| /* |
| LzmaDecode.c |
| LZMA Decoder (optimized for Speed version) |
| |
| LZMA SDK 4.40 Copyright (c) 1999-2006 Igor Pavlov (2006-05-01) |
| http://www.7-zip.org/ |
| |
| LZMA SDK is licensed under two licenses: |
| 1) GNU Lesser General Public License (GNU LGPL) |
| 2) Common Public License (CPL) |
| It means that you can select one of these two licenses and |
| follow rules of that license. |
| |
| SPECIAL EXCEPTION: |
| Igor Pavlov, as the author of this Code, expressly permits you to |
| statically or dynamically link your Code (or bind by name) to the |
| interfaces of this file without subjecting your linked Code to the |
| terms of the CPL or GNU LGPL. Any modifications or additions |
| to this file, however, are subject to the LGPL or CPL terms. |
| */ |
| |
| #ifdef CONFIG_LZMA |
| |
| #include "LzmaDecode.h" |
| |
| #define kNumTopBits 24 |
| #define kTopValue ((UInt32)1 << kNumTopBits) |
| |
| #define kNumBitModelTotalBits 11 |
| #define kBitModelTotal (1 << kNumBitModelTotalBits) |
| #define kNumMoveBits 5 |
| |
| #define RC_READ_BYTE (*Buffer++) |
| |
| #define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \ |
| { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }} |
| |
| #ifdef _LZMA_IN_CB |
| |
| #define RC_TEST { if (Buffer == BufferLim) \ |
| { SizeT size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return result; } \ |
| BufferLim = Buffer + size; if (size == 0) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return LZMA_RESULT_DATA_ERROR; } }} |
| |
| #define RC_INIT Buffer = BufferLim = 0; RC_INIT2 |
| |
| #else |
| |
| #define RC_TEST { if (Buffer == BufferLim) { printf("ERROR, %s, %d\n", __FILE__, __LINE__); return LZMA_RESULT_DATA_ERROR; } } |
| |
| #define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2 |
| |
| #endif |
| |
| #define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; } |
| |
| #define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound) |
| #define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits; |
| #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits; |
| |
| #define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \ |
| { UpdateBit0(p); mi <<= 1; A0; } else \ |
| { UpdateBit1(p); mi = (mi + mi) + 1; A1; } |
| |
| #define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;) |
| |
| #define RangeDecoderBitTreeDecode(probs, numLevels, res) \ |
| { int i = numLevels; res = 1; \ |
| do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \ |
| res -= (1 << numLevels); } |
| |
| |
| #define kNumPosBitsMax 4 |
| #define kNumPosStatesMax (1 << kNumPosBitsMax) |
| |
| #define kLenNumLowBits 3 |
| #define kLenNumLowSymbols (1 << kLenNumLowBits) |
| #define kLenNumMidBits 3 |
| #define kLenNumMidSymbols (1 << kLenNumMidBits) |
| #define kLenNumHighBits 8 |
| #define kLenNumHighSymbols (1 << kLenNumHighBits) |
| |
| #define LenChoice 0 |
| #define LenChoice2 (LenChoice + 1) |
| #define LenLow (LenChoice2 + 1) |
| #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) |
| #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) |
| #define kNumLenProbs (LenHigh + kLenNumHighSymbols) |
| |
| |
| #define kNumStates 12 |
| #define kNumLitStates 7 |
| |
| #define kStartPosModelIndex 4 |
| #define kEndPosModelIndex 14 |
| #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) |
| |
| #define kNumPosSlotBits 6 |
| #define kNumLenToPosStates 4 |
| |
| #define kNumAlignBits 4 |
| #define kAlignTableSize (1 << kNumAlignBits) |
| |
| #define kMatchMinLen 2 |
| |
| #define IsMatch 0 |
| #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) |
| #define IsRepG0 (IsRep + kNumStates) |
| #define IsRepG1 (IsRepG0 + kNumStates) |
