypt_cmd, 28, true },
{ 0x201a, 225, "LE Long Term Key Request Reply",
le_ltk_req_reply_cmd, 18, true,
le_ltk_req_reply_rsp, 3, true },
{ 0x201b, 226, "LE Long Term Key Request Neg Reply",
le_ltk_req_neg_reply_cmd, 2, true,
le_ltk_req_neg_reply_rsp, 3, true },
{ 0x201c, 227, "LE Read Supported States",
null_cmd, 0, true,
le_read_supported_states_rsp, 9, true },
{ 0x201d, 228, "LE Receiver Test",
le_receiver_test_cmd, 1, true,
status_rsp, 1, true },
{ 0x201e, 229, "LE Transmitter Test",
le_transmitter_test_cmd, 3, true,
status_rsp, 1, true },
{ 0x201f, 230, "LE Test End",
null_cmd, 0, true,
le_test_end_rsp, 3, true },
{ 0x2020, 268, "LE Remote Connection Parameter Request Reply",
le_conn_param_req_reply_cmd, 14, true,
le_conn_param_req_reply_rsp, 3, true },
{ 0x2021, 269, "LE Remote Connection Parameter Request Negative Reply",
le_conn_param_req_neg_reply_cmd, 3, true,
le_conn_param_req_neg_reply_rsp, 3, true },
{ 0x2022, 270, "LE Set Data Length",
le_set_data_length_cmd, 6, true,
le_set_data_length_rsp, 3, true },
{ 0x2023, 271, "LE Read Suggested Default Data Length",
null_cmd, 0, true,
le_read_default_data_length_rsp, 5, true },
{ 0x2024, 272, "LE Write Suggested Default Data Length",
le_write_default_data_length_cmd, 4, true,
status_rsp, 1, true },
{ 0x2025, 273, "LE Read Local P-256 Public Key",
null_cmd, 0, true },
{ 0x2026, 274, "LE Generate DHKey",
le_generate_dhkey_cmd, 64, true },
{ 0x2027, 275, "LE Add Device To Resolving List",
le_add_to_resolv_list_cmd, 39, true,
status_rsp, 1, true },
{ 0x2028, 276, "LE Remove Device From Resolving List",
le_remove_from_resolv_list_cmd, 7, true,
status_rsp, 1, true },
{ 0x2029, 277, "LE Clear Resolving List",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x202a, 278, "LE Read Resolving List Size",
null_cmd, 0, true,
le_read_resolv_list_size_rsp, 2, true },
{ 0x202b, 279, "LE Read Peer Resolvable Address",
le_read_peer_resolv_addr_cmd, 7, true,
le_read_peer_resolv_addr_rsp, 7, true },
{ 0x202c, 280, "LE Read Local Resolvable Address",
le_read_local_resolv_addr_cmd, 7, true,
le_read_local_resolv_addr_rsp, 7, true },
{ 0x202d, 281, "LE Set Address Resolution Enable",
le_set_resolv_enable_cmd, 1, true,
status_rsp, 1, true },
{ 0x202e, 282, "LE Set Resolvable Private Address Timeout",
le_set_resolv_timeout_cmd, 2, true,
status_rsp, 1, true },
{ 0x202f, 283, "LE Read Maximum Data Length",
null_cmd, 0, true,
le_read_max_data_length_rsp, 9, true },
{ }
};
static const char *get_supported_command(int bit)
{
int i;
for (i = 0; opcode_table[i].str; i++) {
if (opcode_table[i].bit == bit)
return opcode_table[i].str;
}
return NULL;
}
static const char *current_vendor_str(void)
{
uint16_t manufacturer;
if (index_current < MAX_INDEX)
manufacturer = index_list[index_current].manufacturer;
else
manufacturer = UNKNOWN_MANUFACTURER;
switch (manufacturer) {
case 2:
return "Intel";
case 15:
return "Broadcom";
}
return NULL;
}
static const struct vendor_ocf *current_vendor_ocf(uint16_t ocf)
{
uint16_t manufacturer;
if (index_current < MAX_INDEX)
manufacturer = index_list[index_current].manufacturer;
else
manufacturer = UNKNOWN_MANUFACTURER;
switch (manufacturer) {
case 2:
return intel_vendor_ocf(ocf);
case 15:
return broadcom_vendor_ocf(ocf);
}
return NULL;
}
static const struct vendor_evt *current_vendor_evt(uint8_t evt)
{
uint16_t manufacturer;
if (index_current < MAX_INDEX)
manufacturer = index_list[index_current].manufacturer;
else
manufacturer = UNKNOWN_MANUFACTURER;
switch (manufacturer) {
case 2:
return intel_vendor_evt(evt);
case 15:
return broadcom_vendor_evt(evt);
}
return NULL;
}
static void inquiry_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_inquiry_complete *evt = data;
print_status(evt->status);
}
static void inquiry_result_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_inquiry_result *evt = data;
print_num_resp(evt->num_resp);
print_bdaddr(evt->bdaddr);
print_pscan_rep_mode(evt->pscan_rep_mode);
print_pscan_period_mode(evt->pscan_period_mode);
print_pscan_mode(evt->pscan_mode);
print_dev_class(evt->dev_class);
print_clock_offset(evt->clock_offset);
if (size > sizeof(*evt))
packet_hexdump(data + sizeof(*evt), size - sizeof(*evt));
}
static void conn_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_conn_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_bdaddr(evt->bdaddr);
print_link_type(evt->link_type);
print_encr_mode(evt->encr_mode);
if (evt->status == 0x00)
assign_handle(le16_to_cpu(evt->handle), 0x00);
}
static void conn_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_conn_request *evt = data;
print_bdaddr(evt->bdaddr);
print_dev_class(evt->dev_class);
print_link_type(evt->link_type);
}
static void disconnect_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_disconnect_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_reason(evt->reason);
if (evt->status == 0x00)
release_handle(le16_to_cpu(evt->handle));
}
static void auth_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_auth_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
}
static void remote_name_request_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_name_request_complete *evt = data;
print_status(evt->status);
print_bdaddr(evt->bdaddr);
print_name(evt->name);
}
static void encrypt_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_encrypt_change *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_encr_mode_change(evt->encr_mode, evt->handle);
}
static void change_conn_link_key_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_change_conn_link_key_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
}
static void master_link_key_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_master_link_key_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_key_flag(evt->key_flag);
}
