blob: bb59d1833e31962a67b6002715485202bffb9dab [file] [log] [blame]
/*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright (c) 2013 Qualcomm Atheros, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Memory Functions
*
* Copied from FADS ROM, Dan Malek (dmalek@jlc.net)
*/
#include <common.h>
#include <command.h>
#if (CONFIG_COMMANDS & CFG_CMD_MMC)
#include <mmc.h>
#endif
#ifdef CONFIG_HAS_DATAFLASH
#include <dataflash.h>
#endif
#include "defines.h"
#if (CONFIG_COMMANDS & (CFG_CMD_MEMORY | \
CFG_CMD_I2C | \
CFG_CMD_ITEST | \
CFG_CMD_PCI | \
CMD_CMD_PORTIO ) )
int cmd_get_data_size(char* arg, int default_size)
{
/* Check for a size specification .b, .w or .l.
*/
int len = strlen(arg);
if (len > 2 && arg[len-2] == '.') {
switch(arg[len-1]) {
case 'b':
return 1;
case 'w':
return 2;
case 'l':
return 4;
case 's':
return -2;
default:
return -1;
}
}
return default_size;
}
#endif
#if (CONFIG_COMMANDS & CFG_CMD_MEMORY)
#ifdef CMD_MEM_DEBUG
#define PRINTF(fmt,args...) printf (fmt ,##args)
#else
#define PRINTF(fmt,args...)
#endif
static int mod_mem(cmd_tbl_t *, int, int, int, char *[]);
/* Display values from last command.
* Memory modify remembered values are different from display memory.
*/
uint dp_last_addr, dp_last_size;
uint dp_last_length = 0x40;
uint mm_last_addr, mm_last_size;
static ulong base_address = 0;
/* Memory Display
*
* Syntax:
* md{.b, .w, .l} {addr} {len}
*/
#define DISP_LINE_LEN 16
int do_mem_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, length;
ulong i, nbytes, linebytes;
u_char *cp;
int size;
int rc = 0;
/* We use the last specified parameters, unless new ones are
* entered.
*/
addr = dp_last_addr;
size = dp_last_size;
length = dp_last_length;
if (argc < 2) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if ((flag & CMD_FLAG_REPEAT) == 0) {
/* New command specified. Check for a size specification.
* Defaults to long if no or incorrect specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
/* Address is specified since argc > 1
*/
addr = simple_strtoul(argv[1], NULL, 16);
addr += base_address;
/* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 2)
length = simple_strtoul(argv[2], NULL, 16);
}
/* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once, and all accesses are with the specified bus width.
*/
nbytes = length * size;
do {
char linebuf[DISP_LINE_LEN];
uint *uip = (uint *)linebuf;
ushort *usp = (ushort *)linebuf;
u_char *ucp = (u_char *)linebuf;
#ifdef CONFIG_HAS_DATAFLASH
int rc;
#endif
printf("%08lx:", addr);
linebytes = (nbytes>DISP_LINE_LEN)?DISP_LINE_LEN:nbytes;
#ifdef CONFIG_HAS_DATAFLASH
if ((rc = read_dataflash(addr, (linebytes/size)*size, linebuf)) == DATAFLASH_OK){
/* if outside dataflash */
/*if (rc != 1) {
dataflash_perror (rc);
return (1);
}*/
for (i=0; i<linebytes; i+= size) {
if (size == 4) {
printf(" %08x", *uip++);
} else if (size == 2) {
printf(" %04x", *usp++);
} else {
printf(" %02x", *ucp++);
}
addr += size;
}
} else { /* addr does not correspond to DataFlash */
#endif
for (i=0; i<linebytes; i+= size) {
if (size == 4) {
printf(" %08x", (*uip++ = *((uint *)addr)));
} else if (size == 2) {
printf(" %04x", (*usp++ = *((ushort *)addr)));
} else {
printf(" %02x", (*ucp++ = *((u_char *)addr)));
}
addr += size;
}
#ifdef CONFIG_HAS_DATAFLASH
}
#endif
puts (" ");
cp = (u_char *)linebuf;
for (i=0; i<linebytes; i++) {
if ((*cp < 0x20) || (*cp > 0x7e))
putc ('.');
else
printf("%c", *cp);
cp++;
}
putc ('\n');
nbytes -= linebytes;
if (ctrlc()) {
rc = 1;
break;
}
} while (nbytes > 0);
dp_last_addr = addr;
dp_last_length = length;
dp_last_size = size;
return (rc);
}
int do_mem_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_mem (cmdtp, 1, flag, argc, argv);
}
int do_mem_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_mem (cmdtp, 0, flag, argc, argv);
}
int do_mem_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, writeval, count;
int size;
if ((argc < 3) || (argc > 4)) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/* Check for size specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 1)
return 1;
/* Address is specified since argc > 1
*/
addr = simple_strtoul(argv[1], NULL, 16);
addr += base_address;
/* Get the value to write.
