blob: c815480f8b99a3dbcbf386fe1da6ef8b7be0f036 [file] [log] [blame]
/******************************************************************************
*
* Name: skge.c
* Project: GEnesis, PCI Gigabit Ethernet Adapter
* Version: $Revision: 1.46 $
* Date: $Date: 2003/02/25 14:16:36 $
* Purpose: The main driver source module
*
******************************************************************************/
/******************************************************************************
*
* (C)Copyright 1998-2003 SysKonnect GmbH.
*
* Driver for SysKonnect Gigabit Ethernet Server Adapters:
*
* SK-9871 (single link 1000Base-ZX)
* SK-9872 (dual link 1000Base-ZX)
* SK-9861 (single link 1000Base-SX, VF45 Volition Plug)
* SK-9862 (dual link 1000Base-SX, VF45 Volition Plug)
* SK-9841 (single link 1000Base-LX)
* SK-9842 (dual link 1000Base-LX)
* SK-9843 (single link 1000Base-SX)
* SK-9844 (dual link 1000Base-SX)
* SK-9821 (single link 1000Base-T)
* SK-9822 (dual link 1000Base-T)
* SK-9881 (single link 1000Base-SX V2 LC)
* SK-9871 (single link 1000Base-ZX V2)
* SK-9861 (single link 1000Base-SX V2, VF45 Volition Plug)
* SK-9841 (single link 1000Base-LX V2)
* SK-9843 (single link 1000Base-SX V2)
* SK-9821 (single link 1000Base-T V2)
*
* Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
* SysKonnects GEnesis Solaris driver
* Author: Christoph Goos (cgoos@syskonnect.de)
* Mirko Lindner (mlindner@syskonnect.de)
*
* Address all question to: linux@syskonnect.de
*
* The technical manual for the adapters is available from SysKonnect's
* web pages: www.syskonnect.com
* Goto "Support" and search Knowledge Base for "manual".
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/******************************************************************************
*
* History:
*
* $Log: skge.c,v $
* Revision 1.46 2003/02/25 14:16:36 mlindner
* Fix: Copyright statement
*
* Revision 1.45 2003/02/25 13:25:55 mlindner
* Add: Performance improvements
* Add: Support for various vendors
* Fix: Init function
*
* Revision 1.44 2003/01/09 09:25:26 mlindner
* Fix: Remove useless init_module/cleanup_module forward declarations
*
* Revision 1.43 2002/11/29 08:42:41 mlindner
* Fix: Boot message
*
* Revision 1.42 2002/11/28 13:30:23 mlindner
* Add: New frame check
*
* Revision 1.41 2002/11/27 13:55:18 mlindner
* Fix: Drop wrong csum packets
* Fix: Initialize proc_entry after hw check
*
* Revision 1.40 2002/10/31 07:50:37 tschilli
* Function SkGeInitAssignRamToQueues() from common module inserted.
* Autonegotiation is set to ON for all adapters.
* LinkSpeedUsed is used in link up status report.
* Role parameter will show up for 1000 Mbps links only.
* GetConfiguration() inserted after init level 1 in SkGeChangeMtu().
* All return values of SkGeInit() and SkGeInitPort() are checked.
*
* Revision 1.39 2002/10/02 12:56:05 mlindner
* Add: Support for Yukon
* Add: Support for ZEROCOPY, scatter-gather and hw checksum
* Add: New transmit ring function (use SG and TCP/UDP hardware checksumming)
* Add: New init function
* Add: Speed check and setup
* Add: Merge source for kernel 2.2.x and 2.4.x
* Add: Opcode check for tcp
* Add: Frame length check
* Fix: Transmit complete interrupt
* Fix: Interrupt moderation
*
* Revision 1.29.2.13 2002/01/14 12:44:52 mlindner
* Fix: Rlmt modes
*
* Revision 1.29.2.12 2001/12/07 12:06:18 mlindner
* Fix: malloc -> slab changes
*
* Revision 1.29.2.11 2001/12/06 15:19:20 mlindner
* Add: DMA attributes
* Fix: Module initialisation
* Fix: pci_map_single and pci_unmap_single replaced
*
* Revision 1.29.2.10 2001/12/06 09:56:50 mlindner
* Corrected some printk's
*
* Revision 1.29.2.9 2001/09/05 12:15:34 mlindner
* Add: LBFO Changes
* Fix: Counter Errors (Jumbo == to long errors)
* Fix: Changed pAC->PciDev declaration
* Fix: too short counters
*
* Revision 1.29.2.8 2001/06/25 12:10:44 mlindner
* fix: ReceiveIrq() changed.
*
* Revision 1.29.2.7 2001/06/25 08:07:05 mlindner
* fix: RLMT locking in ReceiveIrq() changed.
*
* Revision 1.29.2.6 2001/05/21 07:59:29 mlindner
* fix: MTU init problems
*
* Revision 1.29.2.5 2001/05/08 11:25:08 mlindner
* fix: removed VLAN error message
*
* Revision 1.29.2.4 2001/05/04 13:31:43 gklug
* fix: do not handle eth_copy on bad fragments received.
*
* Revision 1.29.2.3 2001/04/23 08:06:43 mlindner
* Fix: error handling
*
* Revision 1.29.2.2 2001/03/15 12:04:54 mlindner
* Fixed memory problem
*
* Revision 1.29.2.1 2001/03/12 16:41:44 mlindner
* add: procfs function
* add: dual-net function
* add: RLMT networks
* add: extended PNMI features
*
* Kernel 2.4.x specific:
* Revision 1.xx 2000/09/12 13:31:56 cgoos
* Fixed missign "dev=NULL in skge_probe.
* Added counting for jumbo frames (corrects error statistic).
* Removed VLAN tag check (enables VLAN support).
*
* Kernel 2.2.x specific:
* Revision 1.29 2000/02/21 13:31:56 cgoos
* Fixed "unused" warning for UltraSPARC change.
*
* Partially kernel 2.2.x specific:
* Revision 1.28 2000/02/21 10:32:36 cgoos
* Added fixes for UltraSPARC.
* Now printing RlmtMode and PrefPort setting at startup.
* Changed XmitFrame return value.
* Fixed rx checksum calculation for BIG ENDIAN systems.
* Fixed rx jumbo frames counted as ierrors.
*
*
* Revision 1.27 1999/11/25 09:06:28 cgoos
* Changed base_addr to unsigned long.
*
* Revision 1.26 1999/11/22 13:29:16 cgoos
* Changed license header to GPL.
* Changes for inclusion in linux kernel (2.2.13).
* Removed 2.0.x defines.
* Changed SkGeProbe to skge_probe.
* Added checks in SkGeIoctl.
*
* Revision 1.25 1999/10/07 14:47:52 cgoos
* Changed 984x to 98xx.
*
* Revision 1.24 1999/09/30 07:21:01 cgoos
* Removed SK_RLMT_SLOW_LOOKAHEAD option.
* Giving spanning tree packets also to OS now.
*
* Revision 1.23 1999/09/29 07:36:50 cgoos
* Changed assignment for IsBc/IsMc.
*
* Revision 1.22 1999/09/28 12:57:09 cgoos
* Added CheckQueue also to Single-Port-ISR.
*
* Revision 1.21 1999/09/28 12:42:41 cgoos
* Changed parameter strings for RlmtMode.
*
* Revision 1.20 1999/09/28 12:37:57 cgoos
* Added CheckQueue for fast delivery of RLMT frames.
*
* Revision 1.19 1999/09/16 07:57:25 cgoos
* Copperfield changes.
*
* Revision 1.18 1999/09/03 13:06:30 cgoos
* Fixed RlmtMode=CheckSeg bug: wrong DEV_KFREE_SKB in RLMT_SEND caused
* double allocated skb's.
* FrameStat in ReceiveIrq was accessed via wrong Rxd.
* Queue size for async. standby Tx queue was zero.
* FillRxLimit of 0 could cause problems with ReQueue, changed to 1.
* Removed debug output of checksum statistic.
*
* Revision 1.17 1999/08/11 13:55:27 cgoos
* Transmit descriptor polling was not reenabled after SkGePortInit.
*
* Revision 1.16 1999/07/27 15:17:29 cgoos
* Added some "\n" in output strings (removed while debuging...).
*
* Revision 1.15 1999/07/23 12:09:30 cgoos
* Performance optimization, rx checksumming, large frame support.
*
* Revision 1.14 1999/07/14 11:26:27 cgoos
* Removed Link LED settings (now in RLMT).
* Added status output at NET UP.
* Fixed SMP problems with Tx and SWITCH running in parallel.
* Fixed return code problem at RLMT_SEND event.
*
* Revision 1.13 1999/04/07 10:11:42 cgoos
* Fixed Single Port problems.
* Fixed Multi-Adapter problems.
* Always display startup string.
