blob: f6f1b9b73a9ac10a4106ca7380a72aa7fdc792fb [file] [log] [blame]
#ifndef __NET_MAC80211_CODEL_H
#define __NET_MAC80211_CODEL_H
/*
* Codel - The Controlled-Delay Active Queue Management algorithm
*
* Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com>
* Copyright (C) 2011-2012 Van Jacobson <van@pollere.net>
* Copyright (C) 2016 Michael D. Taht <dave.taht@bufferbloat.net>
* Copyright (C) 2012 Eric Dumazet <edumazet@google.com>
* Copyright (C) 2015 Jonathan Morton <chromatix99@gmail.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, provided that this notice is retained in full, this
* software may be distributed under the terms of the GNU General
* Public License ("GPL") version 2, in which case the provisions of the
* GPL apply INSTEAD OF those given above.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <linux/version.h>
#include <linux/types.h>
#include <linux/ktime.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <linux/reciprocal_div.h>
#include "codel_i.h"
/* Controlling Queue Delay (CoDel) algorithm
* =========================================
* Source : Kathleen Nichols and Van Jacobson
* http://queue.acm.org/detail.cfm?id=2209336
*
* Implemented on linux by Dave Taht and Eric Dumazet
*/
/* CoDel5 uses a real clock, unlike codel */
static inline codel_time_t codel_get_time(void)
{
return ktime_get_ns();
}
static inline u32 codel_time_to_us(codel_time_t val)
{
do_div(val, NSEC_PER_USEC);
return (u32)val;
}
/* sizeof_in_bits(rec_inv_sqrt) */
#define REC_INV_SQRT_BITS (8 * sizeof(u16))
/* needed shift to get a Q0.32 number from rec_inv_sqrt */
#define REC_INV_SQRT_SHIFT (32 - REC_INV_SQRT_BITS)
/* Newton approximation method needs more iterations at small inputs,
* so cache them.
*/
static void codel_vars_init(struct codel_vars *vars)
{
memset(vars, 0, sizeof(*vars));
}
/*
* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots
* new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
*
* Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
*/
static inline void codel_Newton_step(struct codel_vars *vars)
{
u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT;
u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
val >>= 2; /* avoid overflow in following multiply */
val = (val * invsqrt) >> (32 - 2 + 1);
vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT;
}
/*
* CoDel control_law is t + interval/sqrt(count)
* We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
* both sqrt() and divide operation.
*/
static codel_time_t codel_control_law(codel_time_t t,
codel_time_t interval,
u32 rec_inv_sqrt)
{
return t + reciprocal_scale(interval, rec_inv_sqrt <<
REC_INV_SQRT_SHIFT);
}
/* Forward declaration of this for use elsewhere */
static inline codel_time_t
custom_codel_get_enqueue_time(struct sk_buff *skb);
static inline struct sk_buff *
custom_dequeue(struct codel_vars *vars, void *ptr);
static inline void
custom_drop(struct sk_buff *skb, void *ptr);
static bool codel_should_drop(struct sk_buff *skb,
__u32 *backlog,
struct codel_vars *vars,
const struct codel_params *p,
codel_time_t now)
{
if (!skb) {
vars->first_above_time = 0;
return false;
}
if (now - custom_codel_get_enqueue_time(skb) < p->target ||
!*backlog) {
/* went below - stay below for at least interval */
vars->first_above_time = 0;
return false;
}
if (vars->first_above_time == 0) {
/* just went above from below; mark the time */
vars->first_above_time = now + p->interval;
} else if (now > vars->first_above_time) {
return true;
}
return false;
}
static struct sk_buff *codel_dequeue(void *ptr,
__u32 *backlog,
struct codel_vars *vars,
struct codel_params *p,
codel_time_t now,
bool overloaded)
{
struct sk_buff *skb = custom_dequeue(vars, ptr);
bool drop;
if (!skb) {
vars->dropping = false;
return skb;
}
drop = codel_should_drop(skb, backlog, vars, p, now);
if (vars->dropping) {
if (!drop) {
/* sojourn time below target - leave dropping state */
vars->dropping = false;
} else if (now >= vars->drop_next) {
/* It's time for the next drop. Drop the current
* packet and dequeue the next. The dequeue might
* take us out of dropping state.
* If not, schedule the next drop.
* A large backlog might result in drop rates so high
* that the next drop should happen now,
* hence the while loop.
*/
/* saturating increment */
vars->count++;
if (!vars->count)
vars->count--;
codel_Newton_step(vars);
vars->drop_next = codel_control_law(vars->drop_next,
p->interval,
vars->rec_inv_sqrt);
do {
if (INET_ECN_set_ce(skb) && !overloaded) {
vars->ecn_mark++;
/* and schedule the next drop */
vars->drop_next = codel_control_law(
vars->drop_next, p->interval,
vars->rec_inv_sqrt);
goto end;
}
custom_drop(skb, ptr);
vars->drop_count++;
skb = custom_dequeue(vars, ptr);
if (skb && !codel_should_drop(skb, backlog, vars,
p, now)) {
/* leave dropping state */
vars->dropping = false;
} else {
/* schedule the next drop */
vars->drop_next = codel_control_law(
vars->drop_next, p->interval,
vars->rec_inv_sqrt);
}
} while (skb && vars->dropping && now >=
vars->drop_next);
/* Mark the packet regardless */
if (skb && INET_ECN_set_ce(skb))
vars->ecn_mark++;
}
} else if (drop) {
if (INET_ECN_set_ce(skb) && !overloaded) {
vars->ecn_mark++;
} else {
custom_drop(skb, ptr);
vars->drop_count++;
skb = custom_dequeue(vars, ptr);
drop = codel_should_drop(skb, backlog, vars, p, now);
if (skb && INET_ECN_set_ce(skb))
vars->ecn_mark++;
}
vars->dropping = true;
/* if min went above target close to when we last went below
* assume that the drop rate that controlled the queue on the
* last cycle is a good starting point to control it now.
*/
if (vars->count > 2 &&
now - vars->drop_next < 8 * p->interval) {
vars->count -= 2;
codel_Newton_step(vars);
} else {
vars->count = 1;
vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT;
}
codel_Newton_step(vars);
vars->drop_next = codel_control_law(now, p->interval,
vars->rec_inv_sqrt);
}
end:
return skb;
}
#endif