*/
writeval = simple_strtoul(argv[2], NULL, 16);
/* Count ? */
if (argc == 4) {
count = simple_strtoul(argv[3], NULL, 16);
} else {
count = 1;
}
while (count-- > 0) {
if (size == 4)
*((ulong *)addr) = (ulong )writeval;
else if (size == 2)
*((ushort *)addr) = (ushort)writeval;
else
*((u_char *)addr) = (u_char)writeval;
addr += size;
}
return 0;
}
#ifdef CONFIG_MX_CYCLIC
int do_mem_mdc ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i;
ulong count;
if (argc < 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
count = simple_strtoul(argv[3], NULL, 10);
for (;;) {
do_mem_md (NULL, 0, 3, argv);
/* delay for <count> ms... */
for (i=0; i<count; i++)
udelay (1000);
/* check for ctrl-c to abort... */
if (ctrlc()) {
puts("Abort\n");
return 0;
}
}
return 0;
}
int do_mem_mwc ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int i;
ulong count;
if (argc < 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
count = simple_strtoul(argv[3], NULL, 10);
for (;;) {
do_mem_mw (NULL, 0, 3, argv);
/* delay for <count> ms... */
for (i=0; i<count; i++)
udelay (1000);
/* check for ctrl-c to abort... */
if (ctrlc()) {
puts("Abort\n");
return 0;
}
}
return 0;
}
#endif /* CONFIG_MX_CYCLIC */
#ifndef COMPRESSED_UBOOT
int do_mem_cmp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr1, addr2, count, ngood;
int size;
int rcode = 0;
if (argc != 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/* Check for size specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
addr1 = simple_strtoul(argv[1], NULL, 16);
addr1 += base_address;
addr2 = simple_strtoul(argv[2], NULL, 16);
addr2 += base_address;
count = simple_strtoul(argv[3], NULL, 16);
#ifdef CONFIG_HAS_DATAFLASH
if (addr_dataflash(addr1) | addr_dataflash(addr2)){
puts ("Comparison with DataFlash space not supported.\n\r");
return 0;
}
#endif
ngood = 0;
while (count-- > 0) {
if (size == 4) {
ulong word1 = *(ulong *)addr1;
ulong word2 = *(ulong *)addr2;
if (word1 != word2) {
printf("word at 0x%08lx (0x%08lx) "
"!= word at 0x%08lx (0x%08lx)\n",
addr1, word1, addr2, word2);
rcode = 1;
break;
}
}
else if (size == 2) {
ushort hword1 = *(ushort *)addr1;
ushort hword2 = *(ushort *)addr2;
if (hword1 != hword2) {
printf("halfword at 0x%08lx (0x%04x) "
"!= halfword at 0x%08lx (0x%04x)\n",
addr1, hword1, addr2, hword2);
rcode = 1;
break;
}
}
else {
u_char byte1 = *(u_char *)addr1;
u_char byte2 = *(u_char *)addr2;
if (byte1 != byte2) {
printf("byte at 0x%08lx (0x%02x) "
"!= byte at 0x%08lx (0x%02x)\n",
addr1, byte1, addr2, byte2);
rcode = 1;
break;
}
}
ngood++;
addr1 += size;
addr2 += size;
}
printf("Total of %ld %s%s were the same\n",
ngood, size == 4 ? "word" : size == 2 ? "halfword" : "byte",
ngood == 1 ? "" : "s");
return rcode;
}
#endif /* #ifndef COMPRESSED_UBOOT */
int do_mem_cp ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, dest, count;
int size;
if (argc != 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/* Check for size specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
addr = simple_strtoul(argv[1], NULL, 16);
addr += base_address;
dest = simple_strtoul(argv[2], NULL, 16);
dest += base_address;
count = simple_strtoul(argv[3], NULL, 16);
if (count == 0) {
puts ("Zero length ???\n");
return 1;
}
#if !defined(CFG_NO_FLASH) && !defined(CONFIG_ATH_NAND_BR)
/* check if we are copying to Flash */
if ( (addr2info(dest) != NULL)
#ifdef CONFIG_HAS_DATAFLASH
&& (!addr_dataflash(addr))
#endif
) {
int rc;
puts ("Copy to Flash... ");
rc = flash_write ((char *)addr, dest, count*size);
if (rc != 0) {
flash_perror (rc);
return (1);
}
puts ("done\n");
return 0;
}
#endif
#if (CONFIG_COMMANDS & CFG_CMD_MMC)
if (mmc2info(dest)) {
int rc;
puts ("Copy to MMC... ");
switch (rc = mmc_write ((uchar *)addr, dest, count*size)) {
case 0:
putc ('\n');
return 1;
case -1:
puts ("failed\n");
return 1;
default:
printf ("%s[%d] FIXME: rc=%d\n",__FILE__,__LINE__,rc);
return 1;
}
puts ("done\n");
return 0;
}
if (mmc2info(addr)) {
int rc;
puts ("Copy from MMC... ");
switch (rc = mmc_read (addr, (uchar *)dest, count*size)) {
case 0:
putc ('\n');
return 1;
case -1:
puts ("failed\n");
return 1;
default:
printf ("%s[%d] FIXME: rc=%d\n",__FILE__,__LINE__,rc);
return 1;
}
puts ("done\n");
return 0;
}
#endif
#ifdef CONFIG_HAS_DATAFLASH
/* Check if we are copying from RAM or Flash to DataFlash */
if (addr_dataflash(dest) && !addr_dataflash(addr)){
int rc;
puts ("Copy to DataFlash... ");
rc = write_dataflash (dest, addr, count*size);
if (rc != 1) {
dataflash_perror (rc);
return (1);
}
puts ("done\n");
return 0;
}
/* Check if we are copying from DataFlash to RAM */
if (addr_dataflash(addr) && !addr_dataflash(dest) && (addr2info(dest)==NULL) ){
int rc;
rc = read_dataflash(addr, count * size, (char *) dest);
if (rc != 1) {
dataflash_perror (rc);
return (1);
}
return 0;
}
if (addr_dataflash(addr) && addr_dataflash(dest)){
puts ("Unsupported combination of source/destination.\n\r");
return 1;
}
#endif
while (count-- > 0) {
if (size == 4)
*((ulong *)dest) = *((ulong *)addr);
else if (size == 2)
*((ushort *)dest) = *((ushort *)addr);
else
*((u_char *)dest) = *((u_char *)addr);
addr += size;
dest += size;
}
return 0;
}
#ifndef COMPRESSED_UBOOT
int do_mem_base (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
if (argc > 1) {
/* Set new base address.