*
* Revision 1.12 1999/03/29 12:26:37 cgoos
* Reversed locking to fine granularity.
* Fixed skb double alloc problem (caused by incorrect xmit return code).
* Enhanced function descriptions.
*
* Revision 1.11 1999/03/15 13:10:51 cgoos
* Changed device identifier in output string to ethX.
*
* Revision 1.10 1999/03/15 12:12:34 cgoos
* Changed copyright notice.
*
* Revision 1.9 1999/03/15 12:10:17 cgoos
* Changed locking to one driver lock.
* Added check of SK_AC-size (for consistency with library).
*
* Revision 1.8 1999/03/08 11:44:02 cgoos
* Fixed missing dev->tbusy in SkGeXmit.
* Changed large frame (jumbo) buffer number.
* Added copying of short frames.
*
* Revision 1.7 1999/03/04 13:26:57 cgoos
* Fixed spinlock calls for SMP.
*
* Revision 1.6 1999/03/02 09:53:51 cgoos
* Added descriptor revertion for big endian machines.
*
* Revision 1.5 1999/03/01 08:50:59 cgoos
* Fixed SkGeChangeMtu.
* Fixed pci config space accesses.
*
* Revision 1.4 1999/02/18 15:48:44 cgoos
* Corrected some printk's.
*
* Revision 1.3 1999/02/18 12:45:55 cgoos
* Changed SK_MAX_CARD_PARAM to default 16
*
* Revision 1.2 1999/02/18 10:55:32 cgoos
* Removed SkGeDrvTimeStamp function.
* Printing "ethX:" before adapter type at adapter init.
*
*
* 10-Feb-1999 cg Created, based on Linux' acenic.c, 3c59x.c and
* SysKonnects GEnesis Solaris driver
*
******************************************************************************/
/******************************************************************************
*
* Possible compiler options (#define xxx / -Dxxx):
*
* debugging can be enable by changing SK_DEBUG_CHKMOD and
* SK_DEBUG_CHKCAT in makefile (described there).
*
******************************************************************************/
/******************************************************************************
*
* Description:
*
* This is the main module of the Linux GE driver.
*
* All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
* are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
* Those are used for drivers on multiple OS', so some thing may seem
* unnecessary complicated on Linux. Please do not try to 'clean up'
* them without VERY good reasons, because this will make it more
* difficult to keep the Linux driver in synchronisation with the
* other versions.
*
* Include file hierarchy:
*
* <linux/module.h>
*
* "h/skdrv1st.h"
* <linux/version.h>
* <linux/types.h>
* <linux/kernel.h>
* <linux/string.h>
* <linux/errno.h>
* <linux/ioport.h>
* <linux/slab.h>
* <linux/interrupt.h>
* <linux/pci.h>
* <asm/byteorder.h>
* <asm/bitops.h>
* <asm/io.h>
* <linux/netdevice.h>
* <linux/etherdevice.h>
* <linux/skbuff.h>
* those three depending on kernel version used:
* <linux/bios32.h>
* <linux/init.h>
* <asm/uaccess.h>
* <net/checksum.h>
*
* "h/skerror.h"
* "h/skdebug.h"
* "h/sktypes.h"
* "h/lm80.h"
* "h/xmac_ii.h"
*
* "h/skdrv2nd.h"
* "h/skqueue.h"
* "h/skgehwt.h"
* "h/sktimer.h"
* "h/ski2c.h"
* "h/skgepnmi.h"
* "h/skvpd.h"
* "h/skgehw.h"
* "h/skgeinit.h"
* "h/skaddr.h"
* "h/skgesirq.h"
* "h/skcsum.h"
* "h/skrlmt.h"
*
******************************************************************************/
#include <config.h>
#include "h/skversion.h"
#if 0
#include <linux/module.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#endif
#include "h/skdrv1st.h"
#include "h/skdrv2nd.h"
/* defines ******************************************************************/
/* for debuging on x86 only */
/* #define BREAKPOINT() asm(" int $3"); */
/* use the scatter-gather functionality with sendfile() */
#if 0
#define SK_ZEROCOPY
#endif
/* use of a transmit complete interrupt */
#define USE_TX_COMPLETE
/* use interrupt moderation (for tx complete only) */
#define USE_INT_MOD
#define INTS_PER_SEC 1000
/*
* threshold for copying small receive frames
* set to 0 to avoid copying, set to 9001 to copy all frames
*/
#define SK_COPY_THRESHOLD 50
/* number of adapters that can be configured via command line params */
#define SK_MAX_CARD_PARAM 16
/*
* use those defines for a compile-in version of the driver instead
* of command line parameters
*/
/* #define LINK_SPEED_A {"Auto", } */
/* #define LINK_SPEED_B {"Auto", } */
/* #define AUTO_NEG_A {"Sense", } */
/* #define AUTO_NEG_B {"Sense", } */
/* #define DUP_CAP_A {"Both", } */
/* #define DUP_CAP_B {"Both", } */
/* #define FLOW_CTRL_A {"SymOrRem", } */
/* #define FLOW_CTRL_B {"SymOrRem", } */
/* #define ROLE_A {"Auto", } */
/* #define ROLE_B {"Auto", } */
/* #define PREF_PORT {"A", } */
/* #define RLMT_MODE {"CheckLinkState", } */
#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
/* function prototypes ******************************************************/
static void FreeResources(struct SK_NET_DEVICE *dev);
static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
static SK_BOOL BoardAllocMem(SK_AC *pAC);
static void BoardFreeMem(SK_AC *pAC);
static void BoardInitMem(SK_AC *pAC);
static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**,
int*, SK_BOOL);
#if 0
static void SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
static void SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
static int SkGeOpen(struct SK_NET_DEVICE *dev);
static int SkGeClose(struct SK_NET_DEVICE *dev);
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
#else
void SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
void SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
int SkGeOpen(struct SK_NET_DEVICE *dev);
int SkGeClose(struct SK_NET_DEVICE *dev);
int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
#endif
static void GetConfiguration(SK_AC*);
static void ProductStr(SK_AC*);
static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
static void FillRxRing(SK_AC*, RX_PORT*);
static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
#if 0
static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
#else
void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
#endif
static void ClearAndStartRx(SK_AC*, int);
static void ClearTxIrq(SK_AC*, int, int);
static void ClearRxRing(SK_AC*, RX_PORT*);
static void ClearTxRing(SK_AC*, TX_PORT*);
#if 0
static void SetQueueSizes(SK_AC *pAC);
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
#endif
static void PortReInitBmu(SK_AC*, int);
#if 0
static int SkGeIocMib(DEV_NET*, unsigned int, int);
static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
#endif
/*Extern */
/* external Proc function */
extern int proc_read(
char *buffer,
char **buffer_location,
off_t offset,
int buffer_length,
int *eof,
void *data);
#ifdef DEBUG
static void DumpMsg(struct sk_buff*, char*);
static void DumpData(char*, int);
static void DumpLong(char*, int);
#endif
void dump_frag( SK_U8 *data, int length);
/* global variables *********************************************************/
#if 0
static const char *BootString = BOOT_STRING;
#endif
struct SK_NET_DEVICE *SkGeRootDev = NULL;
static int probed __initdata = 0;
/* local variables **********************************************************/
static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
/* local variables **********************************************************/
const char SK_Root_Dir_entry[8];
#if 0
static struct proc_dir_entry *pSkRootDir;
#endif
static struct pci_device_id supported[] = {
{PCI_VENDOR_ID_3COM, 0x1700},
{PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE},
{PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU},
{}
};
