blob: 4df7f50d84f8bccf2b70d6321f4838a109d517c4 [file] [log] [blame]
/******************************************************************************
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/lockdep.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <net/mac80211.h>
#include "common.h"
int
_il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
{
const int interval = 10; /* microseconds */
int t = 0;
do {
if ((_il_rd(il, addr) & mask) == (bits & mask))
return t;
udelay(interval);
t += interval;
} while (t < timeout);
return -ETIMEDOUT;
}
EXPORT_SYMBOL(_il_poll_bit);
void
il_set_bit(struct il_priv *p, u32 r, u32 m)
{
unsigned long reg_flags;
spin_lock_irqsave(&p->reg_lock, reg_flags);
_il_set_bit(p, r, m);
spin_unlock_irqrestore(&p->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_set_bit);
void
il_clear_bit(struct il_priv *p, u32 r, u32 m)
{
unsigned long reg_flags;
spin_lock_irqsave(&p->reg_lock, reg_flags);
_il_clear_bit(p, r, m);
spin_unlock_irqrestore(&p->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_clear_bit);
bool
_il_grab_nic_access(struct il_priv *il)
{
int ret;
u32 val;
/* this bit wakes up the NIC */
_il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/*
* These bits say the device is running, and should keep running for
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
* but they do not indicate that embedded SRAM is restored yet;
* 3945 and 4965 have volatile SRAM, and must save/restore contents
* to/from host DRAM when sleeping/waking for power-saving.
* Each direction takes approximately 1/4 millisecond; with this
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
* series of register accesses are expected (e.g. reading Event Log),
* to keep device from sleeping.
*
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
* SRAM is okay/restored. We don't check that here because this call
* is just for hardware register access; but GP1 MAC_SLEEP check is a
* good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
*
*/
ret =
_il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
if (unlikely(ret < 0)) {
val = _il_rd(il, CSR_GP_CNTRL);
WARN_ONCE(1, "Timeout waiting for ucode processor access "
"(CSR_GP_CNTRL 0x%08x)\n", val);
_il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(_il_grab_nic_access);
int
il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
{
const int interval = 10; /* microseconds */
int t = 0;
do {
if ((il_rd(il, addr) & mask) == mask)
return t;
udelay(interval);
t += interval;
} while (t < timeout);
return -ETIMEDOUT;
}
EXPORT_SYMBOL(il_poll_bit);
u32
il_rd_prph(struct il_priv *il, u32 reg)
{
unsigned long reg_flags;
u32 val;
spin_lock_irqsave(&il->reg_lock, reg_flags);
_il_grab_nic_access(il);
val = _il_rd_prph(il, reg);
_il_release_nic_access(il);
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
return val;
}
EXPORT_SYMBOL(il_rd_prph);
void
il_wr_prph(struct il_priv *il, u32 addr, u32 val)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr_prph(il, addr, val);
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_wr_prph);
u32
il_read_targ_mem(struct il_priv *il, u32 addr)
{
unsigned long reg_flags;
u32 value;
spin_lock_irqsave(&il->reg_lock, reg_flags);
_il_grab_nic_access(il);
_il_wr(il, HBUS_TARG_MEM_RADDR, addr);
value = _il_rd(il, HBUS_TARG_MEM_RDAT);
_il_release_nic_access(il);
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
return value;
}
EXPORT_SYMBOL(il_read_targ_mem);
void
il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
{
unsigned long reg_flags;
spin_lock_irqsave(&il->reg_lock, reg_flags);
if (likely(_il_grab_nic_access(il))) {
_il_wr(il, HBUS_TARG_MEM_WADDR, addr);
_il_wr(il, HBUS_TARG_MEM_WDAT, val);
_il_release_nic_access(il);
}
spin_unlock_irqrestore(&il->reg_lock, reg_flags);
}
EXPORT_SYMBOL(il_write_targ_mem);
const char *
il_get_cmd_string(u8 cmd)
{
switch (cmd) {
IL_CMD(N_ALIVE);
IL_CMD(N_ERROR);
IL_CMD(C_RXON);
IL_CMD(C_RXON_ASSOC);
IL_CMD(C_QOS_PARAM);
IL_CMD(C_RXON_TIMING);
IL_CMD(C_ADD_STA);
IL_CMD(C_REM_STA);
IL_CMD(C_WEPKEY);
IL_CMD(N_3945_RX);
IL_CMD(C_TX);
IL_CMD(C_RATE_SCALE);
IL_CMD(C_LEDS);
IL_CMD(C_TX_LINK_QUALITY_CMD);
IL_CMD(C_CHANNEL_SWITCH);
IL_CMD(N_CHANNEL_SWITCH);
IL_CMD(C_SPECTRUM_MEASUREMENT);
IL_CMD(N_SPECTRUM_MEASUREMENT);
IL_CMD(C_POWER_TBL);
IL_CMD(N_PM_SLEEP);
IL_CMD(N_PM_DEBUG_STATS);
IL_CMD(C_SCAN);
IL_CMD(C_SCAN_ABORT);
IL_CMD(N_SCAN_START);
IL_CMD(N_SCAN_RESULTS);
IL_CMD(N_SCAN_COMPLETE);
IL_CMD(N_BEACON);
IL_CMD(C_TX_BEACON);
IL_CMD(C_TX_PWR_TBL);
IL_CMD(C_BT_CONFIG);
IL_CMD(C_STATS);
IL_CMD(N_STATS);
IL_CMD(N_CARD_STATE);
IL_CMD(N_MISSED_BEACONS);
IL_CMD(C_CT_KILL_CONFIG);
IL_CMD(C_SENSITIVITY);
IL_CMD(C_PHY_CALIBRATION);
IL_CMD(N_RX_PHY);
IL_CMD(N_RX_MPDU);
IL_CMD(N_RX);
IL_CMD(N_COMPRESSED_BA);
default:
return "UNKNOWN";
}
}
EXPORT_SYMBOL(il_get_cmd_string);
#define HOST_COMPLETE_TIMEOUT (HZ / 2)
static void
il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
return;
}
#ifdef CPTCFG_IWLEGACY_DEBUG
switch (cmd->hdr.cmd) {
case C_TX_LINK_QUALITY_CMD:
case C_SENSITIVITY:
D_HC_DUMP("back from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
break;
default:
D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
pkt->hdr.flags);
}
#endif
}
static int
il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
{
int ret;
BUG_ON(!(cmd->flags & CMD_ASYNC));
/* An asynchronous command can not expect an SKB to be set. */
BUG_ON(cmd->flags & CMD_WANT_SKB);
/* Assign a generic callback if one is not provided */
if (!cmd->callback)
cmd->callback = il_generic_cmd_callback;
if (test_bit(S_EXIT_PENDING, &il->status))
return -EBUSY;
ret = il_enqueue_hcmd(il, cmd);
if (ret < 0) {
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
return ret;
}
return 0;
}
int
il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
{
int cmd_idx;
int ret;
lockdep_assert_held(&il->mutex);
BUG_ON(cmd->flags & CMD_ASYNC);
/* A synchronous command can not have a callback set. */
BUG_ON(cmd->callback);
D_INFO("Attempting to send sync command %s\n",
il_get_cmd_string(cmd->id));
set_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Setting HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
cmd_idx = il_enqueue_hcmd(il, cmd);
if (cmd_idx < 0) {
ret = cmd_idx;
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
goto out;
}
ret = wait_event_timeout(il->wait_command_queue,
!test_bit(S_HCMD_ACTIVE, &il->status),
HOST_COMPLETE_TIMEOUT);
if (!ret) {
if (test_bit(S_HCMD_ACTIVE, &il->status)) {
IL_ERR("Error sending %s: time out after %dms.\n",
il_get_cmd_string(cmd->id),
jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
clear_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Clearing HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
ret = -ETIMEDOUT;
goto cancel;
}
}
if (test_bit(S_RFKILL, &il->status)) {
IL_ERR("Command %s aborted: RF KILL Switch\n",
il_get_cmd_string(cmd->id));
ret = -ECANCELED;
goto fail;
}
if (test_bit(S_FW_ERROR, &il->status)) {
IL_ERR("Command %s failed: FW Error\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto fail;
}
if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
IL_ERR("Error: Response NULL in '%s'\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto cancel;
}
ret = 0;
goto out;
cancel:
if (cmd->flags & CMD_WANT_SKB) {
/*
* Cancel the CMD_WANT_SKB flag for the cmd in the
* TX cmd queue. Otherwise in case the cmd comes
* in later, it will possibly set an invalid
* address (cmd->meta.source).
