blob: c12a83500afaae53e04c12e5de252f37b93f97f3 [file] [log] [blame]
;/****************************************************************************
*
* SciTech OS Portability Manager Library
*
* ========================================================================
*
* The contents of this file are subject to the SciTech MGL Public
* License Version 1.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.scitechsoft.com/mgl-license.txt
*
* Software distributed under the License is distributed on an
* "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Copyright (C) 1991-1998 SciTech Software, Inc.
*
* The Initial Developer of the Original Code is SciTech Software, Inc.
* All Rights Reserved.
*
* ========================================================================
*
* Portions copyright (C) Josh Vanderhoof
*
* Language: ANSI C
* Environment: Linux
*
* Description: Implementation for the OS Portability Manager Library, which
* contains functions to implement OS specific services in a
* generic, cross platform API. Porting the OS Portability
* Manager library is the first step to porting any SciTech
* products to a new platform.
*
****************************************************************************/
#include "pmapi.h"
#include "drvlib/os/os.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/kd.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/vt.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/time.h>
#include <unistd.h>
#include <termios.h>
#include <fcntl.h>
#include <syscall.h>
#include <signal.h>
#include <time.h>
#include <ctype.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/types.h>
#ifdef ENABLE_MTRR
#include <asm/mtrr.h>
#endif
#include <asm/vm86.h>
#ifdef __GLIBC__
#include <sys/perm.h>
#endif
/*--------------------------- Global variables ----------------------------*/
#define REAL_MEM_BASE ((void *)0x10000)
#define REAL_MEM_SIZE 0x10000
#define REAL_MEM_BLOCKS 0x100
#define DEFAULT_VM86_FLAGS (IF_MASK | IOPL_MASK)
#define DEFAULT_STACK_SIZE 0x1000
#define RETURN_TO_32_INT 255
/* Quick and dirty fix for vm86() syscall from lrmi 0.6 */
static int
vm86(struct vm86_struct *vm)
{
int r;
#ifdef __PIC__
asm volatile (
"pushl %%ebx\n\t"
"movl %2, %%ebx\n\t"
"int $0x80\n\t"
"popl %%ebx"
: "=a" (r)
: "0" (113), "r" (vm));
#else
asm volatile (
"int $0x80"
: "=a" (r)
: "0" (113), "b" (vm));
#endif
return r;
}
static struct {
int ready;
unsigned short ret_seg, ret_off;
unsigned short stack_seg, stack_off;
struct vm86_struct vm;
} context = {0};
struct mem_block {
unsigned int size : 20;
unsigned int free : 1;
};
static struct {
int ready;
int count;
struct mem_block blocks[REAL_MEM_BLOCKS];
} mem_info = {0};
int _PM_console_fd = -1;
int _PM_leds = 0,_PM_modifiers = 0;
static ibool inited = false;
static int tty_vc = 0;
static int console_count = 0;
static int startup_vc;
static int fd_mem = 0;
static ibool in_raw_mode = false;
#ifdef ENABLE_MTRR
static int mtrr_fd;
#endif
static uint VESABuf_len = 1024; /* Length of the VESABuf buffer */
static void *VESABuf_ptr = NULL; /* Near pointer to VESABuf */
static uint VESABuf_rseg; /* Real mode segment of VESABuf */
static uint VESABuf_roff; /* Real mode offset of VESABuf */
#ifdef TRACE_IO
static ulong traceAddr;
#endif
static void (PMAPIP fatalErrorCleanup)(void) = NULL;
/*----------------------------- Implementation ----------------------------*/
#ifdef TRACE_IO
extern void printk(char *msg,...);
#endif
static inline void port_out(int value, int port)
{
#ifdef TRACE_IO
printk("%04X:%04X: outb.%04X <- %02X\n", traceAddr >> 16, traceAddr & 0xFFFF, (ushort)port, (uchar)value);
#endif
asm volatile ("outb %0,%1"
::"a" ((unsigned char) value), "d"((unsigned short) port));
}
static inline void port_outw(int value, int port)
{
#ifdef TRACE_IO
printk("%04X:%04X: outw.%04X <- %04X\n", traceAddr >> 16,traceAddr & 0xFFFF, (ushort)port, (ushort)value);
#endif
asm volatile ("outw %0,%1"
::"a" ((unsigned short) value), "d"((unsigned short) port));
}
static inline void port_outl(int value, int port)
{
#ifdef TRACE_IO
printk("%04X:%04X: outl.%04X <- %08X\n", traceAddr >> 16,traceAddr & 0xFFFF, (ushort)port, (ulong)value);
#endif
asm volatile ("outl %0,%1"
::"a" ((unsigned long) value), "d"((unsigned short) port));
}
static inline unsigned int port_in(int port)
{
unsigned char value;
asm volatile ("inb %1,%0"
:"=a" ((unsigned char)value)
:"d"((unsigned short) port));
#ifdef TRACE_IO
printk("%04X:%04X: inb.%04X -> %02X\n", traceAddr >> 16,traceAddr & 0xFFFF, (ushort)port, (uchar)value);
#endif
return value;
}
static inline unsigned int port_inw(int port)
{
unsigned short value;
asm volatile ("inw %1,%0"
:"=a" ((unsigned short)value)
:"d"((unsigned short) port));
#ifdef TRACE_IO
printk("%04X:%04X: inw.%04X -> %04X\n", traceAddr >> 16,traceAddr & 0xFFFF, (ushort)port, (ushort)value);
#endif
return value;
}
static inline unsigned int port_inl(int port)
{
unsigned long value;
asm volatile ("inl %1,%0"
:"=a" ((unsigned long)value)
:"d"((unsigned short) port));
#ifdef TRACE_IO
printk("%04X:%04X: inl.%04X -> %08X\n", traceAddr >> 16,traceAddr & 0xFFFF, (ushort)port, (ulong)value);
#endif
return value;
}
static int real_mem_init(void)
{
void *m;
int fd_zero;
if (mem_info.ready)
return 1;
if ((fd_zero = open("/dev/zero", O_RDONLY)) == -1)