/*****************************************************************************
*
* skge_probe - find all SK-98xx adapters
*
* Description:
* This function scans the PCI bus for SK-98xx adapters. Resources for
* each adapter are allocated and the adapter is brought into Init 1
* state.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
#if 0
static int __init skge_probe (void)
#else
int skge_probe (struct eth_device ** ret_dev)
#endif
{
#if 0
int proc_root_initialized = 0;
#endif
int boards_found = 0;
#if 0
int vendor_flag = SK_FALSE;
#endif
SK_AC *pAC;
DEV_NET *pNet = NULL;
#if 0
struct proc_dir_entry *pProcFile;
struct pci_dev *pdev = NULL;
unsigned long base_address;
#else
u32 base_address;
#endif
struct SK_NET_DEVICE *dev = NULL;
#if 0
SK_BOOL DeviceFound = SK_FALSE;
#endif
SK_BOOL BootStringCount = SK_FALSE;
#if 1
pci_dev_t devno;
#endif
if (probed)
return -ENODEV;
probed++;
if (!pci_present()) /* is PCI support present? */
return -ENODEV;
#if 0
while((pdev = pci_find_class(PCI_CLASS_NETWORK_ETHERNET << 8, pdev)))
#else
while((devno = pci_find_devices (supported, boards_found)) >= 0)
#endif
{
dev = NULL;
pNet = NULL;
#if 0
SK_PCI_ISCOMPLIANT(vendor_flag, pdev);
if (!vendor_flag)
continue;
#endif
/* if ((pdev->vendor != PCI_VENDOR_ID_SYSKONNECT) &&
((pdev->device != PCI_DEVICE_ID_SYSKONNECT_GE) ||
(pdev->device != PCI_DEVICE_ID_SYSKONNECT_YU))){
continue;
}
*/
#if 0
/* Configure DMA attributes. */
if (pci_set_dma_mask(pdev, (u64) 0xffffffffffffffff) &&
pci_set_dma_mask(pdev, (u64) 0xffffffff))
continue;
#endif
#if 0
if ((dev = init_etherdev(dev, sizeof(DEV_NET))) == NULL) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
break;
}
#else
dev = malloc (sizeof *dev);
memset(dev, 0, sizeof(*dev));
dev->priv = malloc(sizeof(DEV_NET));
#endif
if (dev->priv == NULL) {
printk(KERN_ERR "Unable to allocate adapter "
"structure!\n");
break;
}
pNet = dev->priv;
pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
if (pNet->pAC == NULL){
kfree(dev->priv);
printk(KERN_ERR "Unable to allocate adapter "
"structure!\n");
break;
}
/* Print message */
if (!BootStringCount) {
/* set display flag to TRUE so that */
/* we only display this string ONCE */
BootStringCount = SK_TRUE;
#ifdef SK98_INFO
printk("%s\n", BootString);
#endif
}
memset(pNet->pAC, 0, sizeof(SK_AC));
pAC = pNet->pAC;
#if 0
pAC->PciDev = pdev;
pAC->PciDevId = pdev->device;
pAC->dev[0] = dev;
pAC->dev[1] = dev;
#else
pAC->PciDev = devno;
ret_dev[0] = pAC->dev[0] = dev;
ret_dev[1] = pAC->dev[1] = dev;
#endif
sprintf(pAC->Name, "SysKonnect SK-98xx");
pAC->CheckQueue = SK_FALSE;
pNet->Mtu = 1500;
pNet->Up = 0;
#if 0
dev->irq = pdev->irq;
dev->open = &SkGeOpen;
dev->stop = &SkGeClose;
dev->hard_start_xmit = &SkGeXmit;
dev->get_stats = &SkGeStats;
dev->set_multicast_list = &SkGeSetRxMode;
dev->set_mac_address = &SkGeSetMacAddr;
dev->do_ioctl = &SkGeIoctl;
dev->change_mtu = &SkGeChangeMtu;
dev->flags &= ~IFF_RUNNING;
#endif
#ifdef SK_ZEROCOPY
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
/* Use only if yukon hardware */
/* SK and ZEROCOPY - fly baby... */
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
#endif
#if 0
/*
* Dummy value.
*/
dev->base_addr = 42;
pci_set_master(pdev);
pci_set_master(pdev);
base_address = pci_resource_start (pdev, 0);
#else
pci_write_config_dword(devno,
PCI_COMMAND,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
pci_read_config_dword (devno, PCI_BASE_ADDRESS_0,
&base_address);
#endif
#ifdef SK_BIG_ENDIAN
/*
* On big endian machines, we use the adapter's aibility of
* reading the descriptors as big endian.
*/
{
SK_U32 our2;
SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
our2 |= PCI_REV_DESC;
SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
}
#endif
/*
* Remap the regs into kernel space.
*/
#if 0
pAC->IoBase = (char*)ioremap(base_address, 0x4000);
#else
pAC->IoBase = (char*)pci_mem_to_phys(devno, base_address);
#endif
if (!pAC->IoBase){
printk(KERN_ERR "%s: Unable to map I/O register, "
"SK 98xx No. %i will be disabled.\n",
dev->name, boards_found);
kfree(dev);
break;
}
pAC->Index = boards_found;
if (SkGeBoardInit(dev, pAC)) {
FreeResources(dev);
kfree(dev);
continue;
}
#if 0
memcpy((caddr_t) &dev->dev_addr,
(caddr_t) &pAC->Addr.Net[0].CurrentMacAddress, 6);
#else
memcpy((caddr_t) &dev->enetaddr,
(caddr_t) &pAC->Addr.Net[0].CurrentMacAddress, 6);
#endif
#if 0
/* First adapter... Create proc and print message */
if (!DeviceFound) {
DeviceFound = SK_TRUE;
SK_MEMCPY(&SK_Root_Dir_entry, BootString,
sizeof(SK_Root_Dir_entry) - 1);
/*Create proc (directory)*/
if(!proc_root_initialized) {
pSkRootDir = create_proc_entry(SK_Root_Dir_entry,
S_IFDIR | S_IWUSR | S_IRUGO | S_IXUGO, proc_net);
proc_root_initialized = 1;
}
pSkRootDir->owner = THIS_MODULE;
}
/* Create proc file */
pProcFile = create_proc_entry(dev->name,
S_IFREG | S_IXUSR | S_IWGRP | S_IROTH,
pSkRootDir);
pProcFile->read_proc = proc_read;
pProcFile->write_proc = NULL;
pProcFile->nlink = 1;
pProcFile->size = sizeof(dev->name + 1);
pProcFile->data = (void *)pProcFile;
#endif
pNet->PortNr = 0;
pNet->NetNr = 0;
#ifdef SK_ZEROCOPY
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
/* SG and ZEROCOPY - fly baby... */
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
#endif
boards_found++;
/* More then one port found */
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
#if 0
if ((dev = init_etherdev(NULL, sizeof(DEV_NET))) == 0) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
break;
}
#else
dev = malloc (sizeof *dev);
memset(dev, 0, sizeof(*dev));
dev->priv = malloc(sizeof(DEV_NET));
#endif
pAC->dev[1] = dev;
pNet = dev->priv;
pNet->PortNr = 1;
pNet->NetNr = 1;
pNet->pAC = pAC;
pNet->Mtu = 1500;
pNet->Up = 0;
#if 0
dev->open = &SkGeOpen;
dev->stop = &SkGeClose;
dev->hard_start_xmit = &SkGeXmit;
dev->get_stats = &SkGeStats;
dev->set_multicast_list = &SkGeSetRxMode;
dev->set_mac_address = &SkGeSetMacAddr;
dev->do_ioctl = &SkGeIoctl;
dev->change_mtu = &SkGeChangeMtu;
dev->flags &= ~IFF_RUNNING;
#endif
#ifdef SK_ZEROCOPY
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
/* SG and ZEROCOPY - fly baby... */
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
#endif
#if 0
pProcFile = create_proc_entry(dev->name,
S_IFREG | S_IXUSR | S_IWGRP | S_IROTH,
pSkRootDir);
pProcFile->read_proc = proc_read;
pProcFile->write_proc = NULL;
pProcFile->nlink = 1;
pProcFile->size = sizeof(dev->name + 1);
pProcFile->data = (void *)pProcFile;
#endif
#if 0
memcpy((caddr_t) &dev->dev_addr,
(caddr_t) &pAC->Addr.Net[1].CurrentMacAddress, 6);
#else
memcpy((caddr_t) &dev->enetaddr,
(caddr_t) &pAC->Addr.Net[1].CurrentMacAddress, 6);
#endif
printk("%s: %s\n", dev->name, pAC->DeviceStr);
printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
}
/* Save the hardware revision */
pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
(pAC->GIni.GIPciHwRev & 0x0F);
/*
* This is bollocks, but we need to tell the net-init
* code that it shall go for the next device.
*/
#if 0
#ifndef MODULE
dev->base_addr = 0;
#endif
#endif
}
/*
* If we're at this point we're going through skge_probe() for
* the first time. Return success (0) if we've initialized 1
* or more boards. Otherwise, return failure (-ENODEV).
*/
return boards_found;
} /* skge_probe */
/*****************************************************************************
*
* FreeResources - release resources allocated for adapter
*
* Description:
* This function releases the IRQ, unmaps the IO and
* frees the desriptor ring.