*/
il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
}
fail:
if (cmd->reply_page) {
il_free_pages(il, cmd->reply_page);
cmd->reply_page = 0;
}
out:
return ret;
}
EXPORT_SYMBOL(il_send_cmd_sync);
int
il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
{
if (cmd->flags & CMD_ASYNC)
return il_send_cmd_async(il, cmd);
return il_send_cmd_sync(il, cmd);
}
EXPORT_SYMBOL(il_send_cmd);
int
il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
return il_send_cmd_sync(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu);
int
il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
void (*callback) (struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt))
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
cmd.flags |= CMD_ASYNC;
cmd.callback = callback;
return il_send_cmd_async(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu_async);
/* default: IL_LED_BLINK(0) using blinking idx table */
static int led_mode;
module_param(led_mode, int, S_IRUGO);
MODULE_PARM_DESC(led_mode,
"0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
/* Throughput OFF time(ms) ON time (ms)
* >300 25 25
* >200 to 300 40 40
* >100 to 200 55 55
* >70 to 100 65 65
* >50 to 70 75 75
* >20 to 50 85 85
* >10 to 20 95 95
* >5 to 10 110 110
* >1 to 5 130 130
* >0 to 1 167 167
* <=0 SOLID ON
*/
static const struct ieee80211_tpt_blink il_blink[] = {
{.throughput = 0, .blink_time = 334},
{.throughput = 1 * 1024 - 1, .blink_time = 260},
{.throughput = 5 * 1024 - 1, .blink_time = 220},
{.throughput = 10 * 1024 - 1, .blink_time = 190},
{.throughput = 20 * 1024 - 1, .blink_time = 170},
{.throughput = 50 * 1024 - 1, .blink_time = 150},
{.throughput = 70 * 1024 - 1, .blink_time = 130},
{.throughput = 100 * 1024 - 1, .blink_time = 110},
{.throughput = 200 * 1024 - 1, .blink_time = 80},
{.throughput = 300 * 1024 - 1, .blink_time = 50},
};
/*
* Adjust led blink rate to compensate on a MAC Clock difference on every HW
* Led blink rate analysis showed an average deviation of 0% on 3945,
* 5% on 4965 HW.
* Need to compensate on the led on/off time per HW according to the deviation
* to achieve the desired led frequency
* The calculation is: (100-averageDeviation)/100 * blinkTime
* For code efficiency the calculation will be:
* compensation = (100 - averageDeviation) * 64 / 100
* NewBlinkTime = (compensation * BlinkTime) / 64
*/
static inline u8
il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
{
if (!compensation) {
IL_ERR("undefined blink compensation: "
"use pre-defined blinking time\n");
return time;
}
return (u8) ((time * compensation) >> 6);
}
/* Set led pattern command */
static int
il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
{
struct il_led_cmd led_cmd = {
.id = IL_LED_LINK,
.interval = IL_DEF_LED_INTRVL
};
int ret;
if (!test_bit(S_READY, &il->status))
return -EBUSY;
if (il->blink_on == on && il->blink_off == off)
return 0;
if (off == 0) {
/* led is SOLID_ON */
on = IL_LED_SOLID;
}
D_LED("Led blink time compensation=%u\n",
il->cfg->led_compensation);
led_cmd.on =
il_blink_compensation(il, on,
il->cfg->led_compensation);
led_cmd.off =
il_blink_compensation(il, off,
il->cfg->led_compensation);
ret = il->ops->send_led_cmd(il, &led_cmd);
if (!ret) {
il->blink_on = on;
il->blink_off = off;
}
return ret;
}
static void
il_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
unsigned long on = 0;
if (brightness > 0)
on = IL_LED_SOLID;
il_led_cmd(il, on, 0);
}
static int
il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
unsigned long *delay_off)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
return il_led_cmd(il, *delay_on, *delay_off);
}
void
il_leds_init(struct il_priv *il)
{
int mode = led_mode;
int ret;
if (mode == IL_LED_DEFAULT)
mode = il->cfg->led_mode;
il->led.name =
kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
il->led.brightness_set = il_led_brightness_set;
il->led.blink_set = il_led_blink_set;
il->led.max_brightness = 1;
switch (mode) {
case IL_LED_DEFAULT:
WARN_ON(1);
break;
case IL_LED_BLINK:
il->led.default_trigger =
ieee80211_create_tpt_led_trigger(il->hw,
IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
il_blink,
ARRAY_SIZE(il_blink));
break;
case IL_LED_RF_STATE:
il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
break;
}
ret = led_classdev_register(&il->pci_dev->dev, &il->led);
if (ret) {
kfree(il->led.name);
return;
}
il->led_registered = true;
}
EXPORT_SYMBOL(il_leds_init);
void
il_leds_exit(struct il_priv *il)
{
if (!il->led_registered)
return;
led_classdev_unregister(&il->led);
kfree(il->led.name);
}
EXPORT_SYMBOL(il_leds_exit);
/************************** EEPROM BANDS ****************************
*
* The il_eeprom_band definitions below provide the mapping from the
* EEPROM contents to the specific channel number supported for each
* band.
*
* For example, il_priv->eeprom.band_3_channels[4] from the band_3
* definition below maps to physical channel 42 in the 5.2GHz spectrum.
* The specific geography and calibration information for that channel
* is contained in the eeprom map itself.
*
* During init, we copy the eeprom information and channel map
* information into il->channel_info_24/52 and il->channel_map_24/52
*
* channel_map_24/52 provides the idx in the channel_info array for a
* given channel. We have to have two separate maps as there is channel
* overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
* band_2
*
* A value of 0xff stored in the channel_map indicates that the channel
* is not supported by the hardware at all.
*
* A value of 0xfe in the channel_map indicates that the channel is not
* valid for Tx with the current hardware. This means that
* while the system can tune and receive on a given channel, it may not
* be able to associate or transmit any frames on that
* channel. There is no corresponding channel information for that
* entry.
