| #ifndef _LINUX_LIST_H |
| #define _LINUX_LIST_H |
| |
| #ifndef ARCH_HAS_PREFETCH |
| #define ARCH_HAS_PREFETCH |
| static inline void prefetch(const void *x) {;} |
| #endif |
| |
| /* |
| * Simple doubly linked list implementation. |
| * |
| * Some of the internal functions ("__xxx") are useful when |
| * manipulating whole lists rather than single entries, as |
| * sometimes we already know the next/prev entries and we can |
| * generate better code by using them directly rather than |
| * using the generic single-entry routines. |
| */ |
| |
| struct list_head { |
| struct list_head *next, *prev; |
| }; |
| |
| #define LIST_HEAD_INIT(name) { &(name), &(name) } |
| |
| #define LIST_HEAD(name) \ |
| struct list_head name = LIST_HEAD_INIT(name) |
| |
| #define INIT_LIST_HEAD(ptr) do { \ |
| (ptr)->next = (ptr); (ptr)->prev = (ptr); \ |
| } while (0) |
| |
| /* |
| * Insert a new entry between two known consecutive entries. |
| * |
| * This is only for internal list manipulation where we know |
| * the prev/next entries already! |
| */ |
| static inline void __list_add(struct list_head *new, |
| struct list_head *prev, |
| struct list_head *next) |
| { |
| next->prev = new; |
| new->next = next; |
| new->prev = prev; |
| prev->next = new; |
| } |
| |
| /** |
| * list_add - add a new entry |
| * @new: new entry to be added |
| * @head: list head to add it after |
| * |
| * Insert a new entry after the specified head. |
| * This is good for implementing stacks. |
| */ |
| static inline void list_add(struct list_head *new, struct list_head *head) |
| { |
| __list_add(new, head, head->next); |
| } |
| |
| /** |
| * list_add_tail - add a new entry |
| * @new: new entry to be added |
| * @head: list head to add it before |
| * |
| * Insert a new entry before the specified head. |
| * This is useful for implementing queues. |
| */ |
| static inline void list_add_tail(struct list_head *new, struct list_head *head) |
| { |
| __list_add(new, head->prev, head); |
| } |
| |
| /* |
| * Delete a list entry by making the prev/next entries |
| * point to each other. |
| * |
| * This is only for internal list manipulation where we know |
| * the prev/next entries already! |
| */ |
| static inline void __list_del(struct list_head *prev, struct list_head *next) |
| { |
| next->prev = prev; |
| prev->next = next; |
| } |
| |
| /** |
| * list_del - deletes entry from list. |
| * @entry: the element to delete from the list. |
| * Note: list_empty on entry does not return true after this, the entry is in an undefined state. |
| */ |
| static inline void list_del(struct list_head *entry) |
| { |
| __list_del(entry->prev, entry->next); |
| entry->next = (void *) 0; |
| entry->prev = (void *) 0; |
| } |
| |
| /** |
| * list_del_init - deletes entry from list and reinitialize it. |
| * @entry: the element to delete from the list. |
| */ |
| static inline void list_del_init(struct list_head *entry) |
| { |
| __list_del(entry->prev, entry->next); |
| INIT_LIST_HEAD(entry); |
| } |
| |
| /** |
| * list_move - delete from one list and add as another's head |
| * @list: the entry to move |
| * @head: the head that will precede our entry |
| */ |
| static inline void list_move(struct list_head *list, struct list_head *head) |
| { |
| __list_del(list->prev, list->next); |
| list_add(list, head); |
| } |
| |
| /** |
| * list_move_tail - delete from one list and add as another's tail |
| * @list: the entry to move |
| * @head: the head that will follow our entry |
| */ |
| static inline void list_move_tail(struct list_head *list, |
| struct list_head *head) |
| { |
| __list_del(list->prev, list->next); |
| list_add_tail(list, head); |
| } |
| |
| /** |
| * list_empty - tests whether a list is empty |
| * @head: the list to test. |
| */ |
| static inline int list_empty(struct list_head *head) |
| { |
| return head->next == head; |
| } |
| |
| static inline void __list_splice(struct list_head *list, |
