blob: ed1f3998be4c1ed0d54e186a45ba6c9fd4500492 [file] [log] [blame]
* Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
* Contact Information:
* Intel Linux Wireless <>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
#ifndef __iwl_trans_int_pcie_h__
#define __iwl_trans_int_pcie_h__
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include "iwl-fh.h"
#include "iwl-csr.h"
#include "iwl-trans.h"
#include "iwl-debug.h"
#include "iwl-io.h"
#include "iwl-op-mode.h"
struct iwl_host_cmd;
/*This file includes the declaration that are internal to the
* trans_pcie layer */
struct iwl_rx_mem_buffer {
dma_addr_t page_dma;
struct page *page;
struct list_head list;
* struct isr_statistics - interrupt statistics
struct isr_statistics {
u32 hw;
u32 sw;
u32 err_code;
u32 sch;
u32 alive;
u32 rfkill;
u32 ctkill;
u32 wakeup;
u32 rx;
u32 tx;
u32 unhandled;
* struct iwl_rxq - Rx queue
* @bd: driver's pointer to buffer of receive buffer descriptors (rbd)
* @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
* @pool:
* @queue:
* @read: Shared index to newest available Rx buffer
* @write: Shared index to oldest written Rx packet
* @free_count: Number of pre-allocated buffers in rx_free
* @write_actual:
* @rx_free: list of free SKBs for use
* @rx_used: List of Rx buffers with no SKB
* @need_update: flag to indicate we need to update read/write index
* @rb_stts: driver's pointer to receive buffer status
* @rb_stts_dma: bus address of receive buffer status
* @lock:
* NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
struct iwl_rxq {
__le32 *bd;
dma_addr_t bd_dma;
struct iwl_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
u32 read;
u32 write;
u32 free_count;
u32 write_actual;
struct list_head rx_free;
struct list_head rx_used;
bool need_update;
struct iwl_rb_status *rb_stts;
dma_addr_t rb_stts_dma;
spinlock_t lock;
struct iwl_dma_ptr {
dma_addr_t dma;
void *addr;
size_t size;
* iwl_queue_inc_wrap - increment queue index, wrap back to beginning
* @index -- current index
static inline int iwl_queue_inc_wrap(int index)
return ++index & (TFD_QUEUE_SIZE_MAX - 1);
* iwl_queue_dec_wrap - decrement queue index, wrap back to end
* @index -- current index
static inline int iwl_queue_dec_wrap(int index)
return --index & (TFD_QUEUE_SIZE_MAX - 1);
struct iwl_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct iwl_host_cmd *source;
u32 flags;
* Generic queue structure
* Contains common data for Rx and Tx queues.
* Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
* always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
* there might be HW changes in the future). For the normal TX
* queues, n_window, which is the size of the software queue data
* is also 256; however, for the command queue, n_window is only
* 32 since we don't need so many commands pending. Since the HW
* still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. As a result,
* the software buffers (in the variables @meta, @txb in struct
* iwl_txq) only have 32 entries, while the HW buffers (@tfds in
* the same struct) have 256.
* This means that we end up with the following:
* HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
* SW entries: | 0 | ... | 31 |
* where N is a number between 0 and 7. This means that the SW
* data is a window overlayed over the HW queue.
struct iwl_queue {
int write_ptr; /* 1-st empty entry (index) host_w*/
int read_ptr; /* last used entry (index) host_r*/
/* use for monitoring and recovering the stuck queue */
dma_addr_t dma_addr; /* physical addr for BD's */
int n_window; /* safe queue window */
u32 id;
int low_mark; /* low watermark, resume queue if free
* space more than this */
int high_mark; /* high watermark, stop queue if free
* space less than this */
#define TFD_TX_CMD_SLOTS 256
#define TFD_CMD_SLOTS 32
* The FH will write back to the first TB only, so we need
* to copy some data into the buffer regardless of whether
* it should be mapped or not. This indicates how big the
* first TB must be to include the scratch buffer. Since
* the scratch is 4 bytes at offset 12, it's 16 now. If we
* make it bigger then allocations will be bigger and copy
* slower, so that's probably not useful.