*
*********************************************************************/
/* 2.4 GHz */
const u8 il_eeprom_band_1[14] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
/* 5.2 GHz bands */
static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};
static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};
static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};
static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
145, 149, 153, 157, 161, 165
};
static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
1, 2, 3, 4, 5, 6, 7
};
static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
static int
il_eeprom_verify_signature(struct il_priv *il)
{
u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
int ret = 0;
D_EEPROM("EEPROM signature=0x%08x\n", gp);
switch (gp) {
case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
break;
default:
IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
break;
}
return ret;
}
const u8 *
il_eeprom_query_addr(const struct il_priv *il, size_t offset)
{
BUG_ON(offset >= il->cfg->eeprom_size);
return &il->eeprom[offset];
}
EXPORT_SYMBOL(il_eeprom_query_addr);
u16
il_eeprom_query16(const struct il_priv *il, size_t offset)
{
if (!il->eeprom)
return 0;
return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
}
EXPORT_SYMBOL(il_eeprom_query16);
/**
* il_eeprom_init - read EEPROM contents
*
* Load the EEPROM contents from adapter into il->eeprom
*
* NOTE: This routine uses the non-debug IO access functions.
*/
int
il_eeprom_init(struct il_priv *il)
{
__le16 *e;
u32 gp = _il_rd(il, CSR_EEPROM_GP);
int sz;
int ret;
u16 addr;
/* allocate eeprom */
sz = il->cfg->eeprom_size;
D_EEPROM("NVM size = %d\n", sz);
il->eeprom = kzalloc(sz, GFP_KERNEL);
if (!il->eeprom) {
ret = -ENOMEM;
goto alloc_err;
}
e = (__le16 *) il->eeprom;
il->ops->apm_init(il);
ret = il_eeprom_verify_signature(il);
if (ret < 0) {
IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
goto err;
}
/* Make sure driver (instead of uCode) is allowed to read EEPROM */
ret = il->ops->eeprom_acquire_semaphore(il);
if (ret < 0) {
IL_ERR("Failed to acquire EEPROM semaphore.\n");
ret = -ENOENT;
goto err;
}
/* eeprom is an array of 16bit values */
for (addr = 0; addr < sz; addr += sizeof(u16)) {
u32 r;
_il_wr(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
ret =
_il_poll_bit(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_READ_VALID_MSK,
CSR_EEPROM_REG_READ_VALID_MSK,
IL_EEPROM_ACCESS_TIMEOUT);
if (ret < 0) {
IL_ERR("Time out reading EEPROM[%d]\n", addr);
goto done;
}
r = _il_rd(il, CSR_EEPROM_REG);
e[addr / 2] = cpu_to_le16(r >> 16);
}
D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
il_eeprom_query16(il, EEPROM_VERSION));
ret = 0;
done:
il->ops->eeprom_release_semaphore(il);
err:
if (ret)
il_eeprom_free(il);
/* Reset chip to save power until we load uCode during "up". */
il_apm_stop(il);
alloc_err:
return ret;
}
EXPORT_SYMBOL(il_eeprom_init);
void
il_eeprom_free(struct il_priv *il)
{
kfree(il->eeprom);
il->eeprom = NULL;
}
EXPORT_SYMBOL(il_eeprom_free);
static void
il_init_band_reference(const struct il_priv *il, int eep_band,
int *eeprom_ch_count,
const struct il_eeprom_channel **eeprom_ch_info,
const u8 **eeprom_ch_idx)
{
u32 offset = il->cfg->regulatory_bands[eep_band - 1];
switch (eep_band) {
case 1: /* 2.4GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_1;
break;
case 2: /* 4.9GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_2;
break;
case 3: /* 5.2GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_3;
break;
case 4: /* 5.5GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_4;
break;
case 5: /* 5.7GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_5;
break;
case 6: /* 2.4GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_6;
break;
case 7: /* 5 GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
*eeprom_ch_info =
(struct il_eeprom_channel *)il_eeprom_query_addr(il,
offset);
*eeprom_ch_idx = il_eeprom_band_7;
break;
default:
BUG();
}
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
*
* Does not set up a command, or touch hardware.
*/
static int
il_mod_ht40_chan_info(struct il_priv *il, enum ieee80211_band band, u16 channel,
const struct il_eeprom_channel *eeprom_ch,
u8 clear_ht40_extension_channel)
{
struct il_channel_info *ch_info;
ch_info =
(struct il_channel_info *)il_get_channel_info(il, band, channel);
if (!il_is_channel_valid(ch_info))
return -1;
D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n", ch_info->channel,
il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
CHECK_AND_PRINT(DFS), eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
!(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
ch_info->ht40_eeprom = *eeprom_ch;
ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
ch_info->ht40_flags = eeprom_ch->flags;
if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
ch_info->ht40_extension_channel &=
~clear_ht40_extension_channel;
return 0;
}
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_init_channel_map - Set up driver's info for all possible channels
*/
int
il_init_channel_map(struct il_priv *il)
{
int eeprom_ch_count = 0;
const u8 *eeprom_ch_idx = NULL;
const struct il_eeprom_channel *eeprom_ch_info = NULL;
int band, ch;
struct il_channel_info *ch_info;
if (il->channel_count) {
D_EEPROM("Channel map already initialized.\n");
return 0;
}
D_EEPROM("Initializing regulatory info from EEPROM\n");
il->channel_count =
ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
ARRAY_SIZE(il_eeprom_band_5);
D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
il->channel_info =
kzalloc(sizeof(struct il_channel_info) * il->channel_count,
GFP_KERNEL);
if (!il->channel_info) {
IL_ERR("Could not allocate channel_info\n");
il->channel_count = 0;
return -ENOMEM;
}
ch_info = il->channel_info;
/* Loop through the 5 EEPROM bands adding them in order to the
* channel map we maintain (that contains additional information than
* what just in the EEPROM) */
for (band = 1; band <= 5; band++) {
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
ch_info->channel = eeprom_ch_idx[ch];
ch_info->band =
(band ==
1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* permanently store EEPROM's channel regulatory flags
* and max power in channel info database. */
ch_info->eeprom = eeprom_ch_info[ch];
/* Copy the run-time flags so they are there even on
* invalid channels */
ch_info->flags = eeprom_ch_info[ch].flags;
/* First write that ht40 is not enabled, and then enable
* one by one */
ch_info->ht40_extension_channel =
IEEE80211_CHAN_NO_HT40;
if (!(il_is_channel_valid(ch_info))) {
D_EEPROM("Ch. %d Flags %x [%sGHz] - "
"No traffic\n", ch_info->channel,
ch_info->flags,
il_is_channel_a_band(ch_info) ? "5.2" :
"2.4");
ch_info++;
continue;
}
/* Initialize regulatory-based run-time data */
ch_info->max_power_avg = ch_info->curr_txpow =
eeprom_ch_info[ch].max_power_avg;
ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
ch_info->min_power = 0;
D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n", ch_info->channel,
il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(DFS),
eeprom_ch_info[ch].flags,
eeprom_ch_info[ch].max_power_avg,
((eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_IBSS) &&
!(eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_RADAR)) ? "" :
"not ");
ch_info++;
}
}
/* Check if we do have HT40 channels */
if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
return 0;
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
for (band = 6; band <= 7; band++) {
enum ieee80211_band ieeeband;
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
ieeeband =
(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
/* Set up driver's info for lower half */
il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40PLUS);
/* Set up driver's info for upper half */
il_mod_ht40_chan_info(il, ieeeband,
eeprom_ch_idx[ch] + 4,
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40MINUS);
}
}
return 0;
}
EXPORT_SYMBOL(il_init_channel_map);
/*
* il_free_channel_map - undo allocations in il_init_channel_map
*/
void
il_free_channel_map(struct il_priv *il)
{
kfree(il->channel_info);
il->channel_count = 0;
}
EXPORT_SYMBOL(il_free_channel_map);
/**
* il_get_channel_info - Find driver's ilate channel info
*
* Based on band and channel number.