PM_fatalError("You must have root privledges to run this program!");
if ((m = mmap((void *)REAL_MEM_BASE, REAL_MEM_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, fd_zero, 0)) == (void *)-1) {
close(fd_zero);
PM_fatalError("You must have root privledges to run this program!");
}
mem_info.ready = 1;
mem_info.count = 1;
mem_info.blocks[0].size = REAL_MEM_SIZE;
mem_info.blocks[0].free = 1;
return 1;
}
static void insert_block(int i)
{
memmove(
mem_info.blocks + i + 1,
mem_info.blocks + i,
(mem_info.count - i) * sizeof(struct mem_block));
mem_info.count++;
}
static void delete_block(int i)
{
mem_info.count--;
memmove(
mem_info.blocks + i,
mem_info.blocks + i + 1,
(mem_info.count - i) * sizeof(struct mem_block));
}
static inline void set_bit(unsigned int bit, void *array)
{
unsigned char *a = array;
a[bit / 8] |= (1 << (bit % 8));
}
static inline unsigned int get_int_seg(int i)
{
return *(unsigned short *)(i * 4 + 2);
}
static inline unsigned int get_int_off(int i)
{
return *(unsigned short *)(i * 4);
}
static inline void pushw(unsigned short i)
{
struct vm86_regs *r = &context.vm.regs;
r->esp -= 2;
*(unsigned short *)(((unsigned int)r->ss << 4) + r->esp) = i;
}
ibool PMAPI PM_haveBIOSAccess(void)
{ return true; }
void PMAPI PM_init(void)
{
void *m;
uint r_seg,r_off;
if (inited)
return;
/* Map the Interrupt Vectors (0x0 - 0x400) + BIOS data (0x400 - 0x502)
* and the physical framebuffer and ROM images from (0xa0000 - 0x100000)
*/
real_mem_init();
if (!fd_mem && (fd_mem = open("/dev/mem", O_RDWR)) == -1) {
PM_fatalError("You must have root privileges to run this program!");
}
if ((m = mmap((void *)0, 0x502,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, fd_mem, 0)) == (void *)-1) {
PM_fatalError("You must have root privileges to run this program!");
}
if ((m = mmap((void *)0xA0000, 0xC0000 - 0xA0000,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_SHARED, fd_mem, 0xA0000)) == (void *)-1) {
PM_fatalError("You must have root privileges to run this program!");
}
if ((m = mmap((void *)0xC0000, 0xD0000 - 0xC0000,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE, fd_mem, 0xC0000)) == (void *)-1) {
PM_fatalError("You must have root privileges to run this program!");
}
if ((m = mmap((void *)0xD0000, 0x100000 - 0xD0000,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_SHARED, fd_mem, 0xD0000)) == (void *)-1) {
PM_fatalError("You must have root privileges to run this program!");
}
inited = 1;
/* Allocate a stack */
m = PM_allocRealSeg(DEFAULT_STACK_SIZE,&r_seg,&r_off);
context.stack_seg = r_seg;
context.stack_off = r_off+DEFAULT_STACK_SIZE;
/* Allocate the return to 32 bit routine */
m = PM_allocRealSeg(2,&r_seg,&r_off);
context.ret_seg = r_seg;
context.ret_off = r_off;
((uchar*)m)[0] = 0xCD; /* int opcode */
((uchar*)m)[1] = RETURN_TO_32_INT;
memset(&context.vm, 0, sizeof(context.vm));
/* Enable kernel emulation of all ints except RETURN_TO_32_INT */
memset(&context.vm.int_revectored, 0, sizeof(context.vm.int_revectored));
set_bit(RETURN_TO_32_INT, &context.vm.int_revectored);
context.ready = 1;
#ifdef ENABLE_MTRR
mtrr_fd = open("/dev/cpu/mtrr", O_RDWR, 0);
if (mtrr_fd < 0)
mtrr_fd = open("/proc/mtrr", O_RDWR, 0);
#endif
/* Enable I/O permissions to directly access I/O ports. We break the
* allocation into two parts, one for the ports from 0-0x3FF and
* another for the remaining ports up to 0xFFFF. Standard Linux kernels
* only allow the first 0x400 ports to be enabled, so to enable all
* 65536 ports you need a patched kernel that will enable the full
* 8Kb I/O permissions bitmap.
*/
#ifndef TRACE_IO
ioperm(0x0,0x400,1);
ioperm(0x400,0x10000-0x400,1);
#endif
iopl(3);
}
long PMAPI PM_getOSType(void)
{ return _OS_LINUX; }
int PMAPI PM_getModeType(void)
{ return PM_386; }
void PMAPI PM_backslash(char *s)
{
uint pos = strlen(s);
if (s[pos-1] != '/') {
s[pos] = '/';
s[pos+1] = '\0';
}
}
void PMAPI PM_setFatalErrorCleanup(
void (PMAPIP cleanup)(void))
{
fatalErrorCleanup = cleanup;
}
void PMAPI PM_fatalError(const char *msg)
{
if (fatalErrorCleanup)
fatalErrorCleanup();
fprintf(stderr,"%s\n", msg);
fflush(stderr);
exit(1);
}
static void ExitVBEBuf(void)
{
if (VESABuf_ptr)
PM_freeRealSeg(VESABuf_ptr);
VESABuf_ptr = 0;
}
void * PMAPI PM_getVESABuf(uint *len,uint *rseg,uint *roff)
{
if (!VESABuf_ptr) {
/* Allocate a global buffer for communicating with the VESA VBE */
if ((VESABuf_ptr = PM_allocRealSeg(VESABuf_len, &VESABuf_rseg, &VESABuf_roff)) == NULL)
return NULL;
atexit(ExitVBEBuf);
}
*len = VESABuf_len;
*rseg = VESABuf_rseg;
*roff = VESABuf_roff;
return VESABuf_ptr;
}
/* New raw console based getch and kbhit functions */
#define KB_CAPS LED_CAP /* 4 */
#define KB_NUMLOCK LED_NUM /* 2 */
#define KB_SCROLL LED_SCR /* 1 */
#define KB_SHIFT 8
#define KB_CONTROL 16
#define KB_ALT 32
/* Structure used to save the keyboard mode to disk. We save it to disk
* so that we can properly restore the mode later if the program crashed.
*/
typedef struct {
struct termios termios;
int kb_mode;
int leds;
int flags;
int startup_vc;
} keyboard_mode;
/* Name of the file used to save keyboard mode information */
#define KBMODE_DAT "kbmode.dat"
/****************************************************************************
REMARKS:
Open the keyboard mode file on disk.