*
* Returns: N/A
*
*/
static void FreeResources(struct SK_NET_DEVICE *dev)
{
SK_U32 AllocFlag;
DEV_NET *pNet;
SK_AC *pAC;
if (dev->priv) {
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
AllocFlag = pAC->AllocFlag;
#if 0
if (AllocFlag & SK_ALLOC_IRQ) {
free_irq(dev->irq, dev);
}
if (pAC->IoBase) {
iounmap(pAC->IoBase);
}
#endif
if (pAC->pDescrMem) {
BoardFreeMem(pAC);
}
}
} /* FreeResources */
#if 0
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
MODULE_LICENSE("GPL");
MODULE_PARM(Speed_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Speed_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(AutoNeg_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(AutoNeg_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(DupCap_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(DupCap_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(FlowCtrl_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(FlowCtrl_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Role_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Role_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(PrefPort, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(RlmtMode, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
/* not used, just there because every driver should have them: */
MODULE_PARM(options, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "i");
MODULE_PARM(debug, "i");
#endif
#ifdef LINK_SPEED_A
static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED_A;
#else
static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef LINK_SPEED_B
static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED_B;
#else
static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_A
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
#else
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_A
static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
#else
static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_A
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
#else
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_A
static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
#else
static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_B
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
#else
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_B
static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
#else
static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_B
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
#else
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_B
static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
#else
static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef PREF_PORT
static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
#else
static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef RLMT_MODE
static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
#else
static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
#endif
#if 0
static int debug = 0; /* not used */
static int options[SK_MAX_CARD_PARAM] = {0, }; /* not used */
/*****************************************************************************
*
* skge_init_module - module initialization function
*
* Description:
* Very simple, only call skge_probe and return approriate result.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int __init skge_init_module(void)
{
int cards;
SkGeRootDev = NULL;
/* just to avoid warnings ... */
debug = 0;
options[0] = 0;
cards = skge_probe();
if (cards == 0) {
printk("sk98lin: No adapter found.\n");
}
return cards ? 0 : -ENODEV;
} /* skge_init_module */
/*****************************************************************************
*
* skge_cleanup_module - module unload function
*
* Description:
* Disable adapter if it is still running, free resources,
* free device struct.
*
* Returns: N/A
*/
static void __exit skge_cleanup_module(void)
{
DEV_NET *pNet;
SK_AC *pAC;
struct SK_NET_DEVICE *next;
unsigned long Flags;
SK_EVPARA EvPara;
while (SkGeRootDev) {
pNet = (DEV_NET*) SkGeRootDev->priv;
pAC = pNet->pAC;
next = pAC->Next;
netif_stop_queue(SkGeRootDev);
SkGeYellowLED(pAC, pAC->IoBase, 0);
if(pAC->BoardLevel == 2) {
/* board is still alive */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
EvPara.Para32[0] = 0;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
EvPara.Para32[0] = 1;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
SkGeDeInit(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->BoardLevel = 0;
/* We do NOT check here, if IRQ was pending, of course*/
}
if(pAC->BoardLevel == 1) {
/* board is still alive */
SkGeDeInit(pAC, pAC->IoBase);
pAC->BoardLevel = 0;
}
if ((pAC->GIni.GIMacsFound == 2) && pAC->RlmtNets == 2){
unregister_netdev(pAC->dev[1]);
kfree(pAC->dev[1]);
}
FreeResources(SkGeRootDev);
SkGeRootDev->get_stats = NULL;
/*
* otherwise unregister_netdev calls get_stats with
* invalid IO ... :-(
*/
unregister_netdev(SkGeRootDev);
kfree(SkGeRootDev);
kfree(pAC);
SkGeRootDev = next;
}
/* clear proc-dir */
remove_proc_entry(pSkRootDir->name, proc_net);
} /* skge_cleanup_module */
module_init(skge_init_module);
module_exit(skge_cleanup_module);
#endif
/*****************************************************************************
*
* SkGeBoardInit - do level 0 and 1 initialization
*
* Description:
* This function prepares the board hardware for running. The desriptor
* ring is set up, the IRQ is allocated and the configuration settings
* are examined.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
{
short i;
unsigned long Flags;
char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
char *VerStr = VER_STRING;
#if 0
int Ret; /* return code of request_irq */
#endif
SK_BOOL DualNet;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
for (i=0; i<SK_MAX_MACS; i++) {
pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
pAC->TxPort[i][0].PortIndex = i;
pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
pAC->RxPort[i].PortIndex = i;
}
/* Initialize the mutexes */
for (i=0; i<SK_MAX_MACS; i++) {
spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
}
spin_lock_init(&pAC->SlowPathLock);
/* level 0 init common modules here */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* Does a RESET on board ...*/
if (SkGeInit(pAC, pAC->IoBase, 0) != 0) {
printk("HWInit (0) failed.\n");
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, 0);
SkEventInit(pAC, pAC->IoBase, 0);
SkPnmiInit( pAC, pAC->IoBase, 0);
SkAddrInit( pAC, pAC->IoBase, 0);
SkRlmtInit( pAC, pAC->IoBase, 0);
SkTimerInit(pAC, pAC->IoBase, 0);
pAC->BoardLevel = 0;
pAC->RxBufSize = ETH_BUF_SIZE;
SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/* level 1 init common modules here (HW init) */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (SkGeInit(pAC, pAC->IoBase, 1) != 0) {
printk("HWInit (1) failed.\n");
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, 1);
SkEventInit(pAC, pAC->IoBase, 1);
SkPnmiInit( pAC, pAC->IoBase, 1);
SkAddrInit( pAC, pAC->IoBase, 1);
SkRlmtInit( pAC, pAC->IoBase, 1);
SkTimerInit(pAC, pAC->IoBase, 1);
GetConfiguration(pAC);
if (pAC->RlmtNets == 2) {
pAC->GIni.GIPortUsage = SK_MUL_LINK;
}
pAC->BoardLevel = 1;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#if 0
if (pAC->GIni.GIMacsFound == 2) {
Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
} else if (pAC->GIni.GIMacsFound == 1) {
Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
pAC->Name, dev);
} else {
printk(KERN_WARNING "%s: Illegal number of ports: %d\n",
dev->name, pAC->GIni.GIMacsFound);
return -EAGAIN;
}
if (Ret) {
printk(KERN_WARNING "%s: Requested IRQ %d is busy.\n",
dev->name, dev->irq);
return -EAGAIN;
}
#endif
pAC->AllocFlag |= SK_ALLOC_IRQ;
/* Alloc memory for this board (Mem for RxD/TxD) : */
if(!BoardAllocMem(pAC)) {
printk("No memory for descriptor rings.\n");
return(-EAGAIN);
}
SkCsSetReceiveFlags(pAC,
SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
&pAC->CsOfs1, &pAC->CsOfs2, 0);
pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
BoardInitMem(pAC);
#if 0
SetQueueSizes(pAC);
#else
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
BoardFreeMem(pAC);
printk("SkGeInitAssignRamToQueues failed.\n");
return(-EAGAIN);
}
#endif
/* Print adapter specific string from vpd */
ProductStr(pAC);
#ifdef SK98_INFO
printk("%s: %s\n", dev->name, pAC->DeviceStr);
/* Print configuration settings */
printk(" PrefPort:%c RlmtMode:%s\n",
'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
(pAC->RlmtMode==0) ? "Check Link State" :
((pAC->RlmtMode==1) ? "Check Link State" :
((pAC->RlmtMode==3) ? "Check Local Port" :
((pAC->RlmtMode==7) ? "Check Segmentation" :
((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
#endif
SkGeYellowLED(pAC, pAC->IoBase, 1);
/*
* Register the device here
*/
pAC->Next = SkGeRootDev;
SkGeRootDev = dev;
return (0);
} /* SkGeBoardInit */
/*****************************************************************************
*
* BoardAllocMem - allocate the memory for the descriptor rings
*
* Description:
* This function allocates the memory for all descriptor rings.
* Each ring is aligned for the desriptor alignment and no ring
* has a 4 GByte boundary in it (because the upper 32 bit must
* be constant for all descriptiors in one rings).
*
* Returns:
* SK_TRUE, if all memory could be allocated
* SK_FALSE, if not
*/
static SK_BOOL BoardAllocMem(
SK_AC *pAC)
{
caddr_t pDescrMem; /* pointer to descriptor memory area */
size_t AllocLength; /* length of complete descriptor area */
int i; /* loop counter */
unsigned long BusAddr;
/* rings plus one for alignment (do not cross 4 GB boundary) */
/* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
&pAC->pDescrMemDMA);
if (pDescrMem == NULL) {
return (SK_FALSE);
}
pAC->pDescrMem = pDescrMem;
BusAddr = (unsigned long) pAC->pDescrMemDMA;
/* Descriptors need 8 byte alignment, and this is ensured
* by pci_alloc_consistent.
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
BusAddr));
pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
pAC->TxPort[i][0].VTxDescrRing = BusAddr;
pDescrMem += TX_RING_SIZE;
BusAddr += TX_RING_SIZE;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
(unsigned long)BusAddr));
pAC->RxPort[i].pRxDescrRing = pDescrMem;
pAC->RxPort[i].VRxDescrRing = BusAddr;
pDescrMem += RX_RING_SIZE;
BusAddr += RX_RING_SIZE;
} /* for */
return (SK_TRUE);
} /* BoardAllocMem */
/****************************************************************************
*
* BoardFreeMem - reverse of BoardAllocMem
*
* Description:
* Free all memory allocated in BoardAllocMem: adapter context,
* descriptor rings, locks.