*/
const struct il_channel_info *
il_get_channel_info(const struct il_priv *il, enum ieee80211_band band,
u16 channel)
{
int i;
switch (band) {
case IEEE80211_BAND_5GHZ:
for (i = 14; i < il->channel_count; i++) {
if (il->channel_info[i].channel == channel)
return &il->channel_info[i];
}
break;
case IEEE80211_BAND_2GHZ:
if (channel >= 1 && channel <= 14)
return &il->channel_info[channel - 1];
break;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL(il_get_channel_info);
/*
* Setting power level allows the card to go to sleep when not busy.
*
* We calculate a sleep command based on the required latency, which
* we get from mac80211.
*/
#define SLP_VEC(X0, X1, X2, X3, X4) { \
cpu_to_le32(X0), \
cpu_to_le32(X1), \
cpu_to_le32(X2), \
cpu_to_le32(X3), \
cpu_to_le32(X4) \
}
static void
il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
{
const __le32 interval[3][IL_POWER_VEC_SIZE] = {
SLP_VEC(2, 2, 4, 6, 0xFF),
SLP_VEC(2, 4, 7, 10, 10),
SLP_VEC(4, 7, 10, 10, 0xFF)
};
int i, dtim_period, no_dtim;
u32 max_sleep;
bool skip;
memset(cmd, 0, sizeof(*cmd));
if (il->power_data.pci_pm)
cmd->flags |= IL_POWER_PCI_PM_MSK;
/* if no Power Save, we are done */
if (il->power_data.ps_disabled)
return;
cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK;
cmd->keep_alive_seconds = 0;
cmd->debug_flags = 0;
cmd->rx_data_timeout = cpu_to_le32(25 * 1024);
cmd->tx_data_timeout = cpu_to_le32(25 * 1024);
cmd->keep_alive_beacons = 0;
dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0;
if (dtim_period <= 2) {
memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0]));
no_dtim = 2;
} else if (dtim_period <= 10) {
memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1]));
no_dtim = 2;
} else {
memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2]));
no_dtim = 0;
}
if (dtim_period == 0) {
dtim_period = 1;
skip = false;
} else {
skip = !!no_dtim;
}
if (skip) {
__le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1];
max_sleep = le32_to_cpu(tmp);
if (max_sleep == 0xFF)
max_sleep = dtim_period * (skip + 1);
else if (max_sleep > dtim_period)
max_sleep = (max_sleep / dtim_period) * dtim_period;
cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK;
} else {
max_sleep = dtim_period;
cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK;
}
for (i = 0; i < IL_POWER_VEC_SIZE; i++)
if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
}
static int
il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
{
D_POWER("Sending power/sleep command\n");
D_POWER("Flags value = 0x%08X\n", cmd->flags);
D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
le32_to_cpu(cmd->sleep_interval[0]),
le32_to_cpu(cmd->sleep_interval[1]),
le32_to_cpu(cmd->sleep_interval[2]),
le32_to_cpu(cmd->sleep_interval[3]),
le32_to_cpu(cmd->sleep_interval[4]));
return il_send_cmd_pdu(il, C_POWER_TBL,
sizeof(struct il_powertable_cmd), cmd);
}
static int
il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
{
int ret;
bool update_chains;
lockdep_assert_held(&il->mutex);
/* Don't update the RX chain when chain noise calibration is running */
update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
return 0;
if (!il_is_ready_rf(il))
return -EIO;
/* scan complete use sleep_power_next, need to be updated */
memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
if (test_bit(S_SCANNING, &il->status) && !force) {
D_INFO("Defer power set mode while scanning\n");
return 0;
}
if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
set_bit(S_POWER_PMI, &il->status);
ret = il_set_power(il, cmd);
if (!ret) {
if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
clear_bit(S_POWER_PMI, &il->status);
if (il->ops->update_chain_flags && update_chains)
il->ops->update_chain_flags(il);
else if (il->ops->update_chain_flags)
D_POWER("Cannot update the power, chain noise "
"calibration running: %d\n",
il->chain_noise_data.state);
memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
} else
IL_ERR("set power fail, ret = %d", ret);
return ret;
}
int
il_power_update_mode(struct il_priv *il, bool force)
{
struct il_powertable_cmd cmd;
il_build_powertable_cmd(il, &cmd);
return il_power_set_mode(il, &cmd, force);
}
EXPORT_SYMBOL(il_power_update_mode);
/* initialize to default */
void
il_power_initialize(struct il_priv *il)
{
u16 lctl;
pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
il->power_data.debug_sleep_level_override = -1;
memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
}
EXPORT_SYMBOL(il_power_initialize);
/* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
* sending probe req. This should be set long enough to hear probe responses
* from more than one AP. */
#define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
#define IL_ACTIVE_DWELL_TIME_52 (20)
#define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
#define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
/* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
* Must be set longer than active dwell time.