****************************************************************************/
static FILE *open_kb_mode(
char *mode,
char *path)
{
if (!PM_findBPD("graphics.bpd",path))
return NULL;
PM_backslash(path);
strcat(path,KBMODE_DAT);
return fopen(path,mode);
}
/****************************************************************************
REMARKS:
Restore the keyboard to normal mode
****************************************************************************/
void _PM_restore_kb_mode(void)
{
FILE *kbmode;
keyboard_mode mode;
char path[PM_MAX_PATH];
if (_PM_console_fd != -1 && (kbmode = open_kb_mode("rb",path)) != NULL) {
if (fread(&mode,1,sizeof(mode),kbmode) == sizeof(mode)) {
if (mode.startup_vc > 0)
ioctl(_PM_console_fd, VT_ACTIVATE, mode.startup_vc);
ioctl(_PM_console_fd, KDSKBMODE, mode.kb_mode);
ioctl(_PM_console_fd, KDSETLED, mode.leds);
tcsetattr(_PM_console_fd, TCSAFLUSH, &mode.termios);
fcntl(_PM_console_fd,F_SETFL,mode.flags);
}
fclose(kbmode);
unlink(path);
in_raw_mode = false;
}
}
/****************************************************************************
REMARKS:
Safely abort the event module upon catching a fatal error.
****************************************************************************/
void _PM_abort(
int signo)
{
char buf[80];
sprintf(buf,"Terminating on signal %d",signo);
_PM_restore_kb_mode();
PM_fatalError(buf);
}
/****************************************************************************
REMARKS:
Put the keyboard into raw mode
****************************************************************************/
void _PM_keyboard_rawmode(void)
{
struct termios conf;
FILE *kbmode;
keyboard_mode mode;
char path[PM_MAX_PATH];
int i;
static int sig_list[] = {
SIGHUP,
SIGINT,
SIGQUIT,
SIGILL,
SIGTRAP,
SIGABRT,
SIGIOT,
SIGBUS,
SIGFPE,
SIGKILL,
SIGSEGV,
SIGTERM,
};
if ((kbmode = open_kb_mode("rb",path)) == NULL) {
if ((kbmode = open_kb_mode("wb",path)) == NULL)
PM_fatalError("Unable to open kbmode.dat file for writing!");
if (ioctl(_PM_console_fd, KDGKBMODE, &mode.kb_mode))
perror("KDGKBMODE");
ioctl(_PM_console_fd, KDGETLED, &mode.leds);
_PM_leds = mode.leds & 0xF;
_PM_modifiers = 0;
tcgetattr(_PM_console_fd, &mode.termios);
conf = mode.termios;
conf.c_lflag &= ~(ICANON | ECHO | ISIG);
conf.c_iflag &= ~(ISTRIP | IGNCR | ICRNL | INLCR | BRKINT | PARMRK | INPCK | IUCLC | IXON | IXOFF);
conf.c_iflag |= (IGNBRK | IGNPAR);
conf.c_cc[VMIN] = 1;
conf.c_cc[VTIME] = 0;
conf.c_cc[VSUSP] = 0;
tcsetattr(_PM_console_fd, TCSAFLUSH, &conf);
mode.flags = fcntl(_PM_console_fd,F_GETFL);
if (ioctl(_PM_console_fd, KDSKBMODE, K_MEDIUMRAW))
perror("KDSKBMODE");
atexit(_PM_restore_kb_mode);
for (i = 0; i < sizeof(sig_list)/sizeof(sig_list[0]); i++)
signal(sig_list[i], _PM_abort);
mode.startup_vc = startup_vc;
if (fwrite(&mode,1,sizeof(mode),kbmode) != sizeof(mode))
PM_fatalError("Error writing kbmode.dat!");
fclose(kbmode);
in_raw_mode = true;
}
}
int PMAPI PM_kbhit(void)
{
fd_set s;
struct timeval tv = { 0, 0 };
if (console_count == 0)
PM_fatalError("You *must* open a console before using PM_kbhit!");
if (!in_raw_mode)
_PM_keyboard_rawmode();
FD_ZERO(&s);
FD_SET(_PM_console_fd, &s);
return select(_PM_console_fd+1, &s, NULL, NULL, &tv) > 0;
}
int PMAPI PM_getch(void)
{
static uchar c;
int release;
static struct kbentry ke;
if (console_count == 0)
PM_fatalError("You *must* open a console before using PM_getch!");
if (!in_raw_mode)
_PM_keyboard_rawmode();
while (read(_PM_console_fd, &c, 1) > 0) {
release = c & 0x80;
c &= 0x7F;
if (release) {
switch(c){
case 42: case 54: /* Shift */
_PM_modifiers &= ~KB_SHIFT;
break;
case 29: case 97: /* Control */
_PM_modifiers &= ~KB_CONTROL;
break;
case 56: case 100: /* Alt / AltGr */
_PM_modifiers &= ~KB_ALT;
break;
}
continue;
}
switch (c) {
case 42: case 54: /* Shift */
_PM_modifiers |= KB_SHIFT;
break;
case 29: case 97: /* Control */
_PM_modifiers |= KB_CONTROL;
break;
case 56: case 100: /* Alt / AltGr */
_PM_modifiers |= KB_ALT;
break;
case 58: /* Caps Lock */
_PM_modifiers ^= KB_CAPS;
ioctl(_PM_console_fd, KDSETLED, _PM_modifiers & 7);
break;
case 69: /* Num Lock */
_PM_modifiers ^= KB_NUMLOCK;
ioctl(_PM_console_fd, KDSETLED, _PM_modifiers & 7);
break;
case 70: /* Scroll Lock */
_PM_modifiers ^= KB_SCROLL;
ioctl(_PM_console_fd, KDSETLED, _PM_modifiers & 7);
break;
case 28:
return 0x1C;
default:
ke.kb_index = c;
ke.kb_table = 0;
if ((_PM_modifiers & KB_SHIFT) || (_PM_modifiers & KB_CAPS))
ke.kb_table |= K_SHIFTTAB;
if (_PM_modifiers & KB_ALT)
ke.kb_table |= K_ALTTAB;
ioctl(_PM_console_fd, KDGKBENT, (ulong)&ke);
c = ke.kb_value & 0xFF;
return c;
}
}
return 0;
}
/****************************************************************************
REMARKS:
Sleep until the virtual terminal is active
****************************************************************************/
static void wait_vt_active(
int _PM_console_fd)
{
while (ioctl(_PM_console_fd, VT_WAITACTIVE, tty_vc) < 0) {
if ((errno != EAGAIN) && (errno != EINTR)) {
perror("ioctl(VT_WAITACTIVE)");
exit(1);
}
usleep(150000);
}
}
/****************************************************************************
REMARKS:
Checks the owner of the specified virtual console.
****************************************************************************/
static int check_owner(
int vc)
{
struct stat sbuf;
char fname[30];
sprintf(fname, "/dev/tty%d", vc);
if ((stat(fname, &sbuf) >= 0) && (getuid() == sbuf.st_uid))
return 1;
printf("You must be the owner of the current console to use this program.\n");
return 0;
}
/****************************************************************************
REMARKS:
Checks if the console is currently in graphics mode, and if so we forcibly
restore it back to text mode again. This handles the case when a Nucleus or
MGL program crashes and leaves the console in graphics mode. Running the
textmode utility (or any other Nucleus/MGL program) via a telnet session
into the machine will restore it back to normal.