static void remote_features_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_features_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_features(0, evt->features, 0x00);
}
static void remote_version_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_version_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_lmp_version(evt->lmp_ver, evt->lmp_subver);
print_manufacturer(evt->manufacturer);
switch (le16_to_cpu(evt->manufacturer)) {
case 15:
print_manufacturer_broadcom(evt->lmp_subver, 0xffff);
break;
}
}
static void qos_setup_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_qos_setup_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_field("Flags: 0x%2.2x", evt->flags);
print_service_type(evt->service_type);
print_field("Token rate: %d", le32_to_cpu(evt->token_rate));
print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth));
print_field("Latency: %d", le32_to_cpu(evt->latency));
print_field("Delay variation: %d", le32_to_cpu(evt->delay_variation));
}
static void cmd_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_cmd_complete *evt = data;
uint16_t opcode = le16_to_cpu(evt->opcode);
uint16_t ogf = cmd_opcode_ogf(opcode);
uint16_t ocf = cmd_opcode_ocf(opcode);
struct opcode_data vendor_data;
const struct opcode_data *opcode_data = NULL;
const char *opcode_color, *opcode_str;
char vendor_str[150];
int i;
for (i = 0; opcode_table[i].str; i++) {
if (opcode_table[i].opcode == opcode) {
opcode_data = &opcode_table[i];
break;
}
}
if (opcode_data) {
if (opcode_data->rsp_func)
opcode_color = COLOR_HCI_COMMAND;
else
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = opcode_data->str;
} else {
if (ogf == 0x3f) {
const struct vendor_ocf *vnd = current_vendor_ocf(ocf);
if (vnd) {
const char *str = current_vendor_str();
if (str) {
snprintf(vendor_str, sizeof(vendor_str),
"%s %s", str, vnd->str);
vendor_data.str = vendor_str;
} else
vendor_data.str = vnd->str;
vendor_data.rsp_func = vnd->rsp_func;
vendor_data.rsp_size = vnd->rsp_size;
vendor_data.rsp_fixed = vnd->rsp_fixed;
opcode_data = &vendor_data;
if (opcode_data->rsp_func)
opcode_color = COLOR_HCI_COMMAND;
else
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = opcode_data->str;
} else {
opcode_color = COLOR_HCI_COMMAND;
opcode_str = "Vendor";
}
} else {
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = "Unknown";
}
}
print_indent(6, opcode_color, "", opcode_str, COLOR_OFF,
" (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd);
if (!opcode_data || !opcode_data->rsp_func) {
if (size > 3) {
uint8_t status = *((uint8_t *) (data + 3));
print_status(status);
packet_hexdump(data + 4, size - 4);
}
return;
}
if (opcode_data->rsp_size > 1 && size - 3 == 1) {
uint8_t status = *((uint8_t *) (data + 3));
print_status(status);
return;
}
if (opcode_data->rsp_fixed) {
if (size - 3 != opcode_data->rsp_size) {
print_text(COLOR_ERROR, "invalid packet size");
packet_hexdump(data + 3, size - 3);
return;
}
} else {
if (size - 3 < opcode_data->rsp_size) {
print_text(COLOR_ERROR, "too short packet");
packet_hexdump(data + 3, size - 3);
return;
}
}
opcode_data->rsp_func(data + 3, size - 3);
}
static void cmd_status_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_cmd_status *evt = data;
uint16_t opcode = le16_to_cpu(evt->opcode);
uint16_t ogf = cmd_opcode_ogf(opcode);
uint16_t ocf = cmd_opcode_ocf(opcode);
const struct opcode_data *opcode_data = NULL;
const char *opcode_color, *opcode_str;
char vendor_str[150];
int i;
for (i = 0; opcode_table[i].str; i++) {
if (opcode_table[i].opcode == opcode) {
opcode_data = &opcode_table[i];
break;
}
}
if (opcode_data) {
opcode_color = COLOR_HCI_COMMAND;
opcode_str = opcode_data->str;
} else {
if (ogf == 0x3f) {
const struct vendor_ocf *vnd = current_vendor_ocf(ocf);
if (vnd) {
const char *str = current_vendor_str();
if (str) {
snprintf(vendor_str, sizeof(vendor_str),
"%s %s", str, vnd->str);
opcode_str = vendor_str;
} else
opcode_str = vnd->str;
opcode_color = COLOR_HCI_COMMAND;
} else {
opcode_color = COLOR_HCI_COMMAND;
opcode_str = "Vendor";
}
} else {
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = "Unknown";
}
}
print_indent(6, opcode_color, "", opcode_str, COLOR_OFF,
" (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd);
print_status(evt->status);
}
static void hardware_error_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_hardware_error *evt = data;
print_field("Code: 0x%2.2x", evt->code);
}
static void flush_occurred_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_flush_occurred *evt = data;
print_handle(evt->handle);
}
static void role_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_role_change *evt = data;
print_status(evt->status);
print_bdaddr(evt->bdaddr);
print_role(evt->role);
}
static void num_completed_packets_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_num_completed_packets *evt = data;
print_field("Num handles: %d", evt->num_handles);
print_handle(evt->handle);
print_field("Count: %d", le16_to_cpu(evt->count));
if (size > sizeof(*evt))
packet_hexdump(data + sizeof(*evt), size - sizeof(*evt));
}
static void mode_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_mode_change *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_mode(evt->mode);
print_interval(evt->interval);
}
static void return_link_keys_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_return_link_keys *evt = data;
uint8_t i;
print_field("Num keys: %d", evt->num_keys);
for (i = 0; i < evt->num_keys; i++) {
print_bdaddr(evt->keys + (i * 22));
print_link_key(evt->keys + (i * 22) + 6);
}
}
static void pin_code_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_pin_code_request *evt = data;
print_bdaddr(evt->bdaddr);
}
static void link_key_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_link_key_request *evt = data;
print_bdaddr(evt->bdaddr);
}
static void link_key_notify_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_link_key_notify *evt = data;