* For the most reliable scan, set > AP beacon interval (typically 100msec). */
#define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
#define IL_PASSIVE_DWELL_TIME_52 (10)
#define IL_PASSIVE_DWELL_BASE (100)
#define IL_CHANNEL_TUNE_TIME 5
static int
il_send_scan_abort(struct il_priv *il)
{
int ret;
struct il_rx_pkt *pkt;
struct il_host_cmd cmd = {
.id = C_SCAN_ABORT,
.flags = CMD_WANT_SKB,
};
/* Exit instantly with error when device is not ready
* to receive scan abort command or it does not perform
* hardware scan currently */
if (!test_bit(S_READY, &il->status) ||
!test_bit(S_GEO_CONFIGURED, &il->status) ||
!test_bit(S_SCAN_HW, &il->status) ||
test_bit(S_FW_ERROR, &il->status) ||
test_bit(S_EXIT_PENDING, &il->status))
return -EIO;
ret = il_send_cmd_sync(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->u.status != CAN_ABORT_STATUS) {
/* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before we
* the microcode has notified us that a scan is
* completed. */
D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
ret = -EIO;
}
il_free_pages(il, cmd.reply_page);
return ret;
}
static void
il_complete_scan(struct il_priv *il, bool aborted)
{
/* check if scan was requested from mac80211 */
if (il->scan_request) {
D_SCAN("Complete scan in mac80211\n");
ieee80211_scan_completed(il->hw, aborted);
}
il->scan_vif = NULL;
il->scan_request = NULL;
}
void
il_force_scan_end(struct il_priv *il)
{
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Forcing scan end while not scanning\n");
return;
}
D_SCAN("Forcing scan end\n");
clear_bit(S_SCANNING, &il->status);
clear_bit(S_SCAN_HW, &il->status);
clear_bit(S_SCAN_ABORTING, &il->status);
il_complete_scan(il, true);
}
static void
il_do_scan_abort(struct il_priv *il)
{
int ret;
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Not performing scan to abort\n");
return;
}
if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan abort in progress\n");
return;
}
ret = il_send_scan_abort(il);
if (ret) {
D_SCAN("Send scan abort failed %d\n", ret);
il_force_scan_end(il);
} else
D_SCAN("Successfully send scan abort\n");
}
/**
* il_scan_cancel - Cancel any currently executing HW scan
*/
int
il_scan_cancel(struct il_priv *il)
{
D_SCAN("Queuing abort scan\n");
queue_work(il->workqueue, &il->abort_scan);
return 0;
}
EXPORT_SYMBOL(il_scan_cancel);
/**
* il_scan_cancel_timeout - Cancel any currently executing HW scan
* @ms: amount of time to wait (in milliseconds) for scan to abort
*
*/
int
il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies(ms);
lockdep_assert_held(&il->mutex);
D_SCAN("Scan cancel timeout\n");
il_do_scan_abort(il);
while (time_before_eq(jiffies, timeout)) {
if (!test_bit(S_SCAN_HW, &il->status))
break;
msleep(20);
}
return test_bit(S_SCAN_HW, &il->status);
}
EXPORT_SYMBOL(il_scan_cancel_timeout);
/* Service response to C_SCAN (0x80) */
static void
il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CPTCFG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanreq_notification *notif =
(struct il_scanreq_notification *)pkt->u.raw;
D_SCAN("Scan request status = 0x%x\n", notif->status);
#endif
}
/* Service N_SCAN_START (0x82) */
static void
il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanstart_notification *notif =
(struct il_scanstart_notification *)pkt->u.raw;
il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
D_SCAN("Scan start: " "%d [802.11%s] "
"(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
}
/* Service N_SCAN_RESULTS (0x83) */
static void
il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CPTCFG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanresults_notification *notif =
(struct il_scanresults_notification *)pkt->u.raw;
D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
"elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
le32_to_cpu(notif->stats[0]),
le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
#endif
}
/* Service N_SCAN_COMPLETE (0x84) */
static void
il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
{
#ifdef CPTCFG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
#endif
D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
scan_notif->scanned_channels, scan_notif->tsf_low,
scan_notif->tsf_high, scan_notif->status);
/* The HW is no longer scanning */
clear_bit(S_SCAN_HW, &il->status);
D_SCAN("Scan on %sGHz took %dms\n",
(il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
jiffies_to_msecs(jiffies - il->scan_start));
queue_work(il->workqueue, &il->scan_completed);
}
void
il_setup_rx_scan_handlers(struct il_priv *il)
{
/* scan handlers */
il->handlers[C_SCAN] = il_hdl_scan;
il->handlers[N_SCAN_START] = il_hdl_scan_start;
il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
}
EXPORT_SYMBOL(il_setup_rx_scan_handlers);
u16
il_get_active_dwell_time(struct il_priv *il, enum ieee80211_band band,
u8 n_probes)
{
if (band == IEEE80211_BAND_5GHZ)
return IL_ACTIVE_DWELL_TIME_52 +
IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
else
return IL_ACTIVE_DWELL_TIME_24 +
IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
}
EXPORT_SYMBOL(il_get_active_dwell_time);
u16
il_get_passive_dwell_time(struct il_priv *il, enum ieee80211_band band,
struct ieee80211_vif *vif)
{
u16 value;
u16 passive =
(band ==
IEEE80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
IL_PASSIVE_DWELL_TIME_52;
if (il_is_any_associated(il)) {
/*
* If we're associated, we clamp the maximum passive
* dwell time to be 98% of the smallest beacon interval
* (minus 2 * channel tune time)
*/
value = il->vif ? il->vif->bss_conf.beacon_int : 0;
if (value > IL_PASSIVE_DWELL_BASE || !value)
value = IL_PASSIVE_DWELL_BASE;
value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
passive = min(value, passive);
}
return passive;
}
EXPORT_SYMBOL(il_get_passive_dwell_time);
void
il_init_scan_params(struct il_priv *il)
{
u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
}
EXPORT_SYMBOL(il_init_scan_params);
static int
il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
{
int ret;
lockdep_assert_held(&il->mutex);
cancel_delayed_work(&il->scan_check);
if (!il_is_ready_rf(il)) {
IL_WARN("Request scan called when driver not ready.\n");
return -EIO;
}
if (test_bit(S_SCAN_HW, &il->status)) {
D_SCAN("Multiple concurrent scan requests in parallel.\n");
return -EBUSY;
}
if (test_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan request while abort pending.\n");
return -EBUSY;
}
D_SCAN("Starting scan...\n");
set_bit(S_SCANNING, &il->status);
il->scan_start = jiffies;
ret = il->ops->request_scan(il, vif);
if (ret) {
clear_bit(S_SCANNING, &il->status);
return ret;
}
queue_delayed_work(il->workqueue, &il->scan_check,
IL_SCAN_CHECK_WATCHDOG);
return 0;
}
int
il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_scan_request *hw_req)
{
struct cfg80211_scan_request *req = &hw_req->req;
struct il_priv *il = hw->priv;
int ret;
if (req->n_channels == 0) {
IL_ERR("Can not scan on no channels.\n");
return -EINVAL;
}
mutex_lock(&il->mutex);
D_MAC80211("enter\n");
if (test_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already in progress.\n");
ret = -EAGAIN;
goto out_unlock;
}
/* mac80211 will only ask for one band at a time */
il->scan_request = req;
il->scan_vif = vif;
il->scan_band = req->channels[0]->band;
ret = il_scan_initiate(il, vif);
out_unlock:
D_MAC80211("leave ret %d\n", ret);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_hw_scan);
static void
il_bg_scan_check(struct work_struct *data)
{
struct il_priv *il =
container_of(data, struct il_priv, scan_check.work);
D_SCAN("Scan check work\n");
/* Since we are here firmware does not finish scan and
* most likely is in bad shape, so we don't bother to
* send abort command, just force scan complete to mac80211 */
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
/**
* il_fill_probe_req - fill in all required fields and IE for probe request
*/
u16
il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
const u8 *ta, const u8 *ies, int ie_len, int left)
{
int len = 0;
u8 *pos = NULL;
/* Make sure there is enough space for the probe request,
* two mandatory IEs and the data */
left -= 24;
if (left < 0)
return 0;
frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
eth_broadcast_addr(frame->da);
memcpy(frame->sa, ta, ETH_ALEN);
eth_broadcast_addr(frame->bssid);
frame->seq_ctrl = 0;
len += 24;
/* ...next IE... */
pos = &frame->u.probe_req.variable[0];
/* fill in our indirect SSID IE */
left -= 2;
if (left < 0)
return 0;
*pos++ = WLAN_EID_SSID;
*pos++ = 0;
len += 2;
if (WARN_ON(left < ie_len))
return len;
if (ies && ie_len) {
memcpy(pos, ies, ie_len);
len += ie_len;
}
return (u16) len;
}
EXPORT_SYMBOL(il_fill_probe_req);
static void
il_bg_abort_scan(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv, abort_scan);
D_SCAN("Abort scan work\n");
/* We keep scan_check work queued in case when firmware will not
* report back scan completed notification */
mutex_lock(&il->mutex);
il_scan_cancel_timeout(il, 200);
mutex_unlock(&il->mutex);
}
static void
il_bg_scan_completed(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv, scan_completed);
bool aborted;
D_SCAN("Completed scan.\n");
cancel_delayed_work(&il->scan_check);
mutex_lock(&il->mutex);
aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
if (aborted)
D_SCAN("Aborted scan completed.\n");
if (!test_and_clear_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already completed.\n");
goto out_settings;
}
il_complete_scan(il, aborted);
out_settings:
/* Can we still talk to firmware ? */
if (!il_is_ready_rf(il))
goto out;
/*
* We do not commit power settings while scan is pending,
* do it now if the settings changed.