*/
base_address = simple_strtoul(argv[1], NULL, 16);
}
/* Print the current base address.
*/
printf("Base Address: 0x%08lx\n", base_address);
return 0;
}
int do_mem_loop (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, length, i, junk;
int size;
volatile uint *longp;
volatile ushort *shortp;
volatile u_char *cp;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/* Check for a size spefication.
* Defaults to long if no or incorrect specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
/* Address is always specified.
*/
addr = simple_strtoul(argv[1], NULL, 16);
/* Length is the number of objects, not number of bytes.
*/
length = simple_strtoul(argv[2], NULL, 16);
/* We want to optimize the loops to run as fast as possible.
* If we have only one object, just run infinite loops.
*/
if (length == 1) {
if (size == 4) {
longp = (uint *)addr;
for (;;)
i = *longp;
}
if (size == 2) {
shortp = (ushort *)addr;
for (;;)
i = *shortp;
}
cp = (u_char *)addr;
for (;;)
i = *cp;
}
if (size == 4) {
for (;;) {
longp = (uint *)addr;
i = length;
while (i-- > 0)
junk = *longp++;
}
}
if (size == 2) {
for (;;) {
shortp = (ushort *)addr;
i = length;
while (i-- > 0)
junk = *shortp++;
}
}
for (;;) {
cp = (u_char *)addr;
i = length;
while (i-- > 0)
junk = *cp++;
}
}
#ifdef CONFIG_LOOPW
int do_mem_loopw (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, length, i, data;
int size;
volatile uint *longp;
volatile ushort *shortp;
volatile u_char *cp;
if (argc < 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/* Check for a size spefication.
* Defaults to long if no or incorrect specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
/* Address is always specified.
*/
addr = simple_strtoul(argv[1], NULL, 16);
/* Length is the number of objects, not number of bytes.
*/
length = simple_strtoul(argv[2], NULL, 16);
/* data to write */
data = simple_strtoul(argv[3], NULL, 16);
/* We want to optimize the loops to run as fast as possible.
* If we have only one object, just run infinite loops.
*/
if (length == 1) {
if (size == 4) {
longp = (uint *)addr;
for (;;)
*longp = data;
}
if (size == 2) {
shortp = (ushort *)addr;
for (;;)
*shortp = data;
}
cp = (u_char *)addr;
for (;;)
*cp = data;
}
if (size == 4) {
for (;;) {
longp = (uint *)addr;
i = length;
while (i-- > 0)
*longp++ = data;
}
}
if (size == 2) {
for (;;) {
shortp = (ushort *)addr;
i = length;
while (i-- > 0)
*shortp++ = data;
}
}
for (;;) {
cp = (u_char *)addr;
i = length;
while (i-- > 0)
*cp++ = data;
}
}
#endif /* CONFIG_LOOPW */
#endif /* #ifndef COMPRESSED_UBOOT */
/*
* Perform a memory test. A more complete alternative test can be
* configured using CFG_ALT_MEMTEST. The complete test loops until
* interrupted by ctrl-c or by a failure of one of the sub-tests.