print_bdaddr(evt->bdaddr);
print_link_key(evt->link_key);
print_key_type(evt->key_type);
}
static void loopback_command_evt(const void *data, uint8_t size)
{
packet_hexdump(data, size);
}
static void data_buffer_overflow_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_data_buffer_overflow *evt = data;
print_link_type(evt->link_type);
}
static void max_slots_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_max_slots_change *evt = data;
print_handle(evt->handle);
print_field("Max slots: %d", evt->max_slots);
}
static void clock_offset_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_clock_offset_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_clock_offset(evt->clock_offset);
}
static void conn_pkt_type_changed_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_conn_pkt_type_changed *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_pkt_type(evt->pkt_type);
}
static void qos_violation_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_qos_violation *evt = data;
print_handle(evt->handle);
}
static void pscan_mode_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_pscan_mode_change *evt = data;
print_bdaddr(evt->bdaddr);
print_pscan_mode(evt->pscan_mode);
}
static void pscan_rep_mode_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_pscan_rep_mode_change *evt = data;
print_bdaddr(evt->bdaddr);
print_pscan_rep_mode(evt->pscan_rep_mode);
}
static void flow_spec_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_flow_spec_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_field("Flags: 0x%2.2x", evt->flags);
print_flow_direction(evt->direction);
print_service_type(evt->service_type);
print_field("Token rate: %d", le32_to_cpu(evt->token_rate));
print_field("Token bucket size: %d",
le32_to_cpu(evt->token_bucket_size));
print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth));
print_field("Access latency: %d", le32_to_cpu(evt->access_latency));
}
static void inquiry_result_with_rssi_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_inquiry_result_with_rssi *evt = data;
print_num_resp(evt->num_resp);
print_bdaddr(evt->bdaddr);
print_pscan_rep_mode(evt->pscan_rep_mode);
print_pscan_period_mode(evt->pscan_period_mode);
print_dev_class(evt->dev_class);
print_clock_offset(evt->clock_offset);
print_rssi(evt->rssi);
if (size > sizeof(*evt))
packet_hexdump(data + sizeof(*evt), size - sizeof(*evt));
}
static void remote_ext_features_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_ext_features_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_field("Page: %d/%d", evt->page, evt->max_page);
print_features(evt->page, evt->features, 0x00);
}
static void sync_conn_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_sync_conn_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_bdaddr(evt->bdaddr);
print_link_type(evt->link_type);
print_field("Transmission interval: 0x%2.2x", evt->tx_interval);
print_field("Retransmission window: 0x%2.2x", evt->retrans_window);
print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len));
print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len));
print_air_mode(evt->air_mode);
}
static void sync_conn_changed_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_sync_conn_changed *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_field("Transmission interval: 0x%2.2x", evt->tx_interval);
print_field("Retransmission window: 0x%2.2x", evt->retrans_window);
print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len));
print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len));
}
static void sniff_subrating_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_sniff_subrating *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_slot_625("Max transmit latency", evt->max_tx_latency);
print_slot_625("Max receive latency", evt->max_rx_latency);
print_slot_625("Min remote timeout", evt->min_remote_timeout);
print_slot_625("Min local timeout", evt->min_local_timeout);
}
static void ext_inquiry_result_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_ext_inquiry_result *evt = data;
print_num_resp(evt->num_resp);
print_bdaddr(evt->bdaddr);
print_pscan_rep_mode(evt->pscan_rep_mode);
print_pscan_period_mode(evt->pscan_period_mode);
print_dev_class(evt->dev_class);
print_clock_offset(evt->clock_offset);
print_rssi(evt->rssi);
print_eir(evt->data, sizeof(evt->data), false);
}
static void encrypt_key_refresh_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_encrypt_key_refresh_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
}
static void io_capability_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_io_capability_request *evt = data;
print_bdaddr(evt->bdaddr);
}
static void io_capability_response_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_io_capability_response *evt = data;
print_bdaddr(evt->bdaddr);
print_io_capability(evt->capability);
print_oob_data_response(evt->oob_data);
print_authentication(evt->authentication);
}
static void user_confirm_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_user_confirm_request *evt = data;
print_bdaddr(evt->bdaddr);
print_passkey(evt->passkey);
}
static void user_passkey_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_user_passkey_request *evt = data;
print_bdaddr(evt->bdaddr);
}
static void remote_oob_data_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_oob_data_request *evt = data;
print_bdaddr(evt->bdaddr);
}
static void simple_pairing_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_simple_pairing_complete *evt = data;
print_status(evt->status);
print_bdaddr(evt->bdaddr);
}
static void link_supv_timeout_changed_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_link_supv_timeout_changed *evt = data;
print_handle(evt->handle);
print_timeout(evt->timeout);
}
