blob: bf452aa956457766c6cc181b29d5ba3b8d205ea7 [file] [log] [blame]
/*
* Copyright (c) 2004 Picture Elements, Inc.
* Stephen Williams (XXXXXXXXXXXXXXXX)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/*
* The Xilinx SystemACE chip support is activated by defining
* CONFIG_SYSTEMACE to turn on support, and CONFIG_SYS_SYSTEMACE_BASE
* to set the base address of the device. This code currently
* assumes that the chip is connected via a byte-wide bus.
*
* The CONFIG_SYSTEMACE also adds to fat support the device class
* "ace" that allows the user to execute "fatls ace 0" and the
* like. This works by making the systemace_get_dev function
* available to cmd_fat.c:get_dev and filling in a block device
* description that has all the bits needed for FAT support to
* read sectors.
*
* According to Xilinx technical support, before accessing the
* SystemACE CF you need to set the following control bits:
* FORCECFGMODE : 1
* CFGMODE : 0
* CFGSTART : 0
*/
#include <common.h>
#include <command.h>
#include <systemace.h>
#include <part.h>
#include <asm/io.h>
/*
* The ace_readw and writew functions read/write 16bit words, but the
* offset value is the BYTE offset as most used in the Xilinx
* datasheet for the SystemACE chip. The CONFIG_SYS_SYSTEMACE_BASE is defined
* to be the base address for the chip, usually in the local
* peripheral bus.
*/
#if (CONFIG_SYS_SYSTEMACE_WIDTH == 8)
#if !defined(__BIG_ENDIAN)
#define ace_readw(off) \
((readb(CONFIG_SYS_SYSTEMACE_BASE+off)<<8) | \
(readb(CONFIG_SYS_SYSTEMACE_BASE+off+1)))
#define ace_writew(val, off) \
{writeb(val>>8, CONFIG_SYS_SYSTEMACE_BASE+off); \
writeb(val, CONFIG_SYS_SYSTEMACE_BASE+off+1);}
#else
#define ace_readw(off) \
((readb(CONFIG_SYS_SYSTEMACE_BASE+off)) | \
(readb(CONFIG_SYS_SYSTEMACE_BASE+off+1)<<8))
#define ace_writew(val, off) \
{writeb(val, CONFIG_SYS_SYSTEMACE_BASE+off); \
writeb(val>>8, CONFIG_SYS_SYSTEMACE_BASE+off+1);}
#endif
#else
#define ace_readw(off) (inw(CONFIG_SYS_SYSTEMACE_BASE+off))
#define ace_writew(val, off) (outw(val, (CONFIG_SYS_SYSTEMACE_BASE+off)))
#endif
/* */
static unsigned long systemace_read(int dev, unsigned long start,
unsigned long blkcnt, void *buffer);
static block_dev_desc_t systemace_dev = { 0 };
static int get_cf_lock(void)
{
int retry = 10;
unsigned val, locked;
ace_writew(SYSTEMACE_CCR_RESET, SYSTEMACE_SECT_CNT_CMD_REG);
locked = ace_readw(SYSTEMACE_STATUS_REG) & SYSTEMACE_SR_CFGLOCK;
#if SYSTEMACE_FORCE_LOCK == 1
/*
* Reset the configuration controller if it has the lock. Per
* ASIC designer, this eliminates a potential deadlock if the
* FORCELOCK and LOCKREQ bits are both set and the RDYFORCFCMD
* is not set.
*/
if(locked)
{
val = ace_readw(SYSTEMACE_CONTROL_REG);
val |= SYSTEMACE_CR_CFGRESET;
ace_writew((val & 0xffff), SYSTEMACE_CONTROL_REG);
}
val = ace_readw(SYSTEMACE_CONTROL_REG);
val |= (SYSTEMACE_CR_LOCKREQ | SYSTEMACE_CR_FORCELOCK);
ace_writew((val & 0xffff), SYSTEMACE_CONTROL_REG);
#else
if(locked)
return -1;
val = ace_readw(SYSTEMACE_CONTROL_REG);
val |= SYSTEMACE_CR_LOCKREQ;
ace_writew((val & 0xffff), SYSTEMACE_CONTROL_REG);
#endif
/* Wait for MPULOCK in STATUSREG[15:0] */
while (!(ace_readw(SYSTEMACE_STATUS_REG) & SYSTEMACE_SR_MPULOCK)) {
if (retry < 0)
return -1;
udelay(100000);
retry -= 1;
}
return 0;
}
static void release_cf_lock(void)
{
unsigned val = ace_readw(SYSTEMACE_CONTROL_REG);
val &= ~(SYSTEMACE_CR_LOCKREQ);
ace_writew((val & 0xffff), SYSTEMACE_CONTROL_REG);
}
block_dev_desc_t *systemace_get_dev(int dev)
{
/* The first time through this, the systemace_dev object is
not yet initialized. In that case, fill it in. */
if (systemace_dev.blksz == 0) {
systemace_dev.if_type = IF_TYPE_UNKNOWN;
systemace_dev.dev = 0;
systemace_dev.part_type = PART_TYPE_UNKNOWN;
systemace_dev.type = DEV_TYPE_HARDDISK;
systemace_dev.blksz = 512;
systemace_dev.removable = 1;
systemace_dev.block_read = systemace_read;
/*
* Ensure the correct bus mode (8/16 bits) gets enabled
*/
ace_writew(CONFIG_SYS_SYSTEMACE_WIDTH == 8 ? 0x0000 : 0x0001, SYSTEMACE_BUS_MODE_REG);
init_part(&systemace_dev);
}
return &systemace_dev;
}
/*
* This function is called (by dereferencing the block_read pointer in
* the dev_desc) to read blocks of data. The return value is the
* number of blocks read. A zero return indicates an error.