*
* Returns: N/A
*/
static void BoardFreeMem(
SK_AC *pAC)
{
size_t AllocLength; /* length of complete descriptor area */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardFreeMem\n"));
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pci_free_consistent(pAC->PciDev, AllocLength,
pAC->pDescrMem, pAC->pDescrMemDMA);
pAC->pDescrMem = NULL;
} /* BoardFreeMem */
/*****************************************************************************
*
* BoardInitMem - initiate the descriptor rings
*
* Description:
* This function sets the descriptor rings up in memory.
* The adapter is initialized with the descriptor start addresses.
*
* Returns: N/A
*/
static void BoardInitMem(
SK_AC *pAC) /* pointer to adapter context */
{
int i; /* loop counter */
int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardInitMem\n"));
RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SetupRing(
pAC,
pAC->TxPort[i][0].pTxDescrRing,
pAC->TxPort[i][0].VTxDescrRing,
(RXD**)&pAC->TxPort[i][0].pTxdRingHead,
(RXD**)&pAC->TxPort[i][0].pTxdRingTail,
(RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
&pAC->TxPort[i][0].TxdRingFree,
SK_TRUE);
SetupRing(
pAC,
pAC->RxPort[i].pRxDescrRing,
pAC->RxPort[i].VRxDescrRing,
&pAC->RxPort[i].pRxdRingHead,
&pAC->RxPort[i].pRxdRingTail,
&pAC->RxPort[i].pRxdRingPrev,
&pAC->RxPort[i].RxdRingFree,
SK_FALSE);
}
} /* BoardInitMem */
/*****************************************************************************
*
* SetupRing - create one descriptor ring
*
* Description:
* This function creates one descriptor ring in the given memory area.
* The head, tail and number of free descriptors in the ring are set.
*
* Returns:
* none
*/
static void SetupRing(
SK_AC *pAC,
void *pMemArea, /* a pointer to the memory area for the ring */
uintptr_t VMemArea, /* the virtual bus address of the memory area */
RXD **ppRingHead, /* address where the head should be written */
RXD **ppRingTail, /* address where the tail should be written */
RXD **ppRingPrev, /* address where the tail should be written */
int *pRingFree, /* address where the # of free descr. goes */
SK_BOOL IsTx) /* flag: is this a tx ring */
{
int i; /* loop counter */
int DescrSize; /* the size of a descriptor rounded up to alignment*/
int DescrNum; /* number of descriptors per ring */
RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
RXD *pNextDescr; /* pointer to the next descriptor */
RXD *pPrevDescr; /* pointer to the previous descriptor */
uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
if (IsTx == SK_TRUE) {
DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = TX_RING_SIZE / DescrSize;
} else {
DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = RX_RING_SIZE / DescrSize;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("Descriptor size: %d Descriptor Number: %d\n",
DescrSize,DescrNum));
pDescr = (RXD*) pMemArea;
pPrevDescr = NULL;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr = VMemArea + DescrSize;
for(i=0; i<DescrNum; i++) {
/* set the pointers right */
pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
pDescr->pNextRxd = pNextDescr;
pDescr->TcpSumStarts = pAC->CsOfs;
/* advance one step */
pPrevDescr = pDescr;
pDescr = pNextDescr;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr += DescrSize;
}
pPrevDescr->pNextRxd = (RXD*) pMemArea;
pPrevDescr->VNextRxd = VMemArea;
pDescr = (RXD*) pMemArea;
*ppRingHead = (RXD*) pMemArea;
*ppRingTail = *ppRingHead;
*ppRingPrev = pPrevDescr;
*pRingFree = DescrNum;
} /* SetupRing */
/*****************************************************************************
*
* PortReInitBmu - re-initiate the descriptor rings for one port
*
* Description:
* This function reinitializes the descriptor rings of one port
* in memory. The port must be stopped before.
* The HW is initialized with the descriptor start addresses.
*
* Returns:
* none
*/
static void PortReInitBmu(
SK_AC *pAC, /* pointer to adapter context */
int PortIndex) /* index of the port for which to re-init */
{
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PortReInitBmu "));
/* set address of first descriptor of ring in BMU */
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+
TX_Q_CUR_DESCR_LOW,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
0xFFFFFFFF));
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+
TX_Q_DESCR_HIGH,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+RX_Q_CUR_DESCR_LOW,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+RX_Q_DESCR_HIGH,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
} /* PortReInitBmu */
/****************************************************************************
*
* SkGeIsr - handle adapter interrupts
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
*
* Returns: N/A
*
*/
#if 0
static void SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
#else
void SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
#endif
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if (IntSrc == 0) {
return;
}
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IRQ_EOF_RX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
if (IntSrc & IRQ_EOF_RX2) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX2 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 1);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IRQ_EOF_AS_TX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
if (IntSrc & IRQ_EOF_AS_TX2) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX2 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IRQ_EOF_SY_TX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
}
if (IntSrc & IRQ_EOF_SY_TX2) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX2 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
}
#endif
#endif
/* do all IO at once */
if (IntSrc & IRQ_EOF_RX1)
ClearAndStartRx(pAC, 0);
if (IntSrc & IRQ_EOF_RX2)
ClearAndStartRx(pAC, 1);
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IRQ_EOF_AS_TX1)
ClearTxIrq(pAC, 0, TX_PRIO_LOW);
if (IntSrc & IRQ_EOF_AS_TX2)
ClearTxIrq(pAC, 1, TX_PRIO_LOW);
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/*
* do it all again is case we cleared an interrupt that
* came in after handling the ring (OUTs may be delayed
* in hardware buffers, but are through after IN)
*/
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
if (pAC->CheckQueue) {
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, IRQ_MASK);
return;
} /* SkGeIsr */
/****************************************************************************
*
* SkGeIsrOnePort - handle adapter interrupts for single port adapter
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
* This is the same as above, but handles only one port.
*
* Returns: N/A
*
*/
#if 0
static void SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
#else
void SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
#endif
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if (IntSrc == 0) {
return;
}
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IRQ_EOF_RX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IRQ_EOF_AS_TX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IRQ_EOF_SY_TX1) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
}
#endif
#endif
/* do all IO at once */
if (IntSrc & IRQ_EOF_RX1)
ClearAndStartRx(pAC, 0);
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IRQ_EOF_AS_TX1)
ClearTxIrq(pAC, 0, TX_PRIO_LOW);
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/*
* do it all again is case we cleared an interrupt that
* came in after handling the ring (OUTs may be delayed
* in hardware buffers, but are through after IN)
*/
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, IRQ_MASK);
return;
} /* SkGeIsrOnePort */
/****************************************************************************
*
* SkGeOpen - handle start of initialized adapter
*
* Description:
* This function starts the initialized adapter.
* The board level variable is set and the adapter is
* brought to full functionality.
* The device flags are set for operation.
* Do all necessary level 2 initialization, enable interrupts and
* give start command to RLMT.
*
* Returns:
* 0 on success
* != 0 on error
*/
#if 0
static int SkGeOpen(
#else
int SkGeOpen(
#endif
struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
unsigned long Flags; /* for spin lock */
int i;
SK_EVPARA EvPara; /* an event parameter union */
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
if (pAC->BoardLevel == 0) {
/* level 1 init common modules here */
if (SkGeInit(pAC, pAC->IoBase, 1) != 0) {
printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, 1);
SkEventInit (pAC, pAC->IoBase, 1);
SkPnmiInit (pAC, pAC->IoBase, 1);
SkAddrInit (pAC, pAC->IoBase, 1);
SkRlmtInit (pAC, pAC->IoBase, 1);
SkTimerInit (pAC, pAC->IoBase, 1);
pAC->BoardLevel = 1;
}
if (pAC->BoardLevel != 2) {
/* tschilling: Level 2 init modules here, check return value. */
if (SkGeInit(pAC, pAC->IoBase, 2) != 0) {
printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, 2);
SkEventInit (pAC, pAC->IoBase, 2);
SkPnmiInit (pAC, pAC->IoBase, 2);
SkAddrInit (pAC, pAC->IoBase, 2);
SkRlmtInit (pAC, pAC->IoBase, 2);
SkTimerInit (pAC, pAC->IoBase, 2);
pAC->BoardLevel = 2;
}
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
/* Enable transmit descriptor polling. */
SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[i]);
}
SkGeYellowLED(pAC, pAC->IoBase, 1);
#ifdef USE_INT_MOD
/* moderate only TX complete interrupts (these are not time critical) */
#define IRQ_MOD_MASK (IRQ_EOF_AS_TX1 | IRQ_EOF_AS_TX2)
{
unsigned long ModBase;
ModBase = 53125000 / INTS_PER_SEC;
SK_OUT32(pAC->IoBase, B2_IRQM_INI, ModBase);
SK_OUT32(pAC->IoBase, B2_IRQM_MSK, IRQ_MOD_MASK);
SK_OUT32(pAC->IoBase, B2_IRQM_CTRL, TIM_START);
}
#endif
/* enable Interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, IRQ_MASK);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
EvPara.Para32[0] = pAC->RlmtNets;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
EvPara);
EvPara.Para32[0] = pAC->RlmtMode;
EvPara.Para32[1] = 0;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
EvPara);
}
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->MaxPorts++;
pNet->Up = 1;
MOD_INC_USE_COUNT;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen suceeded\n"));
return (0);
} /* SkGeOpen */
/****************************************************************************
*
* SkGeClose - Stop initialized adapter
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
#if 0
static int SkGeClose(
#else
int SkGeClose(
#endif
struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
unsigned long Flags; /* for spin lock */
int i;
int PortIdx;
SK_EVPARA EvPara;
netif_stop_queue(dev);
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
/*
* Clear multicast table, promiscuous mode ....