static void enhanced_flush_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_enhanced_flush_complete *evt = data;
print_handle(evt->handle);
}
static void user_passkey_notify_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_user_passkey_notify *evt = data;
print_bdaddr(evt->bdaddr);
print_passkey(evt->passkey);
}
static void keypress_notify_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_keypress_notify *evt = data;
const char *str;
print_bdaddr(evt->bdaddr);
switch (evt->type) {
case 0x00:
str = "Passkey entry started";
break;
case 0x01:
str = "Passkey digit entered";
break;
case 0x02:
str = "Passkey digit erased";
break;
case 0x03:
str = "Passkey clared";
break;
case 0x04:
str = "Passkey entry completed";
break;
default:
str = "Reserved";
break;
}
print_field("Notification type: %s (0x%2.2x)", str, evt->type);
}
static void remote_host_features_notify_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_remote_host_features_notify *evt = data;
print_bdaddr(evt->bdaddr);
print_features(1, evt->features, 0x00);
}
static void phy_link_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_phy_link_complete *evt = data;
print_status(evt->status);
print_phy_handle(evt->phy_handle);
}
static void channel_selected_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_channel_selected *evt = data;
print_phy_handle(evt->phy_handle);
}
static void disconn_phy_link_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_disconn_phy_link_complete *evt = data;
print_status(evt->status);
print_phy_handle(evt->phy_handle);
print_reason(evt->reason);
}
static void phy_link_loss_early_warning_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_phy_link_loss_early_warning *evt = data;
const char *str;
print_phy_handle(evt->phy_handle);
switch (evt->reason) {
case 0x00:
str = "Unknown";
break;
case 0x01:
str = "Range related";
break;
case 0x02:
str = "Bandwidth related";
break;
case 0x03:
str = "Resolving conflict";
break;
case 0x04:
str = "Interference";
break;
default:
str = "Reserved";
break;
}
print_field("Reason: %s (0x%2.2x)", str, evt->reason);
}
static void phy_link_recovery_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_phy_link_recovery *evt = data;
print_phy_handle(evt->phy_handle);
}
static void logic_link_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_logic_link_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_phy_handle(evt->phy_handle);
print_field("TX flow spec: 0x%2.2x", evt->flow_spec);
}
static void disconn_logic_link_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_disconn_logic_link_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_reason(evt->reason);
}
static void flow_spec_modify_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_flow_spec_modify_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
}
static void num_completed_data_blocks_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_num_completed_data_blocks *evt = data;
print_field("Total num data blocks: %d",
le16_to_cpu(evt->total_num_blocks));
print_field("Num handles: %d", evt->num_handles);
print_handle(evt->handle);
print_field("Num packets: %d", evt->num_packets);
print_field("Num blocks: %d", evt->num_blocks);
if (size > sizeof(*evt))
packet_hexdump(data + sizeof(*evt), size - sizeof(*evt));
}
static void short_range_mode_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_short_range_mode_change *evt = data;
print_status(evt->status);
print_phy_handle(evt->phy_handle);
print_short_range_mode(evt->mode);
}
static void amp_status_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_amp_status_change *evt = data;
print_status(evt->status);
print_amp_status(evt->amp_status);
}
static void triggered_clock_capture_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_triggered_clock_capture *evt = data;
print_handle(evt->handle);
print_clock_type(evt->type);
print_clock(evt->clock);
print_clock_offset(evt->clock_offset);
}
static void sync_train_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_sync_train_complete *evt = data;
print_status(evt->status);
}
static void sync_train_received_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_sync_train_received *evt = data;
print_status(evt->status);
print_bdaddr(evt->bdaddr);
print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset));
print_channel_map(evt->map);
print_lt_addr(evt->lt_addr);
print_field("Next broadcast instant: 0x%4.4x",
le16_to_cpu(evt->instant));
print_interval(evt->interval);
print_field("Service Data: 0x%2.2x", evt->service_data);
}
static void slave_broadcast_receive_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_slave_broadcast_receive *evt = data;
print_bdaddr(evt->bdaddr);
print_lt_addr(evt->lt_addr);
print_field("Clock: 0x%8.8x", le32_to_cpu(evt->clock));
print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset));
print_field("Receive status: 0x%2.2x", evt->status);
print_broadcast_fragment(evt->fragment);
print_field("Length: %d", evt->length);
if (size - 18 != evt->length)
print_text(COLOR_ERROR, "invalid data size (%d != %d)",
size - 18, evt->length);
if (evt->lt_addr == 0x01 && evt->length == 17)
print_3d_broadcast(data + 18, size - 18);
else
packet_hexdump(data + 18, size - 18);
}
static void slave_broadcast_timeout_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_slave_broadcast_timeout *evt = data;
print_bdaddr(evt->bdaddr);
print_lt_addr(evt->lt_addr);
}
static void truncated_page_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_truncated_page_complete *evt = data;
print_status(evt->status);
print_bdaddr(evt->bdaddr);
}
static void slave_page_response_timeout_evt(const void *data, uint8_t size)
{
}
static void slave_broadcast_channel_map_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_slave_broadcast_channel_map_change *evt = data;
print_channel_map(evt->map);
}