| #define IsRepG2 (IsRepG1 + kNumStates) |
| #define IsRep0Long (IsRepG2 + kNumStates) |
| #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) |
| #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) |
| #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) |
| #define LenCoder (Align + kAlignTableSize) |
| #define RepLenCoder (LenCoder + kNumLenProbs) |
| #define Literal (RepLenCoder + kNumLenProbs) |
| |
| #if Literal != LZMA_BASE_SIZE |
| StopCompilingDueBUG |
| #endif |
| |
| int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size) |
| { |
| unsigned char prop0; |
| if (size < LZMA_PROPERTIES_SIZE) |
| { |
| printf("ERROR: %s, %d\n", __FILE__, __LINE__); |
| return LZMA_RESULT_DATA_ERROR; |
| } |
| prop0 = propsData[0]; |
| if (prop0 >= (9 * 5 * 5)) |
| { |
| printf("ERROR: %s, %d\n", __FILE__, __LINE__); |
| return LZMA_RESULT_DATA_ERROR; |
| } |
| { |
| for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5)); |
| for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9); |
| propsRes->lc = prop0; |
| /* |
| unsigned char remainder = (unsigned char)(prop0 / 9); |
| propsRes->lc = prop0 % 9; |
| propsRes->pb = remainder / 5; |
| propsRes->lp = remainder % 5; |
| */ |
| } |
| |
| #ifdef _LZMA_OUT_READ |
| { |
| int i; |
| propsRes->DictionarySize = 0; |
| for (i = 0; i < 4; i++) |
| propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8); |
| if (propsRes->DictionarySize == 0) |
| propsRes->DictionarySize = 1; |
| } |
| #endif |
| return LZMA_RESULT_OK; |
| } |
| |
| #define kLzmaStreamWasFinishedId (-1) |
| |
| int LzmaDecode(CLzmaDecoderState *vs, |
| #ifdef _LZMA_IN_CB |
| ILzmaInCallback *InCallback, |
| #else |
| const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed, |
| #endif |
| unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed) |
| { |
| CProb *p = vs->Probs; |
| SizeT nowPos = 0; |
| Byte previousByte = 0; |
| UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1; |
| UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1; |
| int lc = vs->Properties.lc; |
| |
| #ifdef _LZMA_OUT_READ |
| |
| UInt32 Range = vs->Range; |
| UInt32 Code = vs->Code; |
| #ifdef _LZMA_IN_CB |
| const Byte *Buffer = vs->Buffer; |
| const Byte *BufferLim = vs->BufferLim; |
| #else |
| const Byte *Buffer = inStream; |
| const Byte *BufferLim = inStream + inSize; |
| #endif |
| int state = vs->State; |
| UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3]; |
| int len = vs->RemainLen; |
| UInt32 globalPos = vs->GlobalPos; |
| UInt32 distanceLimit = vs->DistanceLimit; |
| |
| Byte *dictionary = vs->Dictionary; |
| UInt32 dictionarySize = vs->Properties.DictionarySize; |
| UInt32 dictionaryPos = vs->DictionaryPos; |
| |
| Byte tempDictionary[4]; |
| |
| #ifndef _LZMA_IN_CB |
| *inSizeProcessed = 0; |
| #endif |
| *outSizeProcessed = 0; |
| if (len == kLzmaStreamWasFinishedId) |
| return LZMA_RESULT_OK; |
| |
| if (dictionarySize == 0) |
| { |
| dictionary = tempDictionary; |
| dictionarySize = 1; |
| tempDictionary[0] = vs->TempDictionary[0]; |
| } |
| |
| if (len == kLzmaNeedInitId) |
| { |
| { |
| UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| UInt32 i; |
| for (i = 0; i < numProbs; i++) |
| p[i] = kBitModelTotal >> 1; |
| rep0 = rep1 = rep2 = rep3 = 1; |
| state = 0; |
| globalPos = 0; |
| distanceLimit = 0; |
| dictionaryPos = 0; |
| dictionary[dictionarySize - 1] = 0; |
| #ifdef _LZMA_IN_CB |
| RC_INIT; |
| #else |
| RC_INIT(inStream, inSize); |
| #endif |
| } |
| len = 0; |
| } |
| while(len != 0 && nowPos < outSize) |
| { |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos]; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| len--; |