*/
il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
il_set_tx_power(il, il->tx_power_next, false);
il->ops->post_scan(il);
out:
mutex_unlock(&il->mutex);
}
void
il_setup_scan_deferred_work(struct il_priv *il)
{
INIT_WORK(&il->scan_completed, il_bg_scan_completed);
INIT_WORK(&il->abort_scan, il_bg_abort_scan);
INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
}
EXPORT_SYMBOL(il_setup_scan_deferred_work);
void
il_cancel_scan_deferred_work(struct il_priv *il)
{
cancel_work_sync(&il->abort_scan);
cancel_work_sync(&il->scan_completed);
if (cancel_delayed_work_sync(&il->scan_check)) {
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
}
EXPORT_SYMBOL(il_cancel_scan_deferred_work);
/* il->sta_lock must be held */
static void
il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
{
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
sta_id, il->stations[sta_id].sta.sta.addr);
if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
D_ASSOC("STA id %u addr %pM already present"
" in uCode (according to driver)\n", sta_id,
il->stations[sta_id].sta.sta.addr);
} else {
il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
il->stations[sta_id].sta.sta.addr);
}
}
static int
il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
struct il_rx_pkt *pkt, bool sync)
{
u8 sta_id = addsta->sta.sta_id;
unsigned long flags;
int ret = -EIO;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
return ret;
}
D_INFO("Processing response for adding station %u\n", sta_id);
spin_lock_irqsave(&il->sta_lock, flags);
switch (pkt->u.add_sta.status) {
case ADD_STA_SUCCESS_MSK:
D_INFO("C_ADD_STA PASSED\n");
il_sta_ucode_activate(il, sta_id);
ret = 0;
break;
case ADD_STA_NO_ROOM_IN_TBL:
IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
break;
case ADD_STA_NO_BLOCK_ACK_RESOURCE:
IL_ERR("Adding station %d failed, no block ack resource.\n",
sta_id);
break;
case ADD_STA_MODIFY_NON_EXIST_STA:
IL_ERR("Attempting to modify non-existing station %d\n",
sta_id);
break;
default:
D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
break;
}
D_INFO("%s station id %u addr %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
il->stations[sta_id].sta.sta.addr);
/*
* XXX: The MAC address in the command buffer is often changed from
* the original sent to the device. That is, the MAC address
* written to the command buffer often is not the same MAC address
* read from the command buffer when the command returns. This
* issue has not yet been resolved and this debugging is left to
* observe the problem.
*/
D_INFO("%s station according to cmd buffer %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
spin_unlock_irqrestore(&il->sta_lock, flags);
return ret;
}
static void
il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
il_process_add_sta_resp(il, addsta, pkt, false);
}
int
il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
{
struct il_rx_pkt *pkt = NULL;
int ret = 0;
u8 data[sizeof(*sta)];
struct il_host_cmd cmd = {
.id = C_ADD_STA,
.flags = flags,
.data = data,
};
u8 sta_id __maybe_unused = sta->sta.sta_id;
D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
flags & CMD_ASYNC ? "a" : "");
if (flags & CMD_ASYNC)
cmd.callback = il_add_sta_callback;
else {
cmd.flags |= CMD_WANT_SKB;
might_sleep();
}
cmd.len = il->ops->build_addsta_hcmd(sta, data);
ret = il_send_cmd(il, &cmd);
if (ret)
return ret;
if (flags & CMD_ASYNC)
return 0;
pkt = (struct il_rx_pkt *)cmd.reply_page;
ret = il_process_add_sta_resp(il, sta, pkt, true);
il_free_pages(il, cmd.reply_page);
return ret;
}
EXPORT_SYMBOL(il_send_add_sta);
static void
il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
{
struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
__le32 sta_flags;
if (!sta || !sta_ht_inf->ht_supported)
goto done;
D_ASSOC("spatial multiplexing power save mode: %s\n",
(sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
(sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
"disabled");
sta_flags = il->stations[idx].sta.station_flags;
sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
switch (sta->smps_mode) {
case IEEE80211_SMPS_STATIC:
sta_flags |= STA_FLG_MIMO_DIS_MSK;
break;
case IEEE80211_SMPS_DYNAMIC:
sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
break;
case IEEE80211_SMPS_OFF:
break;
default:
IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
break;
}
sta_flags |=
cpu_to_le32((u32) sta_ht_inf->
ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
sta_flags |=
cpu_to_le32((u32) sta_ht_inf->
ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
sta_flags |= STA_FLG_HT40_EN_MSK;
else
sta_flags &= ~STA_FLG_HT40_EN_MSK;
il->stations[idx].sta.station_flags = sta_flags;
done:
return;
}
/**
* il_prep_station - Prepare station information for addition
*
* should be called with sta_lock held
*/
u8
il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta)
{
struct il_station_entry *station;
int i;
u8 sta_id = IL_INVALID_STATION;
u16 rate;
if (is_ap)
sta_id = IL_AP_ID;
else if (is_broadcast_ether_addr(addr))
sta_id = il->hw_params.bcast_id;
else
for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
if (ether_addr_equal(il->stations[i].sta.sta.addr,
addr)) {
sta_id = i;
break;
}
if (!il->stations[i].used &&
sta_id == IL_INVALID_STATION)
sta_id = i;
}
/*
* These two conditions have the same outcome, but keep them
* separate
*/
if (unlikely(sta_id == IL_INVALID_STATION))
return sta_id;
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO("STA %d already in process of being added.\n", sta_id);
return sta_id;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
D_ASSOC("STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
return sta_id;
}
station = &il->stations[sta_id];
station->used = IL_STA_DRIVER_ACTIVE;
D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
il->num_stations++;
/* Set up the C_ADD_STA command to send to device */
memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
memcpy(station->sta.sta.addr, addr, ETH_ALEN);
station->sta.mode = 0;
station->sta.sta.sta_id = sta_id;
station->sta.station_flags = 0;
/*
* OK to call unconditionally, since local stations (IBSS BSSID
* STA and broadcast STA) pass in a NULL sta, and mac80211
* doesn't allow HT IBSS.