static void inquiry_response_notify_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_inquiry_response_notify *evt = data;
print_iac(evt->lap);
print_rssi(evt->rssi);
}
static void auth_payload_timeout_expired_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_auth_payload_timeout_expired *evt = data;
print_handle(evt->handle);
}
static void le_conn_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_conn_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_role(evt->role);
print_peer_addr_type("Peer address type", evt->peer_addr_type);
print_addr("Peer address", evt->peer_addr, evt->peer_addr_type);
print_slot_125("Connection interval", evt->interval);
print_slot_125("Connection latency", evt->latency);
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(evt->supv_timeout) * 10,
le16_to_cpu(evt->supv_timeout));
print_field("Master clock accuracy: 0x%2.2x", evt->clock_accuracy);
if (evt->status == 0x00)
assign_handle(le16_to_cpu(evt->handle), 0x01);
}
static void le_adv_report_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_adv_report *evt = data;
uint8_t evt_len;
int8_t *rssi;
print_num_reports(evt->num_reports);
report:
print_adv_event_type(evt->event_type);
print_peer_addr_type("Address type", evt->addr_type);
print_addr("Address", evt->addr, evt->addr_type);
print_field("Data length: %d", evt->data_len);
print_eir(evt->data, evt->data_len, true);
rssi = (int8_t *) (evt->data + evt->data_len);
print_rssi(*rssi);
evt_len = sizeof(*evt) + evt->data_len + 1;
if (size > evt_len) {
data += evt_len - 1;
size -= evt_len - 1;
evt = data;
goto report;
}
}
static void le_conn_update_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_conn_update_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_slot_125("Connection interval", evt->interval);
print_slot_125("Connection latency", evt->latency);
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(evt->supv_timeout) * 10,
le16_to_cpu(evt->supv_timeout));
}
static void le_remote_features_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_remote_features_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_features(0, evt->features, 0x01);
}
static void le_long_term_key_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_long_term_key_request *evt = data;
print_handle(evt->handle);
print_random_number(evt->rand);
print_encrypted_diversifier(evt->ediv);
}
static void le_conn_param_request_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_conn_param_request *evt = data;
print_handle(evt->handle);
print_slot_125("Min connection interval", evt->min_interval);
print_slot_125("Max connection interval", evt->max_interval);
print_field("Connection latency: 0x%4.4x", le16_to_cpu(evt->latency));
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(evt->supv_timeout) * 10,
le16_to_cpu(evt->supv_timeout));
}
static void le_data_length_change_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_data_length_change *evt = data;
print_handle(evt->handle);
print_field("Max TX octets: %d", le16_to_cpu(evt->max_tx_len));
print_field("Max TX time: %d", le16_to_cpu(evt->max_tx_time));
print_field("Max RX octets: %d", le16_to_cpu(evt->max_rx_len));
print_field("Max RX time: %d", le16_to_cpu(evt->max_rx_time));
}
static void le_read_local_pk256_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_read_local_pk256_complete *evt = data;
print_status(evt->status);
print_pk256("Local P-256 public key", evt->local_pk256);
}
static void le_generate_dhkey_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_generate_dhkey_complete *evt = data;
print_status(evt->status);
print_dhkey(evt->dhkey);
}
static void le_enhanced_conn_complete_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_enhanced_conn_complete *evt = data;
print_status(evt->status);
print_handle(evt->handle);
print_role(evt->role);
print_peer_addr_type("Peer address type", evt->peer_addr_type);
print_addr("Peer address", evt->peer_addr, evt->peer_addr_type);
print_addr("Local resolvable private address", evt->local_rpa, 0x01);
print_addr("Peer resolvable private address", evt->peer_rpa, 0x01);
print_slot_125("Connection interval", evt->interval);
print_slot_125("Connection latency", evt->latency);
print_field("Supervision timeout: %d msec (0x%4.4x)",
le16_to_cpu(evt->supv_timeout) * 10,
le16_to_cpu(evt->supv_timeout));
print_field("Master clock accuracy: 0x%2.2x", evt->clock_accuracy);
if (evt->status == 0x00)
assign_handle(le16_to_cpu(evt->handle), 0x01);
}
static void le_direct_adv_report_evt(const void *data, uint8_t size)
{
const struct bt_hci_evt_le_direct_adv_report *evt = data;
print_num_reports(evt->num_reports);
print_adv_event_type(evt->event_type);
print_peer_addr_type("Address type", evt->addr_type);
print_addr("Address", evt->addr, evt->addr_type);
print_addr_type("Direct address type", evt->direct_addr_type);
print_addr("Direct address", evt->direct_addr, evt->direct_addr_type);
print_rssi(evt->rssi);
if (size > sizeof(*evt))
packet_hexdump(data + sizeof(*evt), size - sizeof(*evt));
}
struct subevent_data {
uint8_t subevent;
const char *str;
void (*func) (const void *data, uint8_t size);
uint8_t size;
bool fixed;
};
static void print_subevent(const struct subevent_data *subevent_data,
const void *data, uint8_t size)
{
const char *subevent_color;
if (subevent_data->func)
subevent_color = COLOR_HCI_EVENT;
else
subevent_color = COLOR_HCI_EVENT_UNKNOWN;
print_indent(6, subevent_color, "", subevent_data->str, COLOR_OFF,
" (0x%2.2x)", subevent_data->subevent);
if (!subevent_data->func) {
packet_hexdump(data, size);
return;
}
if (subevent_data->fixed) {
if (size != subevent_data->size) {
print_text(COLOR_ERROR, "invalid packet size");
packet_hexdump(data, size);
return;
}
} else {
if (size < subevent_data->size) {
print_text(COLOR_ERROR, "too short packet");
packet_hexdump(data, size);
return;
}
}
subevent_data->func(data, size);
}