****************************************************************************/
static void restore_text_console(
int console_id)
{
if (ioctl(console_id, KDSETMODE, KD_TEXT) < 0)
LOGWARN("ioctl(KDSETMODE) failed");
_PM_restore_kb_mode();
}
/****************************************************************************
REMARKS:
Opens up the console device for output by finding an appropriate virutal
console that we can run on.
****************************************************************************/
PM_HWND PMAPI PM_openConsole(
PM_HWND hwndUser,
int device,
int xRes,
int yRes,
int bpp,
ibool fullScreen)
{
struct vt_mode vtm;
struct vt_stat vts;
struct stat sbuf;
char fname[30];
/* Check if we have already opened the console */
if (console_count++)
return _PM_console_fd;
/* Now, it would be great if we could use /dev/tty and see what it is
* connected to. Alas, we cannot find out reliably what VC /dev/tty is
* bound to. Thus we parse stdin through stderr for a reliable VC.
*/
startup_vc = 0;
for (_PM_console_fd = 0; _PM_console_fd < 3; _PM_console_fd++) {
if (fstat(_PM_console_fd, &sbuf) < 0)
continue;
if (ioctl(_PM_console_fd, VT_GETMODE, &vtm) < 0)
continue;
if ((sbuf.st_rdev & 0xFF00) != 0x400)
continue;
if (!(sbuf.st_rdev & 0xFF))
continue;
tty_vc = sbuf.st_rdev & 0xFF;
restore_text_console(_PM_console_fd);
return _PM_console_fd;
}
if ((_PM_console_fd = open("/dev/console", O_RDWR)) < 0) {
printf("open_dev_console: can't open /dev/console \n");
exit(1);
}
if (ioctl(_PM_console_fd, VT_OPENQRY, &tty_vc) < 0)
goto Error;
if (tty_vc <= 0)
goto Error;
sprintf(fname, "/dev/tty%d", tty_vc);
close(_PM_console_fd);
/* Change our control terminal */
setsid();
/* We must use RDWR to allow for output... */
if (((_PM_console_fd = open(fname, O_RDWR)) >= 0) &&
(ioctl(_PM_console_fd, VT_GETSTATE, &vts) >= 0)) {
if (!check_owner(vts.v_active))
goto Error;
restore_text_console(_PM_console_fd);
/* Success, redirect all stdios */
fflush(stdin);
fflush(stdout);
fflush(stderr);
close(0);
close(1);
close(2);
dup(_PM_console_fd);
dup(_PM_console_fd);
dup(_PM_console_fd);
/* clear screen and switch to it */
fwrite("\e[H\e[J", 6, 1, stderr);
fflush(stderr);
if (tty_vc != vts.v_active) {
startup_vc = vts.v_active;
ioctl(_PM_console_fd, VT_ACTIVATE, tty_vc);
wait_vt_active(_PM_console_fd);
}
}
return _PM_console_fd;
Error:
if (_PM_console_fd > 2)
close(_PM_console_fd);
console_count = 0;
PM_fatalError(
"Not running in a graphics capable console,\n"
"and unable to find one.\n");
return -1;
}
#define FONT_C 0x10000 /* 64KB for font data */
/****************************************************************************
REMARKS:
Returns the size of the console state buffer.
****************************************************************************/
int PMAPI PM_getConsoleStateSize(void)
{
if (!inited)
PM_init();
return PM_getVGAStateSize() + FONT_C*2;
}
/****************************************************************************
REMARKS:
Save the state of the Linux console.
****************************************************************************/
void PMAPI PM_saveConsoleState(void *stateBuf,int console_id)
{
uchar *regs = stateBuf;
/* Save the current console font */
if (ioctl(console_id,GIO_FONT,&regs[PM_getVGAStateSize()]) < 0)
perror("ioctl(GIO_FONT)");
/* Inform the Linux console that we are going into graphics mode */
if (ioctl(console_id, KDSETMODE, KD_GRAPHICS) < 0)
perror("ioctl(KDSETMODE)");
/* Save state of VGA registers */
PM_saveVGAState(stateBuf);
}
void PMAPI PM_setSuspendAppCallback(int (_ASMAPIP saveState)(int flags))
{
/* TODO: Implement support for allowing console switching! */
}
/****************************************************************************
REMARKS:
Restore the state of the Linux console.
****************************************************************************/
void PMAPI PM_restoreConsoleState(const void *stateBuf,PM_HWND console_id)
{
const uchar *regs = stateBuf;
/* Restore the state of the VGA compatible registers */
PM_restoreVGAState(stateBuf);
/* Inform the Linux console that we are back from graphics modes */
if (ioctl(console_id, KDSETMODE, KD_TEXT) < 0)
LOGWARN("ioctl(KDSETMODE) failed");
/* Restore the old console font */
if (ioctl(console_id,PIO_FONT,&regs[PM_getVGAStateSize()]) < 0)
LOGWARN("ioctl(KDSETMODE) failed");
/* Coming back from graphics mode on Linux also restored the previous
* text mode console contents, so we need to clear the screen to get
* around this since the cursor does not get homed by our code.
*/
fflush(stdout);
fflush(stderr);
printf("\033[H\033[J");
fflush(stdout);
}
/****************************************************************************
REMARKS:
Close the Linux console and put it back to normal.
****************************************************************************/
void PMAPI PM_closeConsole(PM_HWND _PM_console_fd)
{
/* Restore console to normal operation */
if (--console_count == 0) {
/* Re-activate the original virtual console */
if (startup_vc > 0)
ioctl(_PM_console_fd, VT_ACTIVATE, startup_vc);
/* Close the console file descriptor */
if (_PM_console_fd > 2)
close(_PM_console_fd);
_PM_console_fd = -1;
}
}
void PM_setOSCursorLocation(int x,int y)
{
/* Nothing to do in here */
}
/****************************************************************************
REMARKS:
Set the screen width and height for the Linux console.