| struct list_head *head) |
| { |
| struct list_head *first = list->next; |
| struct list_head *last = list->prev; |
| struct list_head *at = head->next; |
| |
| first->prev = head; |
| head->next = first; |
| |
| last->next = at; |
| at->prev = last; |
| } |
| |
| /** |
| * list_splice - join two lists |
| * @list: the new list to add. |
| * @head: the place to add it in the first list. |
| */ |
| static inline void list_splice(struct list_head *list, struct list_head *head) |
| { |
| if (!list_empty(list)) |
| __list_splice(list, head); |
| } |
| |
| /** |
| * list_splice_init - join two lists and reinitialise the emptied list. |
| * @list: the new list to add. |
| * @head: the place to add it in the first list. |
| * |
| * The list at @list is reinitialised |
| */ |
| static inline void list_splice_init(struct list_head *list, |
| struct list_head *head) |
| { |
| if (!list_empty(list)) { |
| __list_splice(list, head); |
| INIT_LIST_HEAD(list); |
| } |
| } |
| |
| /** |
| * list_entry - get the struct for this entry |
| * @ptr: the &struct list_head pointer. |
| * @type: the type of the struct this is embedded in. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_entry(ptr, type, member) \ |
| ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) |
| |
| /** |
| * list_for_each - iterate over a list |
| * @pos: the &struct list_head to use as a loop counter. |
| * @head: the head for your list. |
| */ |
| #define list_for_each(pos, head) \ |
| for (pos = (head)->next, prefetch(pos->next); pos != (head); \ |
| pos = pos->next, prefetch(pos->next)) |
| /** |
| * list_for_each_prev - iterate over a list backwards |
| * @pos: the &struct list_head to use as a loop counter. |
| * @head: the head for your list. |
| */ |
| #define list_for_each_prev(pos, head) \ |
| for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \ |
| pos = pos->prev, prefetch(pos->prev)) |
| |
| /** |
| * list_for_each_safe - iterate over a list safe against removal of list entry |
| * @pos: the &struct list_head to use as a loop counter. |
| * @n: another &struct list_head to use as temporary storage |
| * @head: the head for your list. |
| */ |
| #define list_for_each_safe(pos, n, head) \ |
| for (pos = (head)->next, n = pos->next; pos != (head); \ |
| pos = n, n = pos->next) |
| |
| /** |
| * list_for_each_entry - iterate over list of given type |
| * @pos: the type * to use as a loop counter. |
| * @head: the head for your list. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_for_each_entry(pos, head, member) \ |
| for (pos = list_entry((head)->next, typeof(*pos), member), \ |
| prefetch(pos->member.next); \ |
| &pos->member != (head); \ |
| pos = list_entry(pos->member.next, typeof(*pos), member), \ |
| prefetch(pos->member.next)) |
| |
| /** |
| * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry |
| * @pos: the type * to use as a loop counter. |
| * @n: another type * to use as temporary storage |
| * @head: the head for your list. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_for_each_entry_safe(pos, n, head, member) \ |
| for (pos = list_entry((head)->next, typeof(*pos), member), \ |
| n = list_entry(pos->member.next, typeof(*pos), member); \ |
| &pos->member != (head); \ |
| pos = n, n = list_entry(n->member.next, typeof(*n), member)) |
| |
| /** |
| * list_for_each_entry_continue - iterate over list of given type |
| * continuing after existing point |
| * @pos: the type * to use as a loop counter. |
| * @head: the head for your list. |
| * @member: the name of the list_struct within the struct. |
| */ |
| #define list_for_each_entry_continue(pos, head, member) \ |
| for (pos = list_entry(pos->member.next, typeof(*pos), member), \ |
| prefetch(pos->member.next); \ |
| &pos->member != (head); \ |
| pos = list_entry(pos->member.next, typeof(*pos), member), \ |
| prefetch(pos->member.next)) |
| |
| #endif |