static const struct subevent_data le_meta_event_table[] = {
{ 0x01, "LE Connection Complete",
le_conn_complete_evt, 18, true },
{ 0x02, "LE Advertising Report",
le_adv_report_evt, 1, false },
{ 0x03, "LE Connection Update Complete",
le_conn_update_complete_evt, 9, true },
{ 0x04, "LE Read Remote Used Features",
le_remote_features_complete_evt, 11, true },
{ 0x05, "LE Long Term Key Request",
le_long_term_key_request_evt, 12, true },
{ 0x06, "LE Remote Connection Parameter Request",
le_conn_param_request_evt, 10, true },
{ 0x07, "LE Data Length Change",
le_data_length_change_evt, 10, true },
{ 0x08, "LE Read Local P-256 Public Key Complete",
le_read_local_pk256_complete_evt, 65, true },
{ 0x09, "LE Generate DHKey Complete",
le_generate_dhkey_complete_evt, 33, true },
{ 0x0a, "LE Enhanced Connection Complete",
le_enhanced_conn_complete_evt, 30, true },
{ 0x0b, "LE Direct Advertising Report",
le_direct_adv_report_evt, 1, false },
{ }
};
static void le_meta_event_evt(const void *data, uint8_t size)
{
uint8_t subevent = *((const uint8_t *) data);
struct subevent_data unknown;
const struct subevent_data *subevent_data = &unknown;
int i;
unknown.subevent = subevent;
unknown.str = "Unknown";
unknown.func = NULL;
unknown.size = 0;
unknown.fixed = true;
for (i = 0; le_meta_event_table[i].str; i++) {
if (le_meta_event_table[i].subevent == subevent) {
subevent_data = &le_meta_event_table[i];
break;
}
}
print_subevent(subevent_data, data + 1, size - 1);
}
static void vendor_evt(const void *data, uint8_t size)
{
uint8_t subevent = *((const uint8_t *) data);
struct subevent_data vendor_data;
char vendor_str[150];
const struct vendor_evt *vnd = current_vendor_evt(subevent);
if (vnd) {
const char *str = current_vendor_str();
if (str) {
snprintf(vendor_str, sizeof(vendor_str),
"%s %s", str, vnd->str);
vendor_data.str = vendor_str;
} else
vendor_data.str = vnd->str;
vendor_data.subevent = subevent;
vendor_data.func = vnd->evt_func;
vendor_data.size = vnd->evt_size;
vendor_data.fixed = vnd->evt_fixed;
print_subevent(&vendor_data, data + 1, size - 1);
} else {
uint16_t manufacturer;
if (index_current < MAX_INDEX)
manufacturer = index_list[index_current].manufacturer;
else
manufacturer = UNKNOWN_MANUFACTURER;
vendor_event(manufacturer, data, size);
}
}
struct event_data {
uint8_t event;
const char *str;
void (*func) (const void *data, uint8_t size);
uint8_t size;
bool fixed;
};
static const struct event_data event_table[] = {
{ 0x01, "Inquiry Complete",
inquiry_complete_evt, 1, true },
{ 0x02, "Inquiry Result",
inquiry_result_evt, 1, false },
{ 0x03, "Connect Complete",
conn_complete_evt, 11, true },
{ 0x04, "Connect Request",
conn_request_evt, 10, true },
{ 0x05, "Disconnect Complete",
disconnect_complete_evt, 4, true },
{ 0x06, "Auth Complete",
auth_complete_evt, 3, true },
{ 0x07, "Remote Name Req Complete",
remote_name_request_complete_evt, 255, true },
{ 0x08, "Encryption Change",
encrypt_change_evt, 4, true },
{ 0x09, "Change Connection Link Key Complete",
change_conn_link_key_complete_evt, 3, true },
{ 0x0a, "Master Link Key Complete",
master_link_key_complete_evt, 4, true },
{ 0x0b, "Read Remote Supported Features",
remote_features_complete_evt, 11, true },
{ 0x0c, "Read Remote Version Complete",
remote_version_complete_evt, 8, true },
{ 0x0d, "QoS Setup Complete",
qos_setup_complete_evt, 21, true },
{ 0x0e, "Command Complete",
cmd_complete_evt, 3, false },
{ 0x0f, "Command Status",
cmd_status_evt, 4, true },
{ 0x10, "Hardware Error",
hardware_error_evt, 1, true },
{ 0x11, "Flush Occurred",
flush_occurred_evt, 2, true },
{ 0x12, "Role Change",
role_change_evt, 8, true },
{ 0x13, "Number of Completed Packets",
num_completed_packets_evt, 1, false },
{ 0x14, "Mode Change",
mode_change_evt, 6, true },
{ 0x15, "Return Link Keys",
return_link_keys_evt, 1, false },
{ 0x16, "PIN Code Request",
pin_code_request_evt, 6, true },
{ 0x17, "Link Key Request",
link_key_request_evt, 6, true },
{ 0x18, "Link Key Notification",
link_key_notify_evt, 23, true },
{ 0x19, "Loopback Command",
loopback_command_evt, 3, false },
{ 0x1a, "Data Buffer Overflow",
data_buffer_overflow_evt, 1, true },
{ 0x1b, "Max Slots Change",
max_slots_change_evt, 3, true },
{ 0x1c, "Read Clock Offset Complete",
clock_offset_complete_evt, 5, true },
{ 0x1d, "Connection Packet Type Changed",
conn_pkt_type_changed_evt, 5, true },
{ 0x1e, "QoS Violation",
qos_violation_evt, 2, true },
{ 0x1f, "Page Scan Mode Change",
pscan_mode_change_evt, 7, true },
{ 0x20, "Page Scan Repetition Mode Change",
pscan_rep_mode_change_evt, 7, true },
{ 0x21, "Flow Specification Complete",
flow_spec_complete_evt, 22, true },
{ 0x22, "Inquiry Result with RSSI",
inquiry_result_with_rssi_evt, 1, false },
{ 0x23, "Read Remote Extended Features",
remote_ext_features_complete_evt, 13, true },
{ 0x2c, "Synchronous Connect Complete",
sync_conn_complete_evt, 17, true },
{ 0x2d, "Synchronous Connect Changed",
sync_conn_changed_evt, 9, true },
{ 0x2e, "Sniff Subrating",
sniff_subrating_evt, 11, true },
{ 0x2f, "Extended Inquiry Result",
ext_inquiry_result_evt, 1, false },
{ 0x30, "Encryption Key Refresh Complete",
encrypt_key_refresh_complete_evt, 3, true },
{ 0x31, "IO Capability Request",
io_capability_request_evt, 6, true },
{ 0x32, "IO Capability Response",
io_capability_response_evt, 9, true },
{ 0x33, "User Confirmation Request",
user_confirm_request_evt, 10, true },
{ 0x34, "User Passkey Request",
user_passkey_request_evt, 6, true },
{ 0x35, "Remote OOB Data Request",
remote_oob_data_request_evt, 6, true },
{ 0x36, "Simple Pairing Complete",
simple_pairing_complete_evt, 7, true },
{ 0x38, "Link Supervision Timeout Changed",
link_supv_timeout_changed_evt, 4, true },
{ 0x39, "Enhanced Flush Complete",
enhanced_flush_complete_evt, 2, true },
{ 0x3b, "User Passkey Notification",
user_passkey_notify_evt, 10, true },