| } |
| if (dictionaryPos == 0) |
| previousByte = dictionary[dictionarySize - 1]; |
| else |
| previousByte = dictionary[dictionaryPos - 1]; |
| |
| #else /* if !_LZMA_OUT_READ */ |
| |
| int state = 0; |
| UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1; |
| int len = 0; |
| const Byte *Buffer; |
| const Byte *BufferLim; |
| UInt32 Range; |
| UInt32 Code; |
| |
| #ifndef _LZMA_IN_CB |
| *inSizeProcessed = 0; |
| #endif |
| *outSizeProcessed = 0; |
| |
| { |
| UInt32 i; |
| UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp)); |
| for (i = 0; i < numProbs; i++) |
| p[i] = kBitModelTotal >> 1; |
| } |
| |
| #ifdef _LZMA_IN_CB |
| RC_INIT; |
| #else |
| RC_INIT(inStream, inSize); |
| #endif |
| |
| #endif /* _LZMA_OUT_READ */ |
| |
| while(nowPos < outSize) |
| { |
| CProb *prob; |
| UInt32 bound; |
| int posState = (int)( |
| (nowPos |
| #ifdef _LZMA_OUT_READ |
| + globalPos |
| #endif |
| ) |
| & posStateMask); |
| |
| prob = p + IsMatch + (state << kNumPosBitsMax) + posState; |
| IfBit0(prob) |
| { |
| int symbol = 1; |
| UpdateBit0(prob) |
| prob = p + Literal + (LZMA_LIT_SIZE * |
| ((( |
| (nowPos |
| #ifdef _LZMA_OUT_READ |
| + globalPos |
| #endif |
| ) |
| & literalPosMask) << lc) + (previousByte >> (8 - lc)))); |
| |
| if (state >= kNumLitStates) |
| { |
| int matchByte; |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| matchByte = dictionary[pos]; |
| #else |
| matchByte = outStream[nowPos - rep0]; |
| #endif |
| do |
| { |
| int bit; |
| CProb *probLit; |
| matchByte <<= 1; |
| bit = (matchByte & 0x100); |
| probLit = prob + 0x100 + bit + symbol; |
| RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break) |
| } |
| while (symbol < 0x100); |
| } |
| while (symbol < 0x100) |
| { |
| CProb *probLit = prob + symbol; |
| RC_GET_BIT(probLit, symbol) |
| } |
| previousByte = (Byte)symbol; |
| |
| outStream[nowPos++] = previousByte; |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit < dictionarySize) |
| distanceLimit++; |
| |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #endif |
| if (state < 4) state = 0; |
| else if (state < 10) state -= 3; |
| else state -= 6; |
| } |
| else |
| { |
| UpdateBit1(prob); |
| prob = p + IsRep + state; |
| IfBit0(prob) |
| { |
| UpdateBit0(prob); |
| rep3 = rep2; |
| rep2 = rep1; |
| rep1 = rep0; |
| state = state < kNumLitStates ? 0 : 3; |
| prob = p + LenCoder; |
| } |
| else |
| { |
| UpdateBit1(prob); |
| prob = p + IsRepG0 + state; |
| IfBit0(prob) |
| { |
| UpdateBit0(prob); |
| prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState; |
| IfBit0(prob) |
| { |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos; |
| #endif |
| UpdateBit0(prob); |
| |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit == 0) |
| #else |
| if (nowPos == 0) |
| #endif |
| { |
| printf("ERROR: %s, %d\n", __FILE__, __LINE__); |
| return LZMA_RESULT_DATA_ERROR; |
| } |
| |
| state = state < kNumLitStates ? 9 : 11; |
| #ifdef _LZMA_OUT_READ |
| pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| previousByte = dictionary[pos]; |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #else |
| previousByte = outStream[nowPos - rep0]; |
| #endif |
| outStream[nowPos++] = previousByte; |
| #ifdef _LZMA_OUT_READ |
| if (distanceLimit < dictionarySize) |
| distanceLimit++; |
| #endif |
| |
| continue; |
| } |
| else |
| { |
| UpdateBit1(prob); |
| } |
| } |
| else |
| { |
| UInt32 distance; |
| UpdateBit1(prob); |
| prob = p + IsRepG1 + state; |
| IfBit0(prob) |
| { |
| UpdateBit0(prob); |
| distance = rep1; |
| } |
| else |
| { |
| UpdateBit1(prob); |
| prob = p + IsRepG2 + state; |
| IfBit0(prob) |
| { |
| UpdateBit0(prob); |