****************************************************************************/
void PM_setOSScreenWidth(int width,int height)
{
struct winsize ws;
struct vt_sizes vs;
/* Resize the software terminal */
ws.ws_col = width;
ws.ws_row = height;
ioctl(_PM_console_fd, TIOCSWINSZ, &ws);
/* And the hardware */
vs.v_rows = height;
vs.v_cols = width;
vs.v_scrollsize = 0;
ioctl(_PM_console_fd, VT_RESIZE, &vs);
}
ibool PMAPI PM_setRealTimeClockHandler(PM_intHandler ih, int frequency)
{
/* TODO: Implement this for Linux */
return false;
}
void PMAPI PM_setRealTimeClockFrequency(int frequency)
{
/* TODO: Implement this for Linux */
}
void PMAPI PM_restoreRealTimeClockHandler(void)
{
/* TODO: Implement this for Linux */
}
char * PMAPI PM_getCurrentPath(
char *path,
int maxLen)
{
return getcwd(path,maxLen);
}
char PMAPI PM_getBootDrive(void)
{ return '/'; }
const char * PMAPI PM_getVBEAFPath(void)
{ return PM_getNucleusConfigPath(); }
const char * PMAPI PM_getNucleusPath(void)
{
char *env = getenv("NUCLEUS_PATH");
return env ? env : "/usr/lib/nucleus";
}
const char * PMAPI PM_getNucleusConfigPath(void)
{
static char path[256];
strcpy(path,PM_getNucleusPath());
PM_backslash(path);
strcat(path,"config");
return path;
}
const char * PMAPI PM_getUniqueID(void)
{
static char buf[128];
gethostname(buf, 128);
return buf;
}
const char * PMAPI PM_getMachineName(void)
{
static char buf[128];
gethostname(buf, 128);
return buf;
}
void * PMAPI PM_getBIOSPointer(void)
{
static uchar *zeroPtr = NULL;
if (!zeroPtr)
zeroPtr = PM_mapPhysicalAddr(0,0xFFFFF,true);
return (void*)(zeroPtr + 0x400);
}
void * PMAPI PM_getA0000Pointer(void)
{
/* PM_init maps in the 0xA0000 framebuffer region 1:1 with our
* address mapping, so we can return the address here.
*/
if (!inited)
PM_init();
return (void*)(0xA0000);
}
void * PMAPI PM_mapPhysicalAddr(ulong base,ulong limit,ibool isCached)
{
uchar *p;
ulong baseAddr,baseOfs;
if (!inited)
PM_init();
if (base >= 0xA0000 && base < 0x100000)
return (void*)base;
if (!fd_mem && (fd_mem = open("/dev/mem", O_RDWR)) == -1)
return NULL;
/* Round the physical address to a 4Kb boundary and the limit to a
* 4Kb-1 boundary before passing the values to mmap. If we round the
* physical address, then we also add an extra offset into the address
* that we return.
*/
baseOfs = base & 4095;
baseAddr = base & ~4095;
limit = ((limit+baseOfs+1+4095) & ~4095)-1;
if ((p = mmap(0, limit+1,
PROT_READ | PROT_WRITE, MAP_SHARED,
fd_mem, baseAddr)) == (void *)-1)
return NULL;
return (void*)(p+baseOfs);
}
void PMAPI PM_freePhysicalAddr(void *ptr,ulong limit)
{
if ((ulong)ptr >= 0x100000)
munmap(ptr,limit+1);
}
ulong PMAPI PM_getPhysicalAddr(void *p)
{
/* TODO: This function should find the physical address of a linear */
/* address. */
return 0xFFFFFFFFUL;
}
ibool PMAPI PM_getPhysicalAddrRange(void *p,ulong length,ulong *physAddress)
{
/* TODO: This function should find a range of physical addresses */
/* for a linear address. */
return false;
}
void PMAPI PM_sleep(ulong milliseconds)
{
/* TODO: Put the process to sleep for milliseconds */
}
int PMAPI PM_getCOMPort(int port)
{
/* TODO: Re-code this to determine real values using the Plug and Play */
/* manager for the OS. */
switch (port) {
case 0: return 0x3F8;
case 1: return 0x2F8;
}
return 0;
}
int PMAPI PM_getLPTPort(int port)
{
/* TODO: Re-code this to determine real values using the Plug and Play */
/* manager for the OS. */
switch (port) {
case 0: return 0x3BC;
case 1: return 0x378;
case 2: return 0x278;
}
return 0;
}
void * PMAPI PM_mallocShared(long size)
{
return PM_malloc(size);
}
void PMAPI PM_freeShared(void *ptr)
{
PM_free(ptr);
}
void * PMAPI PM_mapToProcess(void *base,ulong limit)
{ return (void*)base; }
void * PMAPI PM_mapRealPointer(uint r_seg,uint r_off)
{
/* PM_init maps in the 0xA0000-0x100000 region 1:1 with our
* address mapping, as well as all memory blocks in a 1:1 address
* mapping so we can simply return the physical address in here.
*/
if (!inited)
PM_init();
return (void*)MK_PHYS(r_seg,r_off);
}
void * PMAPI PM_allocRealSeg(uint size,uint *r_seg,uint *r_off)
{
int i;
char *r = (char *)REAL_MEM_BASE;
if (!inited)
PM_init();
if (!mem_info.ready)
return NULL;
if (mem_info.count == REAL_MEM_BLOCKS)
return NULL;
size = (size + 15) & ~15;
for (i = 0; i < mem_info.count; i++) {
if (mem_info.blocks[i].free && size < mem_info.blocks[i].size) {
insert_block(i);
mem_info.blocks[i].size = size;
mem_info.blocks[i].free = 0;
mem_info.blocks[i + 1].size -= size;
*r_seg = (uint)(r) >> 4;
*r_off = (uint)(r) & 0xF;
return (void *)r;
}
r += mem_info.blocks[i].size;
}
return NULL;
}
void PMAPI PM_freeRealSeg(void *mem)
{
int i;
char *r = (char *)REAL_MEM_BASE;
if (!mem_info.ready)
return;
i = 0;
while (mem != (void *)r) {
r += mem_info.blocks[i].size;
i++;
if (i == mem_info.count)
return;
}
mem_info.blocks[i].free = 1;
if (i + 1 < mem_info.count && mem_info.blocks[i + 1].free) {
mem_info.blocks[i].size += mem_info.blocks[i + 1].size;
delete_block(i + 1);
}
if (i - 1 >= 0 && mem_info.blocks[i - 1].free) {
mem_info.blocks[i - 1].size += mem_info.blocks[i].size;
delete_block(i);
}
}
#define DIRECTION_FLAG (1 << 10)
static void em_ins(int size)
{
unsigned int edx, edi;
edx = context.vm.regs.edx & 0xffff;