*/
il_set_ht_add_station(il, sta_id, sta);
/* 3945 only */
rate = (il->band == IEEE80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
/* Turn on both antennas for the station... */
station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
return sta_id;
}
EXPORT_SYMBOL_GPL(il_prep_station);
#define STA_WAIT_TIMEOUT (HZ/2)
/**
* il_add_station_common -
*/
int
il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
struct ieee80211_sta *sta, u8 *sta_id_r)
{
unsigned long flags_spin;
int ret = 0;
u8 sta_id;
struct il_addsta_cmd sta_cmd;
*sta_id_r = 0;
spin_lock_irqsave(&il->sta_lock, flags_spin);
sta_id = il_prep_station(il, addr, is_ap, sta);
if (sta_id == IL_INVALID_STATION) {
IL_ERR("Unable to prepare station %pM for addition\n", addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO("STA %d already in process of being added.\n", sta_id);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC("STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
memcpy(&sta_cmd, &il->stations[sta_id].sta,
sizeof(struct il_addsta_cmd));
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
/* Add station to device's station table */
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[sta_id].sta.sta.addr);
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
*sta_id_r = sta_id;
return ret;
}
EXPORT_SYMBOL(il_add_station_common);
/**
* il_sta_ucode_deactivate - deactivate ucode status for a station
*
* il->sta_lock must be held
*/
static void
il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
{
/* Ucode must be active and driver must be non active */
if ((il->stations[sta_id].
used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
IL_STA_UCODE_ACTIVE)
IL_ERR("removed non active STA %u\n", sta_id);
il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
D_ASSOC("Removed STA %u\n", sta_id);
}
static int
il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
bool temporary)
{
struct il_rx_pkt *pkt;
int ret;
unsigned long flags_spin;
struct il_rem_sta_cmd rm_sta_cmd;
struct il_host_cmd cmd = {
.id = C_REM_STA,
.len = sizeof(struct il_rem_sta_cmd),
.flags = CMD_SYNC,
.data = &rm_sta_cmd,
};
memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
rm_sta_cmd.num_sta = 1;
memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
cmd.flags |= CMD_WANT_SKB;
ret = il_send_cmd(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
ret = -EIO;
}
if (!ret) {
switch (pkt->u.rem_sta.status) {
case REM_STA_SUCCESS_MSK:
if (!temporary) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
il_sta_ucode_deactivate(il, sta_id);
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
D_ASSOC("C_REM_STA PASSED\n");
break;
default:
ret = -EIO;
IL_ERR("C_REM_STA failed\n");
break;
}
}
il_free_pages(il, cmd.reply_page);
return ret;
}
/**
* il_remove_station - Remove driver's knowledge of station.
*/
int
il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
{
unsigned long flags;
if (!il_is_ready(il)) {
D_INFO("Unable to remove station %pM, device not ready.\n",
addr);
/*
* It is typical for stations to be removed when we are
* going down. Return success since device will be down
* soon anyway
*/
return 0;
}
D_ASSOC("Removing STA from driver:%d %pM\n", sta_id, addr);
if (WARN_ON(sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags);
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
D_INFO("Removing %pM but non DRIVER active\n", addr);
goto out_err;
}
if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_INFO("Removing %pM but non UCODE active\n", addr);
goto out_err;
}
if (il->stations[sta_id].used & IL_STA_LOCAL) {
kfree(il->stations[sta_id].lq);
il->stations[sta_id].lq = NULL;
}
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
spin_unlock_irqrestore(&il->sta_lock, flags);
return il_send_remove_station(il, addr, sta_id, false);
out_err:
spin_unlock_irqrestore(&il->sta_lock, flags);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(il_remove_station);
/**
* il_clear_ucode_stations - clear ucode station table bits
*
* This function clears all the bits in the driver indicating
* which stations are active in the ucode. Call when something
* other than explicit station management would cause this in
* the ucode, e.g. unassociated RXON.
*/
void
il_clear_ucode_stations(struct il_priv *il)
{
int i;
unsigned long flags_spin;
bool cleared = false;
D_INFO("Clearing ucode stations in driver\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
D_INFO("Clearing ucode active for station %d\n", i);
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
cleared = true;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!cleared)
D_INFO("No active stations found to be cleared\n");
}
EXPORT_SYMBOL(il_clear_ucode_stations);
/**
* il_restore_stations() - Restore driver known stations to device
*
* All stations considered active by driver, but not present in ucode, is
* restored.
*
* Function sleeps.
*/
void
il_restore_stations(struct il_priv *il)
{
struct il_addsta_cmd sta_cmd;
struct il_link_quality_cmd lq;
unsigned long flags_spin;
int i;
bool found = false;
int ret;
bool send_lq;
if (!il_is_ready(il)) {
D_INFO("Not ready yet, not restoring any stations.\n");
return;
}
D_ASSOC("Restoring all known stations ... start.\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
!(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC("Restoring sta %pM\n",
il->stations[i].sta.sta.addr);
il->stations[i].sta.mode = 0;
il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
found = true;
}
}
for (i = 0; i < il->hw_params.max_stations; i++) {
if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
memcpy(&sta_cmd, &il->stations[i].sta,
sizeof(struct il_addsta_cmd));
send_lq = false;
if (il->stations[i].lq) {
memcpy(&lq, il->stations[i].lq,
sizeof(struct il_link_quality_cmd));
send_lq = true;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[i].sta.sta.addr);
il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
il->stations[i].used &=
~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
/*
* Rate scaling has already been initialized, send
* current LQ command
*/
if (send_lq)
il_send_lq_cmd(il, &lq, CMD_SYNC, true);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!found)
D_INFO("Restoring all known stations"
" .... no stations to be restored.\n");
else
D_INFO("Restoring all known stations" " .... complete.\n");
}
EXPORT_SYMBOL(il_restore_stations);
int
il_get_free_ucode_key_idx(struct il_priv *il)
{
int i;
for (i = 0; i < il->sta_key_max_num; i++)
if (!test_and_set_bit(i, &il->ucode_key_table))
return i;
return WEP_INVALID_OFFSET;
}
EXPORT_SYMBOL(il_get_free_ucode_key_idx);
void
il_dealloc_bcast_stations(struct il_priv *il)
{
unsigned long flags;
int i;
spin_lock_irqsave(&il->sta_lock, flags);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (!(il->stations[i].used & IL_STA_BCAST))
continue;
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
kfree(il->stations[i].lq);
il->stations[i].lq = NULL;
}
spin_unlock_irqrestore(&il->sta_lock, flags);
}
EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
#ifdef CPTCFG_IWLEGACY_DEBUG
static void
il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
{
int i;
D_RATE("lq station id 0x%x\n", lq->sta_id);
D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
lq->general_params.dual_stream_ant_msk);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
}
#else
static inline void
il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
{
}
#endif
/**
* il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
*
* It sometimes happens when a HT rate has been in use and we
* loose connectivity with AP then mac80211 will first tell us that the
* current channel is not HT anymore before removing the station. In such a
* scenario the RXON flags will be updated to indicate we are not
* communicating HT anymore, but the LQ command may still contain HT rates.
* Test for this to prevent driver from sending LQ command between the time
* RXON flags are updated and when LQ command is updated.
*/
static bool
il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
{
int i;
if (il->ht.enabled)
return true;
D_INFO("Channel %u is not an HT channel\n", il->active.channel);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
D_INFO("idx %d of LQ expects HT channel\n", i);
return false;
}
}
return true;
}
/**
* il_send_lq_cmd() - Send link quality command
* @init: This command is sent as part of station initialization right
* after station has been added.