*/
int do_mem_mtest (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
vu_long *addr, *start, *end;
ulong val;
ulong readback;
#if defined(CFG_ALT_MEMTEST)
vu_long addr_mask;
vu_long offset;
vu_long test_offset;
vu_long pattern;
vu_long temp;
vu_long anti_pattern;
vu_long num_words;
#if defined(CFG_MEMTEST_SCRATCH)
vu_long *dummy = (vu_long*)CFG_MEMTEST_SCRATCH;
#else
vu_long *dummy = NULL;
#endif
int j;
int iterations = 1;
static const ulong bitpattern[] = {
0x00000001, /* single bit */
0x00000003, /* two adjacent bits */
0x00000007, /* three adjacent bits */
0x0000000F, /* four adjacent bits */
0x00000005, /* two non-adjacent bits */
0x00000015, /* three non-adjacent bits */
0x00000055, /* four non-adjacent bits */
0xaaaaaaaa, /* alternating 1/0 */
};
#else
ulong incr;
ulong pattern;
int rcode = 0;
#endif
if (argc > 1) {
start = (ulong *)simple_strtoul(argv[1], NULL, 16);
} else {
start = (ulong *)CFG_MEMTEST_START;
}
if (argc > 2) {
end = (ulong *)simple_strtoul(argv[2], NULL, 16);
} else {
end = (ulong *)(CFG_MEMTEST_END);
}
if (argc > 3) {
pattern = (ulong)simple_strtoul(argv[3], NULL, 16);
} else {
pattern = 0;
}
#if defined(CFG_ALT_MEMTEST)
printf ("Testing %08x ... %08x:\n", (uint)start, (uint)end);
PRINTF("%s:%d: start 0x%p end 0x%p\n",
__FUNCTION__, __LINE__, start, end);
for (;;) {
if (ctrlc()) {
putc ('\n');
return 1;
}
printf("Iteration: %6d\r", iterations);
PRINTF("Iteration: %6d\n", iterations);
iterations++;
/*
* Data line test: write a pattern to the first
* location, write the 1's complement to a 'parking'
* address (changes the state of the data bus so a
* floating bus doen't give a false OK), and then
* read the value back. Note that we read it back
* into a variable because the next time we read it,
* it might be right (been there, tough to explain to
* the quality guys why it prints a failure when the
* "is" and "should be" are obviously the same in the
* error message).
*
* Rather than exhaustively testing, we test some
* patterns by shifting '1' bits through a field of
* '0's and '0' bits through a field of '1's (i.e.
* pattern and ~pattern).
*/
addr = start;
for (j = 0; j < sizeof(bitpattern)/sizeof(bitpattern[0]); j++) {
val = bitpattern[j];
for(; val != 0; val <<= 1) {
*addr = val;
*dummy = ~val; /* clear the test data off of the bus */
readback = *addr;
if(readback != val) {
printf ("FAILURE (data line): "
"expected %08lx, actual %08lx\n",
val, readback);
}
*addr = ~val;
*dummy = val;
readback = *addr;
if(readback != ~val) {
printf ("FAILURE (data line): "
"Is %08lx, should be %08lx\n",
readback, ~val);
}
}
}
/*
* Based on code whose Original Author and Copyright
* information follows: Copyright (c) 1998 by Michael
* Barr. This software is placed into the public
* domain and may be used for any purpose. However,
* this notice must not be changed or removed and no
* warranty is either expressed or implied by its
* publication or distribution.
*/
/*
* Address line test
*
* Description: Test the address bus wiring in a
* memory region by performing a walking
* 1's test on the relevant bits of the
* address and checking for aliasing.
* This test will find single-bit
* address failures such as stuck -high,
* stuck-low, and shorted pins. The base
* address and size of the region are
* selected by the caller.
*
* Notes: For best results, the selected base
* address should have enough LSB 0's to
* guarantee single address bit changes.
* For example, to test a 64-Kbyte
* region, select a base address on a
* 64-Kbyte boundary. Also, select the
* region size as a power-of-two if at
* all possible.
*
* Returns: 0 if the test succeeds, 1 if the test fails.
*
* ## NOTE ## Be sure to specify start and end
* addresses such that addr_mask has
* lots of bits set. For example an
* address range of 01000000 02000000 is
* bad while a range of 01000000
* 01ffffff is perfect.
*/
addr_mask = ((ulong)end - (ulong)start)/sizeof(vu_long);
pattern = (vu_long) 0xaaaaaaaa;
anti_pattern = (vu_long) 0x55555555;
PRINTF("%s:%d: addr mask = 0x%.8lx\n",
__FUNCTION__, __LINE__,
addr_mask);
/*
* Write the default pattern at each of the
* power-of-two offsets.
*/
for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
start[offset] = pattern;
}
/*
* Check for address bits stuck high.
*/
test_offset = 0;
start[test_offset] = anti_pattern;
for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
temp = start[offset];
if (temp != pattern) {
printf ("\nFAILURE: Address bit stuck high @ 0x%.8lx:"
" expected 0x%.8lx, actual 0x%.8lx\n",
(ulong)&start[offset], pattern, temp);
return 1;
}
}
start[test_offset] = pattern;
/*
* Check for addr bits stuck low or shorted.
*/
for (test_offset = 1; (test_offset & addr_mask) != 0; test_offset <<= 1) {
start[test_offset] = anti_pattern;
for (offset = 1; (offset & addr_mask) != 0; offset <<= 1) {
temp = start[offset];
if ((temp != pattern) && (offset != test_offset)) {
printf ("\nFAILURE: Address bit stuck low or shorted @"
" 0x%.8lx: expected 0x%.8lx, actual 0x%.8lx\n",
(ulong)&start[offset], pattern, temp);
return 1;
}
}
start[test_offset] = pattern;
}
/*
* Description: Test the integrity of a physical
* memory device by performing an
* increment/decrement test over the
* entire region. In the process every
* storage bit in the device is tested
* as a zero and a one. The base address
* and the size of the region are
* selected by the caller.
*
* Returns: 0 if the test succeeds, 1 if the test fails.