*/
static unsigned long systemace_read(int dev, unsigned long start,
unsigned long blkcnt, void *buffer)
{
int retry;
unsigned blk_countdown;
unsigned char *dp = buffer;
unsigned val;
if (get_cf_lock() < 0) {
unsigned status = ace_readw(SYSTEMACE_STATUS_REG);
/* If CFDETECT is false, card is missing. */
if (!(status & SYSTEMACE_SR_CARD_DETECT)) {
printf("** CompactFlash card not present. **\n");
return 0;
}
printf("**** ACE locked away from me (STATUSREG=0x%04x)\n",
status);
return 0;
}
#ifdef DEBUG_SYSTEMACE
printf("... systemace read %lu sectors at %lu\n", blkcnt, start);
#endif
retry = 2000;
for (;;) {
val = ace_readw(SYSTEMACE_STATUS_REG);
/* If CFDETECT is false, card is missing. */
if (!(val & SYSTEMACE_SR_CARD_DETECT)) {
printf("**** ACE CompactFlash not found.\n");
release_cf_lock();
return 0;
}
/* If RDYFORCMD, then we are ready to go. */
if (val & SYSTEMACE_SR_RDY_FOR_CMD)
break;
if (retry < 0) {
printf("**** SystemACE not ready.\n");
release_cf_lock();
return 0;
}
udelay(1000);
retry -= 1;
}
/* The SystemACE can only transfer 256 sectors at a time, so
limit the current chunk of sectors. The blk_countdown
variable is the number of sectors left to transfer. */
blk_countdown = blkcnt;
while (blk_countdown > 0) {
unsigned trans = blk_countdown;
if (trans > 256)
trans = 256;
#ifdef DEBUG_SYSTEMACE
printf("... transfer %lu sector in a chunk\n", trans);
#endif
/* Write LBA block address */
ace_writew((start >> 0) & 0xffff, SYSTEMACE_MPU_LBA_REG_LOW);
ace_writew((start >> 16) & 0x0fff, SYSTEMACE_MPU_LBA_REG_HIGH);
/* NOTE: in the Write Sector count below, a count of 0
causes a transfer of 256, so &0xff gives the right
value for whatever transfer count we want. */
/* Write sector count | ReadMemCardData. */
ace_writew((trans & 0xff) | SYSTEMACE_CCR_READ_CMD, SYSTEMACE_SECT_CNT_CMD_REG);
/*
* For FPGA configuration via SystemACE is reset unacceptable
* CFGDONE bit in STATUSREG is not set to 1.
*/
#ifndef SYSTEMACE_CONFIG_FPGA
/* Reset the configruation controller */
val = ace_readw(SYSTEMACE_CONTROL_REG);
val |= SYSTEMACE_CR_CFGRESET;
ace_writew(val, SYSTEMACE_CONTROL_REG);
#endif
retry = trans * 16;
while (retry > 0) {
int idx;
/* Wait for buffer to become ready. */
while (!(ace_readw(SYSTEMACE_STATUS_REG) & SYSTEMACE_SR_DATA_BUF_RDY)) {
udelay(100);
}
/* Read 16 words of 2bytes from the sector buffer. */
for (idx = 0; idx < 16; idx += 1) {
unsigned short val = ace_readw(SYSTEMACE_DATA_BUF);
*dp++ = val & 0xff;
*dp++ = (val >> 8) & 0xff;
}
retry -= 1;
}
/* Clear the configruation controller reset */
val = ace_readw(SYSTEMACE_CONTROL_REG);
val &= ~SYSTEMACE_CR_CFGRESET;
ace_writew(val, SYSTEMACE_CONTROL_REG);
/* Count the blocks we transfer this time. */
start += trans;
blk_countdown -= trans;
}
release_cf_lock();
return blkcnt;
}