edi = context.vm.regs.edi & 0xffff;
edi += (unsigned int)context.vm.regs.ds << 4;
if (context.vm.regs.eflags & DIRECTION_FLAG) {
if (size == 4)
asm volatile ("std; insl; cld"
: "=D" (edi) : "d" (edx), "0" (edi));
else if (size == 2)
asm volatile ("std; insw; cld"
: "=D" (edi) : "d" (edx), "0" (edi));
else
asm volatile ("std; insb; cld"
: "=D" (edi) : "d" (edx), "0" (edi));
}
else {
if (size == 4)
asm volatile ("cld; insl"
: "=D" (edi) : "d" (edx), "0" (edi));
else if (size == 2)
asm volatile ("cld; insw"
: "=D" (edi) : "d" (edx), "0" (edi));
else
asm volatile ("cld; insb"
: "=D" (edi) : "d" (edx), "0" (edi));
}
edi -= (unsigned int)context.vm.regs.ds << 4;
context.vm.regs.edi &= 0xffff0000;
context.vm.regs.edi |= edi & 0xffff;
}
static void em_rep_ins(int size)
{
unsigned int ecx, edx, edi;
ecx = context.vm.regs.ecx & 0xffff;
edx = context.vm.regs.edx & 0xffff;
edi = context.vm.regs.edi & 0xffff;
edi += (unsigned int)context.vm.regs.ds << 4;
if (context.vm.regs.eflags & DIRECTION_FLAG) {
if (size == 4)
asm volatile ("std; rep; insl; cld"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
else if (size == 2)
asm volatile ("std; rep; insw; cld"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
else
asm volatile ("std; rep; insb; cld"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
}
else {
if (size == 4)
asm volatile ("cld; rep; insl"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
else if (size == 2)
asm volatile ("cld; rep; insw"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
else
asm volatile ("cld; rep; insb"
: "=D" (edi), "=c" (ecx)
: "d" (edx), "0" (edi), "1" (ecx));
}
edi -= (unsigned int)context.vm.regs.ds << 4;
context.vm.regs.edi &= 0xffff0000;
context.vm.regs.edi |= edi & 0xffff;
context.vm.regs.ecx &= 0xffff0000;
context.vm.regs.ecx |= ecx & 0xffff;
}
static void em_outs(int size)
{
unsigned int edx, esi;
edx = context.vm.regs.edx & 0xffff;
esi = context.vm.regs.esi & 0xffff;
esi += (unsigned int)context.vm.regs.ds << 4;
if (context.vm.regs.eflags & DIRECTION_FLAG) {
if (size == 4)
asm volatile ("std; outsl; cld"
: "=S" (esi) : "d" (edx), "0" (esi));
else if (size == 2)
asm volatile ("std; outsw; cld"
: "=S" (esi) : "d" (edx), "0" (esi));
else
asm volatile ("std; outsb; cld"
: "=S" (esi) : "d" (edx), "0" (esi));
}
else {
if (size == 4)
asm volatile ("cld; outsl"
: "=S" (esi) : "d" (edx), "0" (esi));
else if (size == 2)
asm volatile ("cld; outsw"
: "=S" (esi) : "d" (edx), "0" (esi));
else
asm volatile ("cld; outsb"
: "=S" (esi) : "d" (edx), "0" (esi));
}
esi -= (unsigned int)context.vm.regs.ds << 4;
context.vm.regs.esi &= 0xffff0000;
context.vm.regs.esi |= esi & 0xffff;
}
static void em_rep_outs(int size)
{
unsigned int ecx, edx, esi;
ecx = context.vm.regs.ecx & 0xffff;
edx = context.vm.regs.edx & 0xffff;
esi = context.vm.regs.esi & 0xffff;
esi += (unsigned int)context.vm.regs.ds << 4;
if (context.vm.regs.eflags & DIRECTION_FLAG) {
if (size == 4)
asm volatile ("std; rep; outsl; cld"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
else if (size == 2)
asm volatile ("std; rep; outsw; cld"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
else
asm volatile ("std; rep; outsb; cld"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
}
else {
if (size == 4)
asm volatile ("cld; rep; outsl"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
else if (size == 2)
asm volatile ("cld; rep; outsw"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
else
asm volatile ("cld; rep; outsb"
: "=S" (esi), "=c" (ecx)
: "d" (edx), "0" (esi), "1" (ecx));
}
esi -= (unsigned int)context.vm.regs.ds << 4;
context.vm.regs.esi &= 0xffff0000;
context.vm.regs.esi |= esi & 0xffff;
context.vm.regs.ecx &= 0xffff0000;
context.vm.regs.ecx |= ecx & 0xffff;
}
static int emulate(void)
{
unsigned char *insn;
struct {
unsigned int size : 1;
unsigned int rep : 1;
} prefix = { 0, 0 };
int i = 0;
insn = (unsigned char *)((unsigned int)context.vm.regs.cs << 4);
insn += context.vm.regs.eip;
while (1) {
#ifdef TRACE_IO
traceAddr = ((ulong)context.vm.regs.cs << 16) + context.vm.regs.eip + i;
#endif
if (insn[i] == 0x66) {
prefix.size = 1 - prefix.size;
i++;
}
else if (insn[i] == 0xf3) {
prefix.rep = 1;
i++;
}
else if (insn[i] == 0xf0 || insn[i] == 0xf2
|| insn[i] == 0x26 || insn[i] == 0x2e
|| insn[i] == 0x36 || insn[i] == 0x3e
|| insn[i] == 0x64 || insn[i] == 0x65
|| insn[i] == 0x67) {
/* these prefixes are just ignored */
i++;
}
else if (insn[i] == 0x6c) {
if (prefix.rep)
em_rep_ins(1);
else
em_ins(1);
i++;
break;
}
else if (insn[i] == 0x6d) {
if (prefix.rep) {
if (prefix.size)
em_rep_ins(4);
else
em_rep_ins(2);
}
else {
if (prefix.size)
em_ins(4);
else
em_ins(2);
}
i++;
break;
}
else if (insn[i] == 0x6e) {
if (prefix.rep)
em_rep_outs(1);
else
em_outs(1);
i++;
break;
}
else if (insn[i] == 0x6f) {
if (prefix.rep) {
if (prefix.size)
em_rep_outs(4);
else
em_rep_outs(2);
}
else {
if (prefix.size)
em_outs(4);
else
em_outs(2);
}
i++;
break;
}
else if (insn[i] == 0xec) {
*((uchar*)&context.vm.regs.eax) = port_in(context.vm.regs.edx);
i++;
break;
}
else if (insn[i] == 0xed) {
if (prefix.size)
*((ulong*)&context.vm.regs.eax) = port_inl(context.vm.regs.edx);
else
*((ushort*)&context.vm.regs.eax) = port_inw(context.vm.regs.edx);