*/
num_words = ((ulong)end - (ulong)start)/sizeof(vu_long) + 1;
/*
* Fill memory with a known pattern.
*/
for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
start[offset] = pattern;
}
/*
* Check each location and invert it for the second pass.
*/
for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
temp = start[offset];
if (temp != pattern) {
printf ("\nFAILURE (read/write) @ 0x%.8lx:"
" expected 0x%.8lx, actual 0x%.8lx)\n",
(ulong)&start[offset], pattern, temp);
return 1;
}
anti_pattern = ~pattern;
start[offset] = anti_pattern;
}
/*
* Check each location for the inverted pattern and zero it.
*/
for (pattern = 1, offset = 0; offset < num_words; pattern++, offset++) {
anti_pattern = ~pattern;
temp = start[offset];
if (temp != anti_pattern) {
printf ("\nFAILURE (read/write): @ 0x%.8lx:"
" expected 0x%.8lx, actual 0x%.8lx)\n",
(ulong)&start[offset], anti_pattern, temp);
return 1;
}
start[offset] = 0;
}
}
#else /* The original, quickie test */
incr = 1;
for (;;) {
if (ctrlc()) {
putc ('\n');
return 1;
}
printf ("\rPattern %08lX Writing..."
"%12s"
"\b\b\b\b\b\b\b\b\b\b",
pattern, "");
for (addr=start,val=pattern; addr<end; addr++) {
*addr = val;
val += incr;
}
puts ("Reading...");
for (addr=start,val=pattern; addr<end; addr++) {
readback = *addr;
if (readback != val) {
printf ("\nMem error @ 0x%08X: "
"found %08lX, expected %08lX\n",
(uint)addr, readback, val);
rcode = 1;
}
val += incr;
}
/*
* Flip the pattern each time to make lots of zeros and
* then, the next time, lots of ones. We decrement
* the "negative" patterns and increment the "positive"
* patterns to preserve this feature.
*/
if(pattern & 0x80000000) {
pattern = -pattern; /* complement & increment */
}
else {
pattern = ~pattern;
}
incr = -incr;
}
return rcode;
#endif
}
/* Modify memory.
*
* Syntax:
* mm{.b, .w, .l} {addr}
* nm{.b, .w, .l} {addr}
*/
static int
mod_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
{
ulong addr, i;
int nbytes, size;
extern char console_buffer[];
if (argc != 2) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* got a good command to get here */
#endif
/* We use the last specified parameters, unless new ones are
* entered.
*/
addr = mm_last_addr;
size = mm_last_size;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/* New command specified. Check for a size specification.
* Defaults to long if no or incorrect specification.
*/
if ((size = cmd_get_data_size(argv[0], 4)) < 0)
return 1;
/* Address is specified since argc > 1
*/
addr = simple_strtoul(argv[1], NULL, 16);
addr += base_address;
}
#ifdef CONFIG_HAS_DATAFLASH
if (addr_dataflash(addr)){
puts ("Can't modify DataFlash in place. Use cp instead.\n\r");
return 0;
}
#endif
/* Print the address, followed by value. Then accept input for
* the next value. A non-converted value exits.
*/
do {
printf("%08lx:", addr);
if (size == 4)
printf(" %08x", *((uint *)addr));
else if (size == 2)
printf(" %04x", *((ushort *)addr));
else
printf(" %02x", *((u_char *)addr));
nbytes = readline (" ? ");
if (nbytes == 0 || (nbytes == 1 && console_buffer[0] == '-')) {
/* <CR> pressed as only input, don't modify current
* location and move to next. "-" pressed will go back.
*/
if (incrflag)
addr += nbytes ? -size : size;
nbytes = 1;
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* good enough to not time out */
#endif
}
#ifdef CONFIG_BOOT_RETRY_TIME
else if (nbytes == -2) {
break; /* timed out, exit the command */
}
#endif
else {
char *endp;
i = simple_strtoul(console_buffer, &endp, 16);
nbytes = endp - console_buffer;
if (nbytes) {
#ifdef CONFIG_BOOT_RETRY_TIME
/* good enough to not time out
*/
reset_cmd_timeout();
#endif
if (size == 4)
*((uint *)addr) = i;
else if (size == 2)
*((ushort *)addr) = i;
else
*((u_char *)addr) = i;
if (incrflag)
addr += size;
}
}
} while (nbytes);
mm_last_addr = addr;
mm_last_size = size;
return 0;
}
#ifndef COMPRESSED_UBOOT
#ifndef CONFIG_CRC32_VERIFY
int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, length;
ulong crc;
ulong *ptr;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
addr = simple_strtoul (argv[1], NULL, 16);
addr += base_address;