struct iwl_pcie_txq_entry {
struct iwl_device_cmd *cmd;
struct sk_buff *skb;
/* buffer to free after command completes */
const void *free_buf;
struct iwl_cmd_meta meta;
struct iwl_pcie_txq_scratch_buf {
struct iwl_cmd_header hdr;
u8 buf[8];
__le32 scratch;
* struct iwl_txq - Tx Queue for DMA
* @q: generic Rx/Tx queue descriptor
* @tfds: transmit frame descriptors (DMA memory)
* @scratchbufs: start of command headers, including scratch buffers, for
* the writeback -- this is DMA memory and an array holding one buffer
* for each command on the queue
* @scratchbufs_dma: DMA address for the scratchbufs start
* @entries: transmit entries (driver state)
* @lock: queue lock
* @stuck_timer: timer that fires if queue gets stuck
* @trans_pcie: pointer back to transport (for timer)
* @need_update: indicates need to update read/write index
* @active: stores if queue is active
* @ampdu: true if this queue is an ampdu queue for an specific RA/TID
* @wd_timeout: queue watchdog timeout (jiffies) - per queue
* @frozen: tx stuck queue timer is frozen
* @frozen_expiry_remainder: remember how long until the timer fires
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
struct iwl_txq {
struct iwl_queue q;
struct iwl_tfd *tfds;
struct iwl_pcie_txq_scratch_buf *scratchbufs;
dma_addr_t scratchbufs_dma;
struct iwl_pcie_txq_entry *entries;
spinlock_t lock;
unsigned long frozen_expiry_remainder;
struct timer_list stuck_timer;
struct iwl_trans_pcie *trans_pcie;
bool need_update;
bool frozen;
u8 active;
bool ampdu;
unsigned long wd_timeout;
static inline dma_addr_t
iwl_pcie_get_scratchbuf_dma(struct iwl_txq *txq, int idx)
return txq->scratchbufs_dma +
sizeof(struct iwl_pcie_txq_scratch_buf) * idx;
* struct iwl_trans_pcie - PCIe transport specific data
* @rxq: all the RX queue data
* @rx_replenish: work that will be called when buffers need to be allocated
* @drv - pointer to iwl_drv
* @trans: pointer to the generic transport area
* @scd_base_addr: scheduler sram base address in SRAM
* @scd_bc_tbls: pointer to the byte count table of the scheduler
* @kw: keep warm address
* @pci_dev: basic pci-network driver stuff
* @hw_base: pci hardware address support
* @ucode_write_complete: indicates that the ucode has been copied.
* @ucode_write_waitq: wait queue for uCode load
* @cmd_queue - command queue number
* @rx_buf_size_8k: 8 kB RX buffer size
* @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
* @scd_set_active: should the transport configure the SCD for HCMD queue
* @rx_page_order: page order for receive buffer size
* @reg_lock: protect hw register access
* @cmd_in_flight: true when we have a host command in flight
* @fw_mon_phys: physical address of the buffer for the firmware monitor
* @fw_mon_page: points to the first page of the buffer for the firmware monitor
* @fw_mon_size: size of the buffer for the firmware monitor
struct iwl_trans_pcie {
struct iwl_rxq rxq;
struct work_struct rx_replenish;
struct iwl_trans *trans;
struct iwl_drv *drv;
struct net_device napi_dev;
struct napi_struct napi;
/* INT ICT Table */
__le32 *ict_tbl;
dma_addr_t ict_tbl_dma;
int ict_index;
bool use_ict;
struct isr_statistics isr_stats;
spinlock_t irq_lock;
u32 inta_mask;
u32 scd_base_addr;
struct iwl_dma_ptr scd_bc_tbls;
struct iwl_dma_ptr kw;
struct iwl_txq *txq;
unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
/* PCI bus related data */
struct pci_dev *pci_dev;
void __iomem *hw_base;
bool ucode_write_complete;
wait_queue_head_t ucode_write_waitq;
wait_queue_head_t wait_command_queue;
u8 cmd_queue;
u8 cmd_fifo;
unsigned int cmd_q_wdg_timeout;
u8 n_no_reclaim_cmds;
u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
bool rx_buf_size_8k;
bool bc_table_dword;
bool scd_set_active;
u32 rx_page_order;
const char *const *command_names;
/*protect hw register */
spinlock_t reg_lock;
bool cmd_in_flight;
bool ref_cmd_in_flight;
/* protect ref counter */
spinlock_t ref_lock;
u32 ref_count;
dma_addr_t fw_mon_phys;
struct page *fw_mon_page;
u32 fw_mon_size;
#define IWL_TRANS_GET_PCIE_TRANS(_iwl_trans) \
((struct iwl_trans_pcie *) ((_iwl_trans)->trans_specific))
static inline struct iwl_trans *
iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
return container_of((void *)trans_pcie, struct iwl_trans,