| distance = rep2; |
| } |
| else |
| { |
| UpdateBit1(prob); |
| distance = rep3; |
| rep3 = rep2; |
| } |
| rep2 = rep1; |
| } |
| rep1 = rep0; |
| rep0 = distance; |
| } |
| state = state < kNumLitStates ? 8 : 11; |
| prob = p + RepLenCoder; |
| } |
| { |
| int numBits, offset; |
| CProb *probLen = prob + LenChoice; |
| IfBit0(probLen) |
| { |
| UpdateBit0(probLen); |
| probLen = prob + LenLow + (posState << kLenNumLowBits); |
| offset = 0; |
| numBits = kLenNumLowBits; |
| } |
| else |
| { |
| UpdateBit1(probLen); |
| probLen = prob + LenChoice2; |
| IfBit0(probLen) |
| { |
| UpdateBit0(probLen); |
| probLen = prob + LenMid + (posState << kLenNumMidBits); |
| offset = kLenNumLowSymbols; |
| numBits = kLenNumMidBits; |
| } |
| else |
| { |
| UpdateBit1(probLen); |
| probLen = prob + LenHigh; |
| offset = kLenNumLowSymbols + kLenNumMidSymbols; |
| numBits = kLenNumHighBits; |
| } |
| } |
| RangeDecoderBitTreeDecode(probLen, numBits, len); |
| len += offset; |
| } |
| |
| if (state < 4) |
| { |
| int posSlot; |
| state += kNumLitStates; |
| prob = p + PosSlot + |
| ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << |
| kNumPosSlotBits); |
| RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot); |
| if (posSlot >= kStartPosModelIndex) |
| { |
| int numDirectBits = ((posSlot >> 1) - 1); |
| rep0 = (2 | ((UInt32)posSlot & 1)); |
| if (posSlot < kEndPosModelIndex) |
| { |
| rep0 <<= numDirectBits; |
| prob = p + SpecPos + rep0 - posSlot - 1; |
| } |
| else |
| { |
| numDirectBits -= kNumAlignBits; |
| do |
| { |
| RC_NORMALIZE |
| Range >>= 1; |
| rep0 <<= 1; |
| if (Code >= Range) |
| { |
| Code -= Range; |
| rep0 |= 1; |
| } |
| } |
| while (--numDirectBits != 0); |
| prob = p + Align; |
| rep0 <<= kNumAlignBits; |
| numDirectBits = kNumAlignBits; |
| } |
| { |
| int i = 1; |
| int mi = 1; |
| do |
| { |
| CProb *prob3 = prob + mi; |
| RC_GET_BIT2(prob3, mi, ; , rep0 |= i); |
| i <<= 1; |
| } |
| while(--numDirectBits != 0); |
| } |
| } |
| else |
| rep0 = posSlot; |
| if (++rep0 == (UInt32)(0)) |
| { |
| /* it's for stream version */ |
| len = kLzmaStreamWasFinishedId; |
| break; |
| } |
| } |
| |
| len += kMatchMinLen; |
| #ifdef _LZMA_OUT_READ |
| if (rep0 > distanceLimit) |
| #else |
| if (rep0 > nowPos) |
| #endif |
| { |
| printf("ERROR: %s, %d\n", __FILE__, __LINE__); |
| return LZMA_RESULT_DATA_ERROR; |
| } |
| |
| #ifdef _LZMA_OUT_READ |
| if (dictionarySize - distanceLimit > (UInt32)len) |
| distanceLimit += len; |
| else |
| distanceLimit = dictionarySize; |
| #endif |
| |
| do |
| { |
| #ifdef _LZMA_OUT_READ |
| UInt32 pos = dictionaryPos - rep0; |
| if (pos >= dictionarySize) |
| pos += dictionarySize; |
| previousByte = dictionary[pos]; |
| dictionary[dictionaryPos] = previousByte; |
| if (++dictionaryPos == dictionarySize) |
| dictionaryPos = 0; |
| #else |
| previousByte = outStream[nowPos - rep0]; |
| #endif |
| len--; |
| outStream[nowPos++] = previousByte; |
| } |
| while(len != 0 && nowPos < outSize); |
| } |
| } |
| RC_NORMALIZE; |
| |
| #ifdef _LZMA_OUT_READ |
| vs->Range = Range; |
| vs->Code = Code; |
| vs->DictionaryPos = dictionaryPos; |
| vs->GlobalPos = globalPos + (UInt32)nowPos; |
| vs->DistanceLimit = distanceLimit; |
| vs->Reps[0] = rep0; |
| vs->Reps[1] = rep1; |
| vs->Reps[2] = rep2; |
| vs->Reps[3] = rep3; |
| vs->State = state; |
| vs->RemainLen = len; |
| vs->TempDictionary[0] = tempDictionary[0]; |
| #endif |
| |
| #ifdef _LZMA_IN_CB |
| vs->Buffer = Buffer; |
| vs->BufferLim = BufferLim; |
| #else |
| *inSizeProcessed = (SizeT)(Buffer - inStream); |
| #endif |
| *outSizeProcessed = nowPos; |
| return LZMA_RESULT_OK; |
| } |
| |
| #endif /* CONFIG_LZMA */ |