length = simple_strtoul (argv[2], NULL, 16);
crc = crc32 (0, (const uchar *) addr, length);
printf ("CRC32 for %08lx ... %08lx ==> %08lx\n",
addr, addr + length - 1, crc);
if (argc > 3) {
ptr = (ulong *) simple_strtoul (argv[3], NULL, 16);
*ptr = crc;
}
return 0;
}
#else /* CONFIG_CRC32_VERIFY */
int do_mem_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong addr, length;
ulong crc;
ulong *ptr;
ulong vcrc;
int verify;
int ac;
char **av;
if (argc < 3) {
usage:
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
av = argv + 1;
ac = argc - 1;
if (strcmp(*av, "-v") == 0) {
verify = 1;
av++;
ac--;
if (ac < 3)
goto usage;
} else
verify = 0;
addr = simple_strtoul(*av++, NULL, 16);
addr += base_address;
length = simple_strtoul(*av++, NULL, 16);
crc = crc32(0, (const uchar *) addr, length);
if (!verify) {
printf ("CRC32 for %08lx ... %08lx ==> %08lx\n",
addr, addr + length - 1, crc);
if (ac > 2) {
ptr = (ulong *) simple_strtoul (*av++, NULL, 16);
*ptr = crc;
}
} else {
vcrc = simple_strtoul(*av++, NULL, 16);
if (vcrc != crc) {
printf ("CRC32 for %08lx ... %08lx ==> %08lx != %08lx ** ERROR **\n",
addr, addr + length - 1, crc, vcrc);
return 1;
}
}
return 0;
}
#endif /* CONFIG_CRC32_VERIFY */
U_BOOT_CMD(
cmp, 4, 1, do_mem_cmp,
"cmp - memory compare\n",
"[.b, .w, .l] addr1 addr2 count\n - compare memory\n"
);
#ifndef CONFIG_CRC32_VERIFY
U_BOOT_CMD(
crc32, 4, 1, do_mem_crc,
"crc32 - checksum calculation\n",
"address count [addr]\n - compute CRC32 checksum [save at addr]\n"
);
#else /* CONFIG_CRC32_VERIFY */
U_BOOT_CMD(
crc32, 5, 1, do_mem_crc,
"crc32 - checksum calculation\n",
"address count [addr]\n - compute CRC32 checksum [save at addr]\n"
"-v address count crc\n - verify crc of memory area\n"
);
#endif /* CONFIG_CRC32_VERIFY */
U_BOOT_CMD(
base, 2, 1, do_mem_base,
"base - print or set address offset\n",
"\n - print address offset for memory commands\n"
"base off\n - set address offset for memory commands to 'off'\n"
);
U_BOOT_CMD(
loop, 3, 1, do_mem_loop,
"loop - infinite loop on address range\n",
"[.b, .w, .l] address number_of_objects\n"
" - loop on a set of addresses\n"
);
#ifdef CONFIG_LOOPW
U_BOOT_CMD(
loopw, 4, 1, do_mem_loopw,
"loopw - infinite write loop on address range\n",
"[.b, .w, .l] address number_of_objects data_to_write\n"
" - loop on a set of addresses\n"
);
#endif /* CONFIG_LOOPW */
#ifdef CONFIG_MX_CYCLIC
U_BOOT_CMD(
mdc, 4, 1, do_mem_mdc,
"mdc - memory display cyclic\n",
"[.b, .w, .l] address count delay(ms)\n - memory display cyclic\n"
);
U_BOOT_CMD(
mwc, 4, 1, do_mem_mwc,
"mwc - memory write cyclic\n",
"[.b, .w, .l] address value delay(ms)\n - memory write cyclic\n"
);
#endif /* CONFIG_MX_CYCLIC */
#endif /* #ifndef COMPRESSED_UBOOT */
#define AR7240_DDR_SIZE_INCR (4*1024*1024)
/*
* Function Prototype
*/
int test_algorithm_t (unsigned int mem_type, unsigned int pattern);
/*
* Local Variables in this file
*/
static unsigned int init_state = 1;
static unsigned int TEST_SIZE;
static unsigned int START_M_ADDR, START_C_ADDR;
static unsigned int END_M_ADDR, END_C_ADDR;
/* Test Patterns */
static unsigned int base_pattern[DATA_PATTERN_NUM];
/* Variables for random pattern */
static unsigned int dword_random_seed, dword_random_inc, hword_random_seed, hword_random_inc, byte_random_seed, byte_random_inc;
/* Variables for statistics */
static unsigned int curr_round;
static unsigned int fail_round, mt_fail_round, ct_fail_round;
/* Variables Per round */
static unsigned int fail_status, mt_fail_status, ct_fail_status;
/* Temporary Variables */
static unsigned int START_ADDR, END_ADDR;
int do_mem_mct (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
unsigned char *p = (unsigned char *)KSEG1, pat = 0x77;
unsigned int i;
unsigned long *size;
if (argc > 1) {
size = simple_strtoul(argv[1], NULL, 16);
}
/* Clean all information memory locations */
for (i = 0; i < 0xb0; i+=4) {
*(unsigned int *)(INFO_BASE_ADDR +i) = 0x0;
}
/* Determine the size of DDR/DDR2/SDRAM */
*p = pat;
/*
* For x32 mode(2 DDR devices on board), Scorpion can support 2 128MB DDR and maximum memory size is 256MB(Wasp can support 2 64MB DDR and maximum memory size is 128MB).