*
* The link quality command is sent as the last step of station creation.
* This is the special case in which init is set and we call a callback in
* this case to clear the state indicating that station creation is in
* progress.
*/
int
il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
u8 flags, bool init)
{
int ret = 0;
unsigned long flags_spin;
struct il_host_cmd cmd = {
.id = C_TX_LINK_QUALITY_CMD,
.len = sizeof(struct il_link_quality_cmd),
.flags = flags,
.data = lq,
};
if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags_spin);
if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
il_dump_lq_cmd(il, lq);
BUG_ON(init && (cmd.flags & CMD_ASYNC));
if (il_is_lq_table_valid(il, lq))
ret = il_send_cmd(il, &cmd);
else
ret = -EINVAL;
if (cmd.flags & CMD_ASYNC)
return ret;
if (init) {
D_INFO("init LQ command complete,"
" clearing sta addition status for sta %d\n",
lq->sta_id);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
return ret;
}
EXPORT_SYMBOL(il_send_lq_cmd);
int
il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct il_priv *il = hw->priv;
struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
int ret;
mutex_lock(&il->mutex);
D_MAC80211("enter station %pM\n", sta->addr);
ret = il_remove_station(il, sta_common->sta_id, sta->addr);
if (ret)
IL_ERR("Error removing station %pM\n", sta->addr);
D_MAC80211("leave ret %d\n", ret);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_sta_remove);
/************************** RX-FUNCTIONS ****************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of idxes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two idx registers for managing the Rx buffers.
*
* The READ idx maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ idx is managed by the firmware once the card is enabled.
*
* The WRITE idx maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* IDX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ idx
* and fire the RX interrupt. The driver can then query the READ idx and
* process as many packets as possible, moving the WRITE idx forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ IDX is updated (updating the
* 'processed' and 'read' driver idxes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' idx is updated.
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
* IDX is not incremented and iwl->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* il_rx_queue_alloc() Allocates rx_free
* il_rx_replenish() Replenishes rx_free list from rx_used, and calls
* il_rx_queue_restock
* il_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE idx. If insufficient rx_free buffers
* are available, schedules il_rx_replenish
*
* -- enable interrupts --
* ISR - il_rx() Detach il_rx_bufs from pool up to the
* READ IDX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls il_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/**
* il_rx_queue_space - Return number of free slots available in queue.
*/
int
il_rx_queue_space(const struct il_rx_queue *q)
{
int s = q->read - q->write;
if (s <= 0)
s += RX_QUEUE_SIZE;
/* keep some buffer to not confuse full and empty queue */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(il_rx_queue_space);
/**
* il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
*/
void
il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
{
unsigned long flags;
u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
u32 reg;
spin_lock_irqsave(&q->lock, flags);
if (q->need_update == 0)
goto exit_unlock;
/* If power-saving is in use, make sure device is awake */
if (test_bit(S_POWER_PMI, &il->status)) {
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
goto exit_unlock;
}
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg, q->write_actual);
/* Else device is assumed to be awake */
} else {
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg, q->write_actual);
}
q->need_update = 0;
exit_unlock:
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
int
il_rx_queue_alloc(struct il_priv *il)
{
struct il_rx_queue *rxq = &il->rxq;
struct device *dev = &il->pci_dev->dev;
int i;
spin_lock_init(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
GFP_KERNEL);
if (!rxq->bd)
goto err_bd;
rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
&rxq->rb_stts_dma, GFP_KERNEL);
if (!rxq->rb_stts)
goto err_rb;
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
rxq->free_count = 0;
rxq->need_update = 0;
return 0;
err_rb:
dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
rxq->bd_dma);
err_bd:
return -ENOMEM;
}
EXPORT_SYMBOL(il_rx_queue_alloc);
void
il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
if (!report->state) {
D_11H("Spectrum Measure Notification: Start\n");
return;
}
memcpy(&il->measure_report, report, sizeof(*report));
il->measurement_status |= MEASUREMENT_READY;
}
EXPORT_SYMBOL(il_hdl_spectrum_measurement);
/*
* returns non-zero if packet should be dropped
*/
int
il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
u32 decrypt_res, struct ieee80211_rx_status *stats)
{
u16 fc = le16_to_cpu(hdr->frame_control);
/*
* All contexts have the same setting here due to it being
* a module parameter, so OK to check any context.
*/
if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
return 0;
if (!(fc & IEEE80211_FCTL_PROTECTED))
return 0;
D_RX("decrypt_res:0x%x\n", decrypt_res);
switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
case RX_RES_STATUS_SEC_TYPE_TKIP:
/* The uCode has got a bad phase 1 Key, pushes the packet.
* Decryption will be done in SW. */
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_KEY_TTAK)
break;
case RX_RES_STATUS_SEC_TYPE_WEP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_ICV_MIC) {
/* bad ICV, the packet is destroyed since the
* decryption is inplace, drop it */
D_RX("Packet destroyed\n");
return -1;
}
case RX_RES_STATUS_SEC_TYPE_CCMP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_DECRYPT_OK) {
D_RX("hw decrypt successfully!!!\n");
stats->flag |= RX_FLAG_DECRYPTED;
}
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL(il_set_decrypted_flag);
/**
* il_txq_update_write_ptr - Send new write idx to hardware
*/
void
il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
{
u32 reg = 0;
int txq_id = txq->q.id;
if (txq->need_update == 0)
return;
/* if we're trying to save power */
if (test_bit(S_POWER_PMI, &il->status)) {
/* wake up nic if it's powered down ...
* uCode will wake up, and interrupt us again, so next
* time we'll skip this part. */
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
txq_id, reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
return;
}
il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
/*
* else not in power-save mode,
* uCode will never sleep when we're
* trying to tx (during RFKILL, we're not trying to tx).
*/
} else
_il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
txq->need_update = 0;
}
EXPORT_SYMBOL(il_txq_update_write_ptr);
/**
* il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
*/
void
il_tx_queue_unmap(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
if (q->n_bd == 0)
return;
while (q->write_ptr != q->read_ptr) {
il->ops->txq_free_tfd(il, txq);
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
}
}
EXPORT_SYMBOL(il_tx_queue_unmap);
/**
* il_tx_queue_free - Deallocate DMA queue.
* @txq: Transmit queue to deallocate.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
* 0-fill, but do not free "txq" descriptor structure.
*/
void
il_tx_queue_free(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct device *dev = &il->pci_dev->dev;
int i;
il_tx_queue_unmap(il, txq_id);
/* De-alloc array of command/tx buffers */
for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
kfree(txq->cmd[i]);
/* De-alloc circular buffer of TFDs */
if (txq->q.n_bd)
dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
txq->tfds, txq->q.dma_addr);
/* De-alloc array of per-TFD driver data */
kfree(txq->skbs);
txq->skbs = NULL;
/* deallocate arrays */
kfree(txq->cmd);
kfree(txq->meta);
txq->cmd = NULL;
txq->meta = NULL;
/* 0-fill queue descriptor structure */
memset(txq, 0, sizeof(*txq));
}
EXPORT_SYMBOL(il_tx_queue_free);
/**
* il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
*/
void
il_cmd_queue_unmap(