*/
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
if (pAC->MaxPorts == 1) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
/* stop the hardware */
SkGeDeInit(pAC, pAC->IoBase);
pAC->BoardLevel = 0;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/* Stop port */
spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_ALL, SK_HARD_RST);
spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
}
if (pAC->RlmtNets == 1) {
/* clear all descriptor rings */
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[i]);
ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
}
} else {
/* clear port descriptor rings */
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: done "));
pAC->MaxPorts--;
pNet->Up = 0;
MOD_DEC_USE_COUNT;
return (0);
} /* SkGeClose */
/*****************************************************************************
*
* SkGeXmit - Linux frame transmit function
*
* Description:
* The system calls this function to send frames onto the wire.
* It puts the frame in the tx descriptor ring. If the ring is
* full then, the 'tbusy' flag is set.
*
* Returns:
* 0, if everything is ok
* !=0, on error
* WARNING: returning 1 in 'tbusy' case caused system crashes (double
* allocated skb's) !!!
*/
#if 0
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
#else
int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
#endif
{
DEV_NET *pNet;
SK_AC *pAC;
int Rc; /* return code of XmitFrame */
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
#if 0
if ((!skb_shinfo(skb)->nr_frags) ||
#else
if (1 ||
#endif
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
/* Don't activate scatter-gather and hardware checksum */
if (pAC->RlmtNets == 2)
Rc = XmitFrame(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrame(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
} else {
#if 0
/* scatter-gather and hardware TCP checksumming anabled*/
if (pAC->RlmtNets == 2)
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
#endif
}
/* Transmitter out of resources? */
if (Rc <= 0) {
netif_stop_queue(dev);
}
/* If not taken, give buffer ownership back to the
* queueing layer.
*/
if (Rc < 0)
return (1);
#if 0
dev->trans_start = jiffies;
#endif
return (0);
} /* SkGeXmit */
/*****************************************************************************
*
* XmitFrame - fill one socket buffer into the transmit ring
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
* Linux skb's consist of only one continuous buffer.
* The first step locks the ring. It is held locked
* all time to avoid problems with SWITCH_../PORT_RESET.
* Then the descriptoris allocated.
* The second part is linking the buffer to the descriptor.
* At the very last, the Control field of the descriptor
* is made valid for the BMU and a start TX command is given
* if necessary.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
static int XmitFrame(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
TXD *pTxd; /* the rxd to fill */
unsigned long Flags;
SK_U64 PhysAddr;
int BytesSend;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("X"));
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
FreeTxDescriptors(pAC, pTxPort);
#endif
if (pTxPort->TxdRingFree == 0) {
/* no enough free descriptors in ring at the moment */
FreeTxDescriptors(pAC, pTxPort);
if (pTxPort->TxdRingFree == 0) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrame failed\n"));
/* this message can not be sent now */
/* Because tbusy seems to be set, the message should not be freed here */
/* It will be used by the scheduler of the ethernet handler */
return (-1);
}
}
/* advance head counter behind descriptor needed for this frame */
pTxd = pTxPort->pTxdRingHead;
pTxPort->pTxdRingHead = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
/* the needed descriptor is reserved now */
/*
* everything allocated ok, so add buffer to descriptor
*/
#ifdef SK_DUMP_TX
DumpMsg(pMessage, "XmitFrame");
#endif
/* set up descriptor and CONTROL dword */
#if 0
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data &
~PAGE_MASK),
pMessage->len,
PCI_DMA_TODEVICE);
#else
PhysAddr = (SK_U64) pci_phys_to_mem(pAC->PciDev, (u32) pMessage->data);
#endif
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
pTxd->TBControl = TX_CTRL_OWN_BMU | TX_CTRL_STF |
TX_CTRL_CHECK_DEFAULT | TX_CTRL_SOFTWARE |
#ifdef USE_TX_COMPLETE
TX_CTRL_EOF | TX_CTRL_EOF_IRQ | pMessage->len;
#else
TX_CTRL_EOF | pMessage->len;
#endif
if ((pTxPort->pTxdRingPrev->TBControl & TX_CTRL_OWN_BMU) == 0) {
/* previous descriptor already done, so give tx start cmd */
/* StartTx(pAC, pTxPort->HwAddr); */
SK_OUT8(pTxPort->HwAddr, TX_Q_CTRL, TX_Q_CTRL_START);
}
pTxPort->pTxdRingPrev = pTxd;
BytesSend = pMessage->len;
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
/* after releasing the lock, the skb may be immidiately freed */
if (pTxPort->TxdRingFree != 0)
return (BytesSend);
else
return (0);
} /* XmitFrame */
/*****************************************************************************
*
* XmitFrameSG - fill one socket buffer into the transmit ring
* (use SG and TCP/UDP hardware checksumming)
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
#if 0
static int XmitFrameSG(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
int i;
int BytesSend;
int hlength;
int protocol;
skb_frag_t *sk_frag;
TXD *pTxd;
TXD *pTxdFst;
TXD *pTxdLst;
SK_U64 PhysAddr;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
FreeTxDescriptors(pAC, pTxPort);
#endif
if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
FreeTxDescriptors(pAC, pTxPort);
if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrameSG failed - Ring full\n"));
/* this message can not be sent now */
return(-1);
}
}
pTxd = pTxPort->pTxdRingHead;
pTxdFst = pTxd;
pTxdLst = pTxd;
BytesSend = 0;
protocol = 0;
/* map first fragment (header) */
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data & ~PAGE_MASK),
skb_headlen(pMessage),
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
/* HW checksum? */
if (pMessage->ip_summed == CHECKSUM_HW) {
pTxd->TBControl = TX_CTRL_STF |
TX_CTRL_ST_FWD |
skb_headlen(pMessage);
/* We have to use the opcode for tcp here because the opcode for
udp is not working in the hardware yet (revision 2.0)*/
protocol = ((SK_U8)pMessage->data[23] & 0xf);
if ((protocol == 17) && (pAC->GIni.GIChipRev != 0))
pTxd->TBControl |= BMU_UDP_CHECK;
else
pTxd->TBControl |= BMU_TCP_CHECK ;
hlength = ((SK_U8)pMessage->data[14] & 0xf) * 4;
pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
pTxd->TcpSumSt = 14+hlength+16;
pTxd->TcpSumWr = 14+hlength;
} else {
pTxd->TBControl = TX_CTRL_CHECK_DEFAULT |
TX_CTRL_SOFTWARE |
TX_CTRL_STF |
skb_headlen(pMessage);
}
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += skb_headlen(pMessage);
/* Map SG fragments */
for (i = 0; i < skb_shinfo(pMessage)->nr_frags; i++) {
sk_frag = &skb_shinfo(pMessage)->frags[i];
/* we already have the proper value in entry */
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
sk_frag->page,
sk_frag->page_offset,
sk_frag->size,
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
/* HW checksum */
if (pMessage->ip_summed == CHECKSUM_HW) {
pTxd->TBControl = TX_CTRL_OWN_BMU |
TX_CTRL_SOFTWARE |
TX_CTRL_ST_FWD;
/* We have to use the opcode for tcp here because the opcode for
udp is not working in the hardware yet (revision 2.0)*/
if ((protocol == 17) && (pAC->GIni.GIChipRev != 0))
pTxd->TBControl |= BMU_UDP_CHECK ;
else
pTxd->TBControl |= BMU_TCP_CHECK ;
} else {
pTxd->TBControl = TX_CTRL_CHECK_DEFAULT |
TX_CTRL_SOFTWARE |
TX_CTRL_OWN_BMU;
}
/* Last fragment */
if( (i+1) == skb_shinfo(pMessage)->nr_frags ) {
#ifdef USE_TX_COMPLETE
pTxd->TBControl |= TX_CTRL_EOF |
TX_CTRL_EOF_IRQ |
sk_frag->size;
#else
pTxd->TBControl |= TX_CTRL_EOF |
sk_frag->size;
#endif
pTxdFst->TBControl |= TX_CTRL_OWN_BMU |
TX_CTRL_SOFTWARE;
} else {
pTxd->TBControl |= sk_frag->size;
}
pTxdLst = pTxd;
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += sk_frag->size;
}
if ((pTxPort->pTxdRingPrev->TBControl & TX_CTRL_OWN_BMU) == 0) {
/* previous descriptor already done, so give tx start cmd */
/* StartTx(pAC, pTxPort->HwAddr); */
SK_OUT8(pTxPort->HwAddr, TX_Q_CTRL, TX_Q_CTRL_START);
}
pTxPort->pTxdRingPrev = pTxdLst;
pTxPort->pTxdRingHead = pTxd;
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
if (pTxPort->TxdRingFree > 0)
return (BytesSend);
else
return (0);
}
#endif
void dump_frag( SK_U8 *data, int length)
{
int i;
printk("Length: %d\n", length);
for( i=0; i < length; i++ ) {
printk(" %02x", (SK_U8)*(data + i) );
if( !((i+1) % 20) )
printk("\n");
}
printk("\n\n");
}
/*****************************************************************************
*
* FreeTxDescriptors - release descriptors from the descriptor ring
*
* Description:
* This function releases descriptors from a transmit ring if they
* have been sent by the BMU.