i++;
break;
}
else if (insn[i] == 0xee) {
port_out(context.vm.regs.eax,context.vm.regs.edx);
i++;
break;
}
else if (insn[i] == 0xef) {
if (prefix.size)
port_outl(context.vm.regs.eax,context.vm.regs.edx);
else
port_outw(context.vm.regs.eax,context.vm.regs.edx);
i++;
break;
}
else
return 0;
}
context.vm.regs.eip += i;
return 1;
}
static void debug_info(int vret)
{
int i;
unsigned char *p;
fputs("vm86() failed\n", stderr);
fprintf(stderr, "return = 0x%x\n", vret);
fprintf(stderr, "eax = 0x%08lx\n", context.vm.regs.eax);
fprintf(stderr, "ebx = 0x%08lx\n", context.vm.regs.ebx);
fprintf(stderr, "ecx = 0x%08lx\n", context.vm.regs.ecx);
fprintf(stderr, "edx = 0x%08lx\n", context.vm.regs.edx);
fprintf(stderr, "esi = 0x%08lx\n", context.vm.regs.esi);
fprintf(stderr, "edi = 0x%08lx\n", context.vm.regs.edi);
fprintf(stderr, "ebp = 0x%08lx\n", context.vm.regs.ebp);
fprintf(stderr, "eip = 0x%08lx\n", context.vm.regs.eip);
fprintf(stderr, "cs = 0x%04x\n", context.vm.regs.cs);
fprintf(stderr, "esp = 0x%08lx\n", context.vm.regs.esp);
fprintf(stderr, "ss = 0x%04x\n", context.vm.regs.ss);
fprintf(stderr, "ds = 0x%04x\n", context.vm.regs.ds);
fprintf(stderr, "es = 0x%04x\n", context.vm.regs.es);
fprintf(stderr, "fs = 0x%04x\n", context.vm.regs.fs);
fprintf(stderr, "gs = 0x%04x\n", context.vm.regs.gs);
fprintf(stderr, "eflags = 0x%08lx\n", context.vm.regs.eflags);
fputs("cs:ip = [ ", stderr);
p = (unsigned char *)((context.vm.regs.cs << 4) + (context.vm.regs.eip & 0xffff));
for (i = 0; i < 16; ++i)
fprintf(stderr, "%02x ", (unsigned int)p[i]);
fputs("]\n", stderr);
fflush(stderr);
}
static int run_vm86(void)
{
unsigned int vret;
for (;;) {
vret = vm86(&context.vm);
if (VM86_TYPE(vret) == VM86_INTx) {
unsigned int v = VM86_ARG(vret);
if (v == RETURN_TO_32_INT)
return 1;
pushw(context.vm.regs.eflags);
pushw(context.vm.regs.cs);
pushw(context.vm.regs.eip);
context.vm.regs.cs = get_int_seg(v);
context.vm.regs.eip = get_int_off(v);
context.vm.regs.eflags &= ~(VIF_MASK | TF_MASK);
continue;
}
if (VM86_TYPE(vret) != VM86_UNKNOWN)
break;
if (!emulate())
break;
}
debug_info(vret);
return 0;
}
#define IND(ereg) context.vm.regs.ereg = regs->ereg
#define OUTD(ereg) regs->ereg = context.vm.regs.ereg
void PMAPI DPMI_int86(int intno, DPMI_regs *regs)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
IND(eax); IND(ebx); IND(ecx); IND(edx); IND(esi); IND(edi);
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(intno);
context.vm.regs.eip = get_int_off(intno);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
OUTD(eax); OUTD(ebx); OUTD(ecx); OUTD(edx); OUTD(esi); OUTD(edi);
regs->flags = context.vm.regs.eflags;
}
#define IN(ereg) context.vm.regs.ereg = in->e.ereg
#define OUT(ereg) out->e.ereg = context.vm.regs.ereg
int PMAPI PM_int86(int intno, RMREGS *in, RMREGS *out)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
IN(eax); IN(ebx); IN(ecx); IN(edx); IN(esi); IN(edi);
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(intno);
context.vm.regs.eip = get_int_off(intno);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
OUT(eax); OUT(ebx); OUT(ecx); OUT(edx); OUT(esi); OUT(edi);
out->x.cflag = context.vm.regs.eflags & 1;
return out->x.ax;
}
int PMAPI PM_int86x(int intno, RMREGS *in, RMREGS *out,
RMSREGS *sregs)
{
if (!inited)
PM_init();
if (intno == 0x21) {
time_t today = time(NULL);
struct tm *t;
t = localtime(&today);
out->x.cx = t->tm_year + 1900;
out->h.dh = t->tm_mon + 1;
out->h.dl = t->tm_mday;
}
else {
unsigned int seg, off;
seg = get_int_seg(intno);
off = get_int_off(intno);
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
IN(eax); IN(ebx); IN(ecx); IN(edx); IN(esi); IN(edi);
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = seg;
context.vm.regs.eip = off;
context.vm.regs.es = sregs->es;
context.vm.regs.ds = sregs->ds;
context.vm.regs.fs = sregs->fs;
context.vm.regs.gs = sregs->gs;
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
OUT(eax); OUT(ebx); OUT(ecx); OUT(edx); OUT(esi); OUT(edi);
sregs->es = context.vm.regs.es;
sregs->ds = context.vm.regs.ds;
sregs->fs = context.vm.regs.fs;
sregs->gs = context.vm.regs.gs;
out->x.cflag = context.vm.regs.eflags & 1;
}
return out->e.eax;
}
#define OUTR(ereg) in->e.ereg = context.vm.regs.ereg
void PMAPI PM_callRealMode(uint seg,uint off, RMREGS *in,
RMSREGS *sregs)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
IN(eax); IN(ebx); IN(ecx); IN(edx); IN(esi); IN(edi);
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = seg;
context.vm.regs.eip = off;
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
context.vm.regs.es = sregs->es;
context.vm.regs.ds = sregs->ds;
context.vm.regs.fs = sregs->fs;
context.vm.regs.gs = sregs->gs;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
OUTR(eax); OUTR(ebx); OUTR(ecx); OUTR(edx); OUTR(esi); OUTR(edi);
sregs->es = context.vm.regs.es;
sregs->ds = context.vm.regs.ds;
sregs->fs = context.vm.regs.fs;
sregs->gs = context.vm.regs.gs;
in->x.cflag = context.vm.regs.eflags & 1;
}
void PMAPI PM_availableMemory(ulong *physical,ulong *total)
{
FILE *mem = fopen("/proc/meminfo","r");
char buf[1024];
fgets(buf,1024,mem);
fgets(buf,1024,mem);
sscanf(buf,"Mem: %*d %*d %ld", physical);
fgets(buf,1024,mem);
sscanf(buf,"Swap: %*d %*d %ld", total);