{ 0x3c, "Keypress Notification",
keypress_notify_evt, 7, true },
{ 0x3d, "Remote Host Supported Features",
remote_host_features_notify_evt, 14, true },
{ 0x3e, "LE Meta Event",
le_meta_event_evt, 1, false },
{ 0x40, "Physical Link Complete",
phy_link_complete_evt, 2, true },
{ 0x41, "Channel Selected",
channel_selected_evt, 1, true },
{ 0x42, "Disconnect Physical Link Complete",
disconn_phy_link_complete_evt, 3, true },
{ 0x43, "Physical Link Loss Early Warning",
phy_link_loss_early_warning_evt, 2, true },
{ 0x44, "Physical Link Recovery",
phy_link_recovery_evt, 1, true },
{ 0x45, "Logical Link Complete",
logic_link_complete_evt, 5, true },
{ 0x46, "Disconnect Logical Link Complete",
disconn_logic_link_complete_evt, 4, true },
{ 0x47, "Flow Specification Modify Complete",
flow_spec_modify_complete_evt, 3, true },
{ 0x48, "Number of Completed Data Blocks",
num_completed_data_blocks_evt, 3, false },
{ 0x49, "AMP Start Test" },
{ 0x4a, "AMP Test End" },
{ 0x4b, "AMP Receiver Report" },
{ 0x4c, "Short Range Mode Change Complete",
short_range_mode_change_evt, 3, true },
{ 0x4d, "AMP Status Change",
amp_status_change_evt, 2, true },
{ 0x4e, "Triggered Clock Capture",
triggered_clock_capture_evt, 9, true },
{ 0x4f, "Synchronization Train Complete",
sync_train_complete_evt, 1, true },
{ 0x50, "Synchronization Train Received",
sync_train_received_evt, 29, true },
{ 0x51, "Connectionless Slave Broadcast Receive",
slave_broadcast_receive_evt, 18, false },
{ 0x52, "Connectionless Slave Broadcast Timeout",
slave_broadcast_timeout_evt, 7, true },
{ 0x53, "Truncated Page Complete",
truncated_page_complete_evt, 7, true },
{ 0x54, "Slave Page Response Timeout",
slave_page_response_timeout_evt, 0, true },
{ 0x55, "Connectionless Slave Broadcast Channel Map Change",
slave_broadcast_channel_map_change_evt, 10, true },
{ 0x56, "Inquiry Response Notification",
inquiry_response_notify_evt, 4, true },
{ 0x57, "Authenticated Payload Timeout Expired",
auth_payload_timeout_expired_evt, 2, true },
{ 0xfe, "Testing" },
{ 0xff, "Vendor", vendor_evt, 0, false },
{ }
};
void packet_new_index(struct timeval *tv, uint16_t index, const char *label,
uint8_t type, uint8_t bus, const char *name)
{
char details[48];
sprintf(details, "(%s,%s,%s)", hci_typetostr(type),
hci_bustostr(bus), name);
print_packet(tv, NULL, index, '=', COLOR_NEW_INDEX, "New Index",
label, details);
}
void packet_del_index(struct timeval *tv, uint16_t index, const char *label)
{
print_packet(tv, NULL, index, '=', COLOR_DEL_INDEX, "Delete Index",
label, NULL);
}
void packet_open_index(struct timeval *tv, uint16_t index, const char *label)
{
print_packet(tv, NULL, index, '=', COLOR_OPEN_INDEX, "Open Index",
label, NULL);
}
void packet_close_index(struct timeval *tv, uint16_t index, const char *label)
{
print_packet(tv, NULL, index, '=', COLOR_CLOSE_INDEX, "Close Index",
label, NULL);
}
void packet_index_info(struct timeval *tv, uint16_t index, const char *label,
uint16_t manufacturer)
{
char details[128];
sprintf(details, "(%s)", bt_compidtostr(manufacturer));
print_packet(tv, NULL, index, '=', COLOR_INDEX_INFO, "Index Info",
label, details);
}
void packet_vendor_diag(struct timeval *tv, uint16_t index,
uint16_t manufacturer,
const void *data, uint16_t size)
{
char extra_str[16];
sprintf(extra_str, "(len %d)", size);
print_packet(tv, NULL, index, '=', COLOR_VENDOR_DIAG,
"Vendor Diagnostic", NULL, extra_str);
switch (manufacturer) {
case 15:
broadcom_lm_diag(data, size);
break;
default:
packet_hexdump(data, size);
break;
}
}
void packet_system_note(struct timeval *tv, struct ucred *cred,
uint16_t index, const void *message)
{
print_packet(tv, cred, index, '=', COLOR_INFO, "Note", message, NULL);
}
void packet_user_logging(struct timeval *tv, struct ucred *cred,
uint16_t index, uint8_t priority,
const char *ident, const char *message)
{
char pid_str[128];
const char *label;
const char *color;
if (priority > priority_level)
return;
switch (priority) {
case BTSNOOP_PRIORITY_ERR:
color = COLOR_ERROR;
break;
case BTSNOOP_PRIORITY_WARNING:
color = COLOR_WARN;
break;
case BTSNOOP_PRIORITY_INFO:
color = COLOR_INFO;
break;
case BTSNOOP_PRIORITY_DEBUG:
color = COLOR_DEBUG;
break;
default:
color = COLOR_WHITE_BG;
break;
}
if (cred) {
char *path = alloca(24);
char line[128];
FILE *fp;
snprintf(path, 23, "/proc/%u/comm", cred->pid);
fp = fopen(path, "re");
if (fp) {
if (fgets(line, sizeof(line), fp)) {
line[strcspn(line, "\r\n")] = '\0';
snprintf(pid_str, sizeof(pid_str), "%s[%u]",
line, cred->pid);
} else
snprintf(pid_str, sizeof(pid_str), "%u",
cred->pid);
fclose(fp);
} else
snprintf(pid_str, sizeof(pid_str), "%u", cred->pid);
label = pid_str;
} else {
if (ident)
label = ident;
else
label = "Message";
}
print_packet(tv, cred, index, '=', color, label, message, NULL);
}
void packet_hci_command(struct timeval *tv, struct ucred *cred, uint16_t index,
const void *data, uint16_t size)
{
const hci_command_hdr *hdr = data;
uint16_t opcode = le16_to_cpu(hdr->opcode);
uint16_t ogf = cmd_opcode_ogf(opcode);
uint16_t ocf = cmd_opcode_ocf(opcode);
struct opcode_data vendor_data;
const struct opcode_data *opcode_data = NULL;
const char *opcode_color, *opcode_str;
char extra_str[25], vendor_str[150];
int i;
if (size < HCI_COMMAND_HDR_SIZE) {
sprintf(extra_str, "(len %d)", size);
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed HCI Command packet", NULL, extra_str);
packet_hexdump(data, size);
return;
}
data += HCI_COMMAND_HDR_SIZE;
size -= HCI_COMMAND_HDR_SIZE;
for (i = 0; opcode_table[i].str; i++) {
if (opcode_table[i].opcode == opcode) {
opcode_data = &opcode_table[i];
break;
}
}
if (opcode_data) {
if (opcode_data->cmd_func)
opcode_color = COLOR_HCI_COMMAND;
else
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = opcode_data->str;
} else {
if (ogf == 0x3f) {