* If a descriptors is sent, it can be freed and the message can
* be freed, too.
* The SOFTWARE controllable bit is used to prevent running around a
* completely free ring for ever. If this bit is no set in the
* frame (by XmitFrame), this frame has never been sent or is
* already freed.
* The Tx descriptor ring lock must be held while calling this function !!!
*
* Returns:
* none
*/
static void FreeTxDescriptors(
SK_AC *pAC, /* pointer to the adapter context */
TX_PORT *pTxPort) /* pointer to destination port structure */
{
TXD *pTxd; /* pointer to the checked descriptor */
TXD *pNewTail; /* pointer to 'end' of the ring */
SK_U32 Control; /* TBControl field of descriptor */
SK_U64 PhysAddr; /* address of DMA mapping */
pNewTail = pTxPort->pTxdRingTail;
pTxd = pNewTail;
/*
* loop forever; exits if TX_CTRL_SOFTWARE bit not set in start frame
* or TX_CTRL_OWN_BMU bit set in any frame
*/
while (1) {
Control = pTxd->TBControl;
if ((Control & TX_CTRL_SOFTWARE) == 0) {
/*
* software controllable bit is set in first
* fragment when given to BMU. Not set means that
* this fragment was never sent or is already
* freed ( -> ring completely free now).
*/
pTxPort->pTxdRingTail = pTxd;
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
return;
}
if (Control & TX_CTRL_OWN_BMU) {
pTxPort->pTxdRingTail = pTxd;
if (pTxPort->TxdRingFree > 0) {
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
}
return;
}
/* release the DMA mapping */
PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
PhysAddr |= (SK_U64) pTxd->VDataLow;
pci_unmap_page(pAC->PciDev, PhysAddr,
pTxd->pMBuf->len,
PCI_DMA_TODEVICE);
if (Control & TX_CTRL_EOF)
DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
pTxPort->TxdRingFree++;
pTxd->TBControl &= ~TX_CTRL_SOFTWARE;
pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
} /* while(forever) */
} /* FreeTxDescriptors */
/*****************************************************************************
*
* FillRxRing - fill the receive ring with valid descriptors
*
* Description:
* This function fills the receive ring descriptors with data
* segments and makes them valid for the BMU.
* The active ring is filled completely, if possible.
* The non-active ring is filled only partial to save memory.
*
* Description of rx ring structure:
* head - points to the descriptor which will be used next by the BMU
* tail - points to the next descriptor to give to the BMU
*
* Returns: N/A
*/
static void FillRxRing(
SK_AC *pAC, /* pointer to the adapter context */
RX_PORT *pRxPort) /* ptr to port struct for which the ring
should be filled */
{
unsigned long Flags;
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
if(!FillRxDescriptor(pAC, pRxPort))
break;
}
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* FillRxRing */
/*****************************************************************************
*
* FillRxDescriptor - fill one buffer into the receive ring
*
* Description:
* The function allocates a new receive buffer and
* puts it into the next descriptor.
*
* Returns:
* SK_TRUE - a buffer was added to the ring
* SK_FALSE - a buffer could not be added
*/
static SK_BOOL FillRxDescriptor(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
{
struct sk_buff *pMsgBlock; /* pointer to a new message block */
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
SK_U64 PhysAddr; /* physical address of a rx buffer */
pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
if (pMsgBlock == NULL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_ENTRY,
("%s: Allocation of rx buffer failed !\n",
pAC->dev[pRxPort->PortIndex]->name));
SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
return(SK_FALSE);
}
skb_reserve(pMsgBlock, 2); /* to align IP frames */
/* skb allocated ok, so add buffer */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pAC->RxBufSize;
#if 0
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMsgBlock->data),
((unsigned long) pMsgBlock->data &
~PAGE_MASK),
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
#else
PhysAddr = (SK_U64) pci_phys_to_mem(pAC->PciDev, (u32)pMsgBlock->data);
#endif
pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pRxd->pMBuf = pMsgBlock;
pRxd->RBControl = RX_CTRL_OWN_BMU | RX_CTRL_STF |
RX_CTRL_EOF_IRQ | RX_CTRL_CHECK_CSUM | Length;
return (SK_TRUE);
} /* FillRxDescriptor */
/*****************************************************************************
*
* ReQueueRxBuffer - fill one buffer back into the receive ring
*
* Description:
* Fill a given buffer back into the rx ring. The buffer
* has been previously allocated and aligned, and its phys.
* address calculated, so this is no more necessary.
*
* Returns: N/A
*/
static void ReQueueRxBuffer(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
struct sk_buff *pMsg, /* pointer to the buffer */
SK_U32 PhysHigh, /* phys address high dword */
SK_U32 PhysLow) /* phys address low dword */
{
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pAC->RxBufSize;
pRxd->VDataLow = PhysLow;
pRxd->VDataHigh = PhysHigh;
pRxd->pMBuf = pMsg;
pRxd->RBControl = RX_CTRL_OWN_BMU | RX_CTRL_STF |
RX_CTRL_EOF_IRQ | RX_CTRL_CHECK_CSUM | Length;
return;
} /* ReQueueRxBuffer */
/*****************************************************************************
*
* ReceiveIrq - handle a receive IRQ
*
* Description:
* This function is called when a receive IRQ is set.
* It walks the receive descriptor ring and sends up all
* frames that are complete.
*
* Returns: N/A
*/
#if 0
static void ReceiveIrq(
#else
void ReceiveIrq(
#endif
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort, /* pointer to receive port struct */
SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
{
RXD *pRxd; /* pointer to receive descriptors */
SK_U32 Control; /* control field of descriptor */
struct sk_buff *pMsg; /* pointer to message holding frame */
struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
int FrameLength; /* total length of received frame */
SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
SK_EVPARA EvPara; /* an event parameter union */
unsigned long Flags; /* for spin lock */
int PortIndex = pRxPort->PortIndex;
unsigned int Offset;
unsigned int NumBytes;
unsigned int ForRlmt;
SK_BOOL IsBc;
SK_BOOL IsMc;
SK_BOOL IsBadFrame; /* Bad frame */
SK_U32 FrameStat;
unsigned short Csum1;
unsigned short Csum2;
unsigned short Type;
#if 0
int Result;
#endif
SK_U64 PhysAddr;
rx_start:
/* do forever; exit if RX_CTRL_OWN_BMU found */
for ( pRxd = pRxPort->pRxdRingHead ;
pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
pRxd = pRxd->pNextRxd,
pRxPort->pRxdRingHead = pRxd,
pRxPort->RxdRingFree ++) {
/*
* For a better understanding of this loop
* Go through every descriptor beginning at the head
* Please note: the ring might be completely received so the OWN bit
* set is not a good crirteria to leave that loop.
* Therefore the RingFree counter is used.
* On entry of this loop pRxd is a pointer to the Rxd that needs
* to be checked next.