* Convention: trans API functions: iwl_trans_pcie_XXX
* Other functions: iwl_pcie_XXX
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent,
const struct iwl_cfg *cfg);
void iwl_trans_pcie_free(struct iwl_trans *trans);
* RX
int iwl_pcie_rx_init(struct iwl_trans *trans);
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
int iwl_pcie_rx_stop(struct iwl_trans *trans);
void iwl_pcie_rx_free(struct iwl_trans *trans);
* ICT - interrupt handling
irqreturn_t iwl_pcie_isr(int irq, void *data);
int iwl_pcie_alloc_ict(struct iwl_trans *trans);
void iwl_pcie_free_ict(struct iwl_trans *trans);
void iwl_pcie_reset_ict(struct iwl_trans *trans);
void iwl_pcie_disable_ict(struct iwl_trans *trans);
int iwl_pcie_tx_init(struct iwl_trans *trans);
void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
int iwl_pcie_tx_stop(struct iwl_trans *trans);
void iwl_pcie_tx_free(struct iwl_trans *trans);
void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn,
const struct iwl_trans_txq_scd_cfg *cfg,
unsigned int wdg_timeout);
void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue,
bool configure_scd);
int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_cmd *dev_cmd, int txq_id);
void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans);
int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
struct iwl_rx_cmd_buffer *rxb, int handler_status);
void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
struct sk_buff_head *skbs);
void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
void iwl_trans_pcie_ref(struct iwl_trans *trans);
void iwl_trans_pcie_unref(struct iwl_trans *trans);
static inline u16 iwl_pcie_tfd_tb_get_len(struct iwl_tfd *tfd, u8 idx)
struct iwl_tfd_tb *tb = &tfd->tbs[idx];
return le16_to_cpu(tb->hi_n_len) >> 4;
* Error handling
void iwl_pcie_dump_csr(struct iwl_trans *trans);
* Helpers
static inline void iwl_disable_interrupts(struct iwl_trans *trans)
clear_bit(STATUS_INT_ENABLED, &trans->status);
/* disable interrupts from uCode/NIC to host */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* acknowledge/clear/reset any interrupts still pending
* from uCode or flow handler (Rx/Tx DMA) */
iwl_write32(trans, CSR_INT, 0xffffffff);
iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
static inline void iwl_enable_interrupts(struct iwl_trans *trans)
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
set_bit(STATUS_INT_ENABLED, &trans->status);
trans_pcie->inta_mask = CSR_INI_SET_MASK;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL;
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
static inline void iwl_wake_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (test_and_clear_bit(txq->, trans_pcie->queue_stopped)) {
IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->;
iwl_op_mode_queue_not_full(trans->op_mode, txq->;
static inline void iwl_stop_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (!test_and_set_bit(txq->, trans_pcie->queue_stopped)) {
iwl_op_mode_queue_full(trans->op_mode, txq->;
IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->;
} else
IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
static inline bool iwl_queue_used(const struct iwl_queue *q, int i)
return q->write_ptr >= q->read_ptr ?
(i >= q->read_ptr && i < q->write_ptr) :
!(i < q->read_ptr && i >= q->write_ptr);
static inline u8 get_cmd_index(struct iwl_queue *q, u32 index)
return index & (q->n_window - 1);
static inline const char *get_cmd_string(struct iwl_trans_pcie *trans_pcie,
u8 cmd)
if (!trans_pcie->command_names || !trans_pcie->command_names[cmd])
return "UNKNOWN";
return trans_pcie->command_names[cmd];
static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
return !(iwl_read32(trans, CSR_GP_CNTRL) &
static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans,
u32 reg, u32 mask, u32 value)
u32 v;
WARN_ON_ONCE(value & ~mask);
v = iwl_read32(trans, reg);
v &= ~mask;
v |= value;
iwl_write32(trans, reg, v);
static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0);
static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans,
u32 reg, u32 mask)
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask);
void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state);
#endif /* __iwl_trans_int_pcie_h__ */