* In chip design, only 256MB address space can be used by DDR
* Therefore, max. size of DDR is 256MB
*/
for (i = 1; i < 64; i++) {
*(p + i * AR7240_DDR_SIZE_INCR) = (unsigned char)(i);
if (*p != pat) {
break;
}
}
TEST_SIZE = size;
START_M_ADDR = KSEG1 + 0x50000;
END_M_ADDR = START_M_ADDR + TEST_SIZE;
START_C_ADDR = KSEG0 + 0x50000;
END_C_ADDR = START_C_ADDR + TEST_SIZE;
/* Record general information */
*(unsigned int *)(INFO_SIZE_ADDR) = TEST_SIZE;
*(unsigned int *)(INFO_MEM_START_ADDR) = START_M_ADDR;
*(unsigned int *)(INFO_MEM_END_ADDR) = END_M_ADDR;
*(unsigned int *)(INFO_CACHE_START_ADDR)= START_C_ADDR;
*(unsigned int *)(INFO_CACHE_END_ADDR) = END_C_ADDR;
/* Initialize variables before test begins */
curr_round = 0;
fail_round = mt_fail_round = ct_fail_round = 0;
for (i = 0; i < DATA_PATTERN_NUM; i++)
base_pattern[i] = 0x0;
/* Pattern 1 : Random */
/* Pattern 2 : Address */
/* Pattern 3 : 0xffffffff */
base_pattern[0] = 1; /* Random */
base_pattern[1] = 2; /* Address */
base_pattern[2] = 0xffffffff;
/* Initialize variables for random pattern */
dword_random_seed = 0xa83f0365;
dword_random_inc = 0x185fe2d1;
hword_random_seed = 0x4f9516e3;
hword_random_inc = 0x143c2b7d;
byte_random_seed = 0xa83f0365;
byte_random_inc = 0x185fe2d1;
while (1) {
/* Initialize variables before current round begins */
mt_fail_status = ct_fail_status = 0;
*(unsigned int *)(INFO_MT_ADDR) = 0;
*(unsigned int *)(INFO_CT_ADDR) = 0;
curr_round++;
printf("***Round %d***\n", curr_round);
/* +++ MT +++ */
printf("2. Memory Test <MT>\n");
*(unsigned int *)(INFO_MT_ADDR) = 1;
for (i = 0; i < DATA_PATTERN_NUM; i++) {
if (base_pattern[i] == 0x0)
break;
if (base_pattern[i] == 0x1) {
if (!DISABLE_UART) {
printf("~Pattern 1 : Random(seed 0x%08x)\n", dword_random_seed);
}
}
else if (base_pattern[i] == 0x2) {
if (!DISABLE_UART) {
printf("~Pattern 2 : Address\n");
}
}
else {
if (!DISABLE_UART) {
printf("~Pattern %d : 0x%08x\n", i+1, base_pattern[i]);
}
}
*(unsigned int *)(INFO_MT_PAT_ADDR) = i+1;
if(test_algorithm_t(0, base_pattern[i]))
return 1;
}
/* --- MT --- */
/* +++ CT +++ */
printf("4. Cache Test <CT>\n");
*(unsigned int *)(INFO_CT_ADDR) = 1;
for (i = 0; i < DATA_PATTERN_NUM; i++) {
if (base_pattern[i] == 0x0)
break;
if (base_pattern[i] == 0x1) {
printf("~Pattern 1 : Random(seed 0x%08x)\n", dword_random_seed);
}
else if (base_pattern[i] == 0x2) {
printf("~Pattern 2 : Address\n");
}
else {
printf("~Pattern %d : 0x%08x\n", i+1, base_pattern[i]);
}
*(unsigned int *)(INFO_CT_PAT_ADDR) = i+1;
if(test_algorithm_t(1, base_pattern[i]))
return 1;
}
/* --- CT --- */
/* Update Statistics*/
*(unsigned int *)(INFO_GEN_ADDR) = curr_round;
if (mt_fail_status || ct_fail_status) {
if (mt_fail_status) {
mt_fail_round++;
*(unsigned int *)(INFO_FAIL_MT_ADDR) = mt_fail_round;
}
if (ct_fail_status) {
ct_fail_round++;
*(unsigned int *)(INFO_FAIL_CT_ADDR) = ct_fail_round;
}
fail_round++;
*(unsigned int *)(INFO_FAIL_ADDR) = fail_round;
}
flush_cache(START_C_ADDR, TEST_SIZE);
} /* End of while (1) */
}
/*
* mem_type : 0 for memory, 1 for cache
*/
int test_algorithm_t(unsigned int mem_type, unsigned int pattern)
{
unsigned int i;
unsigned int stride, offset;
unsigned int check_addr, check_data, check_pattern;
unsigned int add_as_data;
fail_status = 0;
if (!mem_type) {
START_ADDR = START_M_ADDR;
END_ADDR = END_M_ADDR;
}
else {
START_ADDR = START_C_ADDR;
END_ADDR = END_C_ADDR;
}
if (pattern == 2) {
add_as_data = 1;
pattern = 0;
}
else {
add_as_data = 0;
if (pattern == 1) {
pattern = dword_random_seed;
}
}
for (i = 0; i < TEST_SIZE; i += 4) {
*(unsigned int *)(START_ADDR+i) = add_as_data ? (pattern ^ (START_ADDR + i)) : pattern;
}