fclose(mem);
*total += *physical;
}
void * PMAPI PM_allocLockedMem(uint size,ulong *physAddr,ibool contiguous,ibool below16M)
{
/* TODO: Implement this for Linux */
return NULL;
}
void PMAPI PM_freeLockedMem(void *p,uint size,ibool contiguous)
{
/* TODO: Implement this for Linux */
}
void * PMAPI PM_allocPage(
ibool locked)
{
/* TODO: Implement this for Linux */
return NULL;
}
void PMAPI PM_freePage(
void *p)
{
/* TODO: Implement this for Linux */
}
void PMAPI PM_setBankA(int bank)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
context.vm.regs.eax = 0x4F05;
context.vm.regs.ebx = 0x0000;
context.vm.regs.edx = bank;
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(0x10);
context.vm.regs.eip = get_int_off(0x10);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
}
void PMAPI PM_setBankAB(int bank)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
context.vm.regs.eax = 0x4F05;
context.vm.regs.ebx = 0x0000;
context.vm.regs.edx = bank;
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(0x10);
context.vm.regs.eip = get_int_off(0x10);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
context.vm.regs.eax = 0x4F05;
context.vm.regs.ebx = 0x0001;
context.vm.regs.edx = bank;
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(0x10);
context.vm.regs.eip = get_int_off(0x10);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
}
void PMAPI PM_setCRTStart(int x,int y,int waitVRT)
{
if (!inited)
PM_init();
memset(&context.vm.regs, 0, sizeof(context.vm.regs));
context.vm.regs.eax = 0x4F07;
context.vm.regs.ebx = waitVRT;
context.vm.regs.ecx = x;
context.vm.regs.edx = y;
context.vm.regs.eflags = DEFAULT_VM86_FLAGS;
context.vm.regs.cs = get_int_seg(0x10);
context.vm.regs.eip = get_int_off(0x10);
context.vm.regs.ss = context.stack_seg;
context.vm.regs.esp = context.stack_off;
pushw(DEFAULT_VM86_FLAGS);
pushw(context.ret_seg);
pushw(context.ret_off);
run_vm86();
}
int PMAPI PM_enableWriteCombine(ulong base,ulong length,uint type)
{
#ifdef ENABLE_MTRR
struct mtrr_sentry sentry;
if (mtrr_fd < 0)
return PM_MTRR_ERR_NO_OS_SUPPORT;
sentry.base = base;
sentry.size = length;
sentry.type = type;
if (ioctl(mtrr_fd, MTRRIOC_ADD_ENTRY, &sentry) == -1) {
/* TODO: Need to decode MTRR error codes!! */
return PM_MTRR_NOT_SUPPORTED;
}
return PM_MTRR_ERR_OK;
#else
return PM_MTRR_ERR_NO_OS_SUPPORT;
#endif
}
/****************************************************************************
PARAMETERS:
callback - Function to callback with write combine information
REMARKS:
Function to enumerate all write combine regions currently enabled for the
processor.
****************************************************************************/
int PMAPI PM_enumWriteCombine(
PM_enumWriteCombine_t callback)
{
#ifdef ENABLE_MTRR
struct mtrr_gentry gentry;
if (mtrr_fd < 0)
return PM_MTRR_ERR_NO_OS_SUPPORT;
for (gentry.regnum = 0; ioctl (mtrr_fd, MTRRIOC_GET_ENTRY, &gentry) == 0;
++gentry.regnum) {
if (gentry.size > 0) {
/* WARNING: This code assumes that the types in pmapi.h match the ones */
/* in the Linux kernel (mtrr.h) */
callback(gentry.base, gentry.size, gentry.type);
}
}
return PM_MTRR_ERR_OK;
#else
return PM_MTRR_ERR_NO_OS_SUPPORT;
#endif
}
ibool PMAPI PM_doBIOSPOST(
ushort axVal,
ulong BIOSPhysAddr,
void *copyOfBIOS,
ulong BIOSLen)
{
char *bios_ptr = (char*)0xC0000;
char *old_bios;
ulong Current10, Current6D, *rvec = 0;
RMREGS regs;
RMSREGS sregs;
/* The BIOS is mapped to 0xC0000 with a private memory mapping enabled
* which means we have a copy on write scheme. Hence we simply copy
* the secondary BIOS image over the top of the old one.
*/
if (!inited)
PM_init();
if ((old_bios = PM_malloc(BIOSLen)) == NULL)
return false;
if (BIOSPhysAddr != 0xC0000) {
memcpy(old_bios,bios_ptr,BIOSLen);
memcpy(bios_ptr,copyOfBIOS,BIOSLen);
}
/* The interrupt vectors should already be mmap()'ed from 0-0x400 in PM_init */
Current10 = rvec[0x10];
Current6D = rvec[0x6D];
/* POST the secondary BIOS */
rvec[0x10] = rvec[0x42]; /* Restore int 10h to STD-BIOS */
regs.x.ax = axVal;
PM_callRealMode(0xC000,0x0003,&regs,&sregs);
/* Restore interrupt vectors */
rvec[0x10] = Current10;
rvec[0x6D] = Current6D;
/* Restore original BIOS image */
if (BIOSPhysAddr != 0xC0000)
memcpy(bios_ptr,old_bios,BIOSLen);
PM_free(old_bios);
return true;
}
int PMAPI PM_lockDataPages(void *p,uint len,PM_lockHandle *lh)
{
p = p; len = len;
return 1;
}
int PMAPI PM_unlockDataPages(void *p,uint len,PM_lockHandle *lh)
{
p = p; len = len;
return 1;
}
int PMAPI PM_lockCodePages(void (*p)(),uint len,PM_lockHandle *lh)
{
p = p; len = len;
return 1;
}
int PMAPI PM_unlockCodePages(void (*p)(),uint len,PM_lockHandle *lh)
{
p = p; len = len;
return 1;
}
PM_MODULE PMAPI PM_loadLibrary(
const char *szDLLName)
{
/* TODO: Implement this to load shared libraries! */
(void)szDLLName;
return NULL;
}
void * PMAPI PM_getProcAddress(
PM_MODULE hModule,
const char *szProcName)
{
/* TODO: Implement this! */
(void)hModule;
(void)szProcName;
return NULL;
}
void PMAPI PM_freeLibrary(
PM_MODULE hModule)
{
/* TODO: Implement this! */
(void)hModule;
}
int PMAPI PM_setIOPL(
int level)
{
/* TODO: Move the IOPL switching into this function!! */
return level;
}
void PMAPI PM_flushTLB(void)
{
/* Do nothing on Linux. */
}