*/
Control = pRxd->RBControl;
/* check if this descriptor is ready */
if ((Control & RX_CTRL_OWN_BMU) != 0) {
/* this descriptor is not yet ready */
/* This is the usual end of the loop */
/* We don't need to start the ring again */
FillRxRing(pAC, pRxPort);
return;
}
/* get length of frame and check it */
FrameLength = Control & RX_CTRL_LEN_MASK;
if (FrameLength > pAC->RxBufSize) {
goto rx_failed;
}
/* check for STF and EOF */
if ((Control & (RX_CTRL_STF | RX_CTRL_EOF)) !=
(RX_CTRL_STF | RX_CTRL_EOF)) {
goto rx_failed;
}
/* here we have a complete frame in the ring */
pMsg = pRxd->pMBuf;
FrameStat = pRxd->FrameStat;
/* check for frame length mismatch */
#define XMR_FS_LEN_SHIFT 18
#define GMR_FS_LEN_SHIFT 16
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
}
else {
if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
}
/* Set Rx Status */
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
IsBc = (FrameStat & XMR_FS_BC) != 0;
IsMc = (FrameStat & XMR_FS_MC) != 0;
IsBadFrame = (FrameStat &
(XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
} else {
IsBc = (FrameStat & GMR_FS_BC) != 0;
IsMc = (FrameStat & GMR_FS_MC) != 0;
IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
((FrameStat & GMR_FS_RX_OK) == 0));
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Received frame of length %d on port %d\n",
FrameLength, PortIndex));
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Number of free rx descriptors: %d\n",
pRxPort->RxdRingFree));
/* DumpMsg(pMsg, "Rx"); */
if ((Control & RX_CTRL_STAT_VALID) != RX_CTRL_STAT_VALID ||
(IsBadFrame)) {
#if 0
(FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
#endif
/* there is a receive error in this frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Error in received frame, dropped!\n"
"Control: %x\nRxStat: %x\n",
Control, FrameStat));
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_dma_sync_single(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
continue;
}
/*
* if short frame then copy data to reduce memory waste
*/
if ((FrameLength < SK_COPY_THRESHOLD) &&
((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
/*
* Short frame detected and allocation successfull
*/
/* use new skb and copy data */
skb_reserve(pNewMsg, 2);
skb_put(pNewMsg, FrameLength);
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_dma_sync_single(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
eth_copy_and_sum(pNewMsg, pMsg->data,
FrameLength, 0);
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
pMsg = pNewMsg;
}
else {
/*
* if large frame, or SKB allocation failed, pass
* the SKB directly to the networking
*/
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
/* release the DMA mapping */
pci_unmap_single(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
/* set length in message */
skb_put(pMsg, FrameLength);
/* hardware checksum */
Type = ntohs(*((short*)&pMsg->data[12]));
if (Type == 0x800) {
Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
#if 0
if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
Result = SkCsGetReceiveInfo(pAC,
&pMsg->data[14],
Csum1, Csum2, pRxPort->PortIndex);
if (Result ==
SKCS_STATUS_IP_FRAGMENT ||
Result ==
SKCS_STATUS_IP_CSUM_OK ||
Result ==
SKCS_STATUS_TCP_CSUM_OK ||
Result ==
SKCS_STATUS_UDP_CSUM_OK) {
pMsg->ip_summed =
CHECKSUM_UNNECESSARY;
} else {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: CRC error. Frame dropped!\n"));
goto rx_failed;
}
}/* checksumControl calculation valid */
#endif
} /* IP frame */
} /* frame > SK_COPY_TRESHOLD */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
ForRlmt = SK_RLMT_RX_PROTOCOL;
#if 0
IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
#endif
SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
IsBc, &Offset, &NumBytes);
if (NumBytes != 0) {
#if 0
IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
#endif
SK_RLMT_LOOKAHEAD(pAC, PortIndex,
&pMsg->data[Offset],
IsBc, IsMc, &ForRlmt);
}
if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
/* send up only frames from active port */
if ((PortIndex == pAC->ActivePort) ||
(pAC->RlmtNets == 2)) {
/* frame for upper layer */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
#ifdef xDEBUG
DumpMsg(pMsg, "Rx");
#endif
SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
FrameLength, pRxPort->PortIndex);
#if 0
pMsg->dev = pAC->dev[pRxPort->PortIndex];
pMsg->protocol = eth_type_trans(pMsg,
pAC->dev[pRxPort->PortIndex]);
netif_rx(pMsg);
pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
#else
NetReceive(pMsg->data, pMsg->len);
dev_kfree_skb_any(pMsg);
#endif
}
else {
/* drop frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("D"));
DEV_KFREE_SKB(pMsg);
}
} /* if not for rlmt */
else {
/* packet for rlmt */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
pAC->IoBase, FrameLength);
if (pRlmtMbuf != NULL) {
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->Length = FrameLength;
pRlmtMbuf->PortIdx = PortIndex;
EvPara.pParaPtr = pRlmtMbuf;
memcpy((char*)(pRlmtMbuf->pData),
(char*)(pMsg->data),
FrameLength);
/* SlowPathLock needed? */
if (SlowPathLock == SK_TRUE) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("Q"));
}
#if 0
if ((pAC->dev[pRxPort->PortIndex]->flags &
(IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
(ForRlmt & SK_RLMT_RX_PROTOCOL) ==
SK_RLMT_RX_PROTOCOL) {
pMsg->dev = pAC->dev[pRxPort->PortIndex];
pMsg->protocol = eth_type_trans(pMsg,
pAC->dev[pRxPort->PortIndex]);
netif_rx(pMsg);
pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
}
#else
if (0) {
}
#endif
else {
DEV_KFREE_SKB(pMsg);
}
} /* if packet for rlmt */
} /* for ... scanning the RXD ring */
/* RXD ring is empty -> fill and restart */
FillRxRing(pAC, pRxPort);
/* do not start if called from Close */
if (pAC->BoardLevel > 0) {
ClearAndStartRx(pAC, PortIndex);
}
return;
rx_failed:
/* remove error frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Schrottdescriptor, length: 0x%x\n", FrameLength));
/* release the DMA mapping */
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
pRxd->pMBuf = NULL;
pRxPort->RxdRingFree++;
pRxPort->pRxdRingHead = pRxd->pNextRxd;
goto rx_start;
} /* ReceiveIrq */
/*****************************************************************************
*
* ClearAndStartRx - give a start receive command to BMU, clear IRQ
*
* Description:
* This function sends a start command and a clear interrupt
* command for one receive queue to the BMU.
*
* Returns: N/A
* none
*/
static void ClearAndStartRx(
SK_AC *pAC, /* pointer to the adapter context */
int PortIndex) /* index of the receive port (XMAC) */
{
SK_OUT8(pAC->IoBase, RxQueueAddr[PortIndex]+RX_Q_CTRL,
RX_Q_CTRL_START | RX_Q_CTRL_CLR_I_EOF);
} /* ClearAndStartRx */
/*****************************************************************************
*
* ClearTxIrq - give a clear transmit IRQ command to BMU
*
* Description:
* This function sends a clear tx IRQ command for one
* transmit queue to the BMU.
*
* Returns: N/A
*/
static void ClearTxIrq(
SK_AC *pAC, /* pointer to the adapter context */
int PortIndex, /* index of the transmit port (XMAC) */
int Prio) /* priority or normal queue */
{
SK_OUT8(pAC->IoBase, TxQueueAddr[PortIndex][Prio]+TX_Q_CTRL,
TX_Q_CTRL_CLR_I_EOF);
} /* ClearTxIrq */
/*****************************************************************************
*
* ClearRxRing - remove all buffers from the receive ring
*
* Description:
* This function removes all receive buffers from the ring.
* The receive BMU must be stopped before calling this function.
*
* Returns: N/A
*/
static void ClearRxRing(
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort) /* pointer to rx port struct */
{
RXD *pRxd; /* pointer to the current descriptor */
unsigned long Flags;
SK_U64 PhysAddr;
if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
return;
}
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
pRxd = pRxPort->pRxdRingHead;
do {
if (pRxd->pMBuf != NULL) {
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB(pRxd->pMBuf);
pRxd->pMBuf = NULL;
}
pRxd->RBControl &= RX_CTRL_OWN_BMU;
pRxd = pRxd->pNextRxd;
pRxPort->RxdRingFree++;
} while (pRxd != pRxPort->pRxdRingTail);
pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* ClearRxRing */
/*****************************************************************************
*
* ClearTxRing - remove all buffers from the transmit ring
*
* Description:
* This function removes all transmit buffers from the ring.
* The transmit BMU must be stopped before calling this function
* and transmitting at the upper level must be disabled.
* The BMU own bit of all descriptors is cleared, the rest is
* done by calling FreeTxDescriptors.
*
* Returns: N/A
*/
static void ClearTxRing(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort) /* pointer to tx prt struct */
{
TXD *pTxd; /* pointer to the current descriptor */
int i;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
pTxd = pTxPort->pTxdRingHead;
for (i=0; i<pAC->TxDescrPerRing; i++) {
pTxd->TBControl &= ~TX_CTRL_OWN_BMU;
pTxd = pTxd->pNextTxd;
}
FreeTxDescriptors(pAC, pTxPort);
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
} /* ClearTxRing */
#if 0
/*****************************************************************************
*
* SetQueueSizes - configure the sizes of rx and tx queues
*
* Description:
* This function assigns the sizes for active and passive port
* to the appropriate HWinit structure variables.
* The passive port(s) get standard values, all remaining RAM
* is given to the active port.
* The queue sizes are in kbyte and must be multiple of 8.
* The limits for the number of buffers filled into the rx rings
* is also set in this routine.