for (stride = 4; stride < TEST_SIZE; stride *= 2) {
for (offset = 0; offset < stride; offset += 4) {
for (i = offset; i < TEST_SIZE; i += stride) {
if (ctrlc()) {
puts ("Stop MCT\n");
return 1;
}
check_addr = START_ADDR + i;
check_data = *(unsigned int *)check_addr;
check_pattern = (add_as_data ? (pattern ^ check_addr) : pattern);
if (check_data != check_pattern) {
if (!mem_type)
mt_fail_status = 1;
else
ct_fail_status = 1;
fail_status = 1;
*(unsigned int *)(INFO_ERROR_T_ADDR) = 1;
*(unsigned int *)(INFO_ERROR_T_INVERSE_ADDR) = 0;
*(unsigned int *)(INFO_ERROR_T_STRIDE_ADDR) = stride;
*(unsigned int *)(INFO_ERROR_T_OFFSET_ADDR) = offset;
*(unsigned int *)(INFO_ERROR_T_ADR_ADDR) = check_addr;
*(unsigned int *)(INFO_ERROR_T_DATA_ADDR) = check_data;
*(unsigned int *)(INFO_ERROR_T_EDATA_ADDR) = check_pattern;
printf("Fail! --> addr 0x%08x, data 0x%08x(should be 0x%08x), stride 0x%08x\n", check_addr, check_data, check_pattern, stride);
#if DISCARD_ERROR
*(unsigned int *)check_addr = check_pattern;
#else
while (1) {
if (ctrlc()) {
puts ("Stop MCT\n");
return 1;
}
} //asm("nop");
#endif
}
*(unsigned int *)check_addr = ~check_pattern;
} /* End of "for (i = offset; i < TEST_SIZE; i += stride)" */
} /* End of "for (offset = 0; offset < stride; offset += 4)" */
pattern = ~pattern;
for (offset = 0; offset < stride; offset += 4) {
for (i = offset; i < TEST_SIZE; i += stride) {
check_addr = START_ADDR + i; //check_addr = START_ADDR + TEST_SIZE - i - 4;
check_pattern = (add_as_data ? (pattern ^ check_addr) : pattern);
check_data = *(unsigned int *)check_addr;
if (check_data != check_pattern) {
if (!mem_type)
mt_fail_status = 1;
else
ct_fail_status = 1;
fail_status = 1;
*(unsigned int *)(INFO_ERROR_T_ADDR) = 1;
*(unsigned int *)(INFO_ERROR_T_INVERSE_ADDR) = 1;
*(unsigned int *)(INFO_ERROR_T_STRIDE_ADDR) = stride;
*(unsigned int *)(INFO_ERROR_T_OFFSET_ADDR) = offset;
*(unsigned int *)(INFO_ERROR_T_ADR_ADDR) = check_addr;
*(unsigned int *)(INFO_ERROR_T_DATA_ADDR) = check_data;
*(unsigned int *)(INFO_ERROR_T_EDATA_ADDR) = check_pattern;
printf("Inverse Fail! --> addr 0x%08x, data 0x%08x(should be 0x%08x), stride 0x%08x\n", check_addr, check_data, check_pattern, stride);
#if DISCARD_ERROR
*(unsigned int *)check_addr = check_pattern;
#else
while (1) {
if (ctrlc()) {
puts ("Stop MCT\n");
return 1;
}
} //asm("nop");
#endif
}
*(unsigned int *)check_addr = ~check_pattern;
} /* End if "for (i = offset; i < TEST_SIZE; i += stride)" */
} /* End of "for (offset = 0; offset < stride; offset += 4)" */
pattern = ~pattern;
} /* End of "for (stride = 4; stride < TEST_SIZE; stride *= 2)" */
if (!fail_status) {
printf("Pass\n");
}
/* Random seed changes */
dword_random_seed += 0x01010101;
dword_random_seed += dword_random_inc;
return 0;
}
/**************************************************/
U_BOOT_CMD(
md, 3, 1, do_mem_md,
"md - memory display\n",
"[.b, .w, .l] address [# of objects]\n - memory display\n"
);
U_BOOT_CMD(
mm, 2, 1, do_mem_mm,
"mm - memory modify (auto-incrementing)\n",
"[.b, .w, .l] address\n" " - memory modify, auto increment address\n"
);
U_BOOT_CMD(
nm, 2, 1, do_mem_nm,
"nm - memory modify (constant address)\n",
"[.b, .w, .l] address\n - memory modify, read and keep address\n"
);
U_BOOT_CMD(
mw, 4, 1, do_mem_mw,
"mw - memory write (fill)\n",
"[.b, .w, .l] address value [count]\n - write memory\n"
);
U_BOOT_CMD(
mtest, 4, 1, do_mem_mtest,
"mtest - simple RAM test\n",
"[start [end [pattern]]]\n"
" - simple RAM read/write test\n"
);
U_BOOT_CMD(
cp, 4, 1, do_mem_cp,
"cp - memory copy\n",
"[.b, .w, .l] source target count\n - copy memory\n"
);
U_BOOT_CMD(
mct, 2, 1, do_mem_mct,
"mct - simple RAM test\n",
"\n"
"\n"
);
#endif /* CFG_CMD_MEMORY */