const struct vendor_ocf *vnd = current_vendor_ocf(ocf);
if (vnd) {
const char *str = current_vendor_str();
if (str) {
snprintf(vendor_str, sizeof(vendor_str),
"%s %s", str, vnd->str);
vendor_data.str = vendor_str;
} else
vendor_data.str = vnd->str;
vendor_data.cmd_func = vnd->cmd_func;
vendor_data.cmd_size = vnd->cmd_size;
vendor_data.cmd_fixed = vnd->cmd_fixed;
opcode_data = &vendor_data;
if (opcode_data->cmd_func)
opcode_color = COLOR_HCI_COMMAND;
else
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = opcode_data->str;
} else {
opcode_color = COLOR_HCI_COMMAND;
opcode_str = "Vendor";
}
} else {
opcode_color = COLOR_HCI_COMMAND_UNKNOWN;
opcode_str = "Unknown";
}
}
sprintf(extra_str, "(0x%2.2x|0x%4.4x) plen %d", ogf, ocf, hdr->plen);
print_packet(tv, cred, index, '<', opcode_color, "HCI Command",
opcode_str, extra_str);
if (!opcode_data || !opcode_data->cmd_func) {
packet_hexdump(data, size);
return;
}
if (size != hdr->plen) {
print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size,
hdr->plen);
packet_hexdump(data, size);
return;
}
if (opcode_data->cmd_fixed) {
if (hdr->plen != opcode_data->cmd_size) {
print_text(COLOR_ERROR, "invalid packet size");
packet_hexdump(data, size);
return;
}
} else {
if (hdr->plen < opcode_data->cmd_size) {
print_text(COLOR_ERROR, "too short packet");
packet_hexdump(data, size);
return;
}
}
opcode_data->cmd_func(data, hdr->plen);
}
void packet_hci_event(struct timeval *tv, struct ucred *cred, uint16_t index,
const void *data, uint16_t size)
{
const hci_event_hdr *hdr = data;
const struct event_data *event_data = NULL;
const char *event_color, *event_str;
char extra_str[25];
int i;
if (size < HCI_EVENT_HDR_SIZE) {
sprintf(extra_str, "(len %d)", size);
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed HCI Event packet", NULL, extra_str);
packet_hexdump(data, size);
return;
}
data += HCI_EVENT_HDR_SIZE;
size -= HCI_EVENT_HDR_SIZE;
for (i = 0; event_table[i].str; i++) {
if (event_table[i].event == hdr->evt) {
event_data = &event_table[i];
break;
}
}
if (event_data) {
if (event_data->func)
event_color = COLOR_HCI_EVENT;
else
event_color = COLOR_HCI_EVENT_UNKNOWN;
event_str = event_data->str;
} else {
event_color = COLOR_HCI_EVENT_UNKNOWN;
event_str = "Unknown";
}
if (filter_mask & PACKET_FILTER_SUPPRESS_LE_ADV && hdr->evt == 0x3e) {
uint8_t subevent = *((const uint8_t *) data);
if (subevent == 0x02) {
/* LE Advertising Report. */
return;
}
}
sprintf(extra_str, "(0x%2.2x) plen %d", hdr->evt, hdr->plen);
print_packet(tv, cred, index, '>', event_color, "HCI Event",
event_str, extra_str);
if (!event_data || !event_data->func) {
packet_hexdump(data, size);
return;
}
if (size != hdr->plen) {
print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size,
hdr->plen);
packet_hexdump(data, size);
return;
}
if (event_data->fixed) {
if (hdr->plen != event_data->size) {
print_text(COLOR_ERROR, "invalid packet size");
packet_hexdump(data, size);
return;
}
} else {
if (hdr->plen < event_data->size) {
print_text(COLOR_ERROR, "too short packet");
packet_hexdump(data, size);
return;
}
}
event_data->func(data, hdr->plen);
}
void packet_hci_acldata(struct timeval *tv, struct ucred *cred, uint16_t index,
bool in, const void *data, uint16_t size)
{
const struct bt_hci_acl_hdr *hdr = data;
uint16_t handle = le16_to_cpu(hdr->handle);
uint16_t dlen = le16_to_cpu(hdr->dlen);
uint8_t flags = acl_flags(handle);
char handle_str[16], extra_str[32];
if (size < sizeof(*hdr)) {
if (in)
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed ACL Data RX packet", NULL, NULL);
else
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed ACL Data TX packet", NULL, NULL);
packet_hexdump(data, size);
return;
}
data += sizeof(*hdr);
size -= sizeof(*hdr);
sprintf(handle_str, "Handle %d", acl_handle(handle));
sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, dlen);
print_packet(tv, cred, index, in ? '>' : '<', COLOR_HCI_ACLDATA,
in ? "ACL Data RX" : "ACL Data TX",
handle_str, extra_str);
if (size != dlen) {
print_text(COLOR_ERROR, "invalid packet size (%d != %d)",
size, dlen);
packet_hexdump(data, size);
return;
}
if (filter_mask & PACKET_FILTER_SHOW_ACL_DATA)
packet_hexdump(data, size);
l2cap_packet(index, in, acl_handle(handle), flags, data, size);
}
void packet_hci_scodata(struct timeval *tv, struct ucred *cred, uint16_t index,
bool in, const void *data, uint16_t size)
{
const hci_sco_hdr *hdr = data;
uint16_t handle = le16_to_cpu(hdr->handle);
uint8_t flags = acl_flags(handle);
char handle_str[16], extra_str[32];
if (size < HCI_SCO_HDR_SIZE) {
if (in)
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed SCO Data RX packet", NULL, NULL);
else
print_packet(tv, cred, index, '*', COLOR_ERROR,
"Malformed SCO Data TX packet", NULL, NULL);
packet_hexdump(data, size);
return;
}
data += HCI_SCO_HDR_SIZE;
size -= HCI_SCO_HDR_SIZE;
sprintf(handle_str, "Handle %d", acl_handle(handle));
sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, hdr->dlen);
print_packet(tv, cred, index, in ? '>' : '<', COLOR_HCI_SCODATA,
in ? "SCO Data RX" : "SCO Data TX",
handle_str, extra_str);
if (size != hdr->dlen) {
print_text(COLOR_ERROR, "invalid packet size (%d != %d)",
size, hdr->dlen);
packet_hexdump(data, size);
return;
}
if (filter_mask & PACKET_FILTER_SHOW_SCO_DATA)
packet_hexdump(data, size);
}
void packet_todo(void)
{
int i;
printf("HCI commands with missing decodings:\n");
for (i = 0; opcode_table[i].str; i++) {
if (opcode_table[i].bit < 0)
continue;
if (opcode_table[i].cmd_func)
continue;
printf("\t%s\n", opcode_table[i].str);
}
printf("HCI events with missing decodings:\n");
for (i = 0; event_table[i].str; i++) {
if (event_table[i].func)
continue;
printf("\t%s\n", event_table[i].str);
}
for (i = 0; le_meta_event_table[i].str; i++) {
if (le_meta_event_table[i].func)
continue;
printf("\t%s\n", le_meta_event_table[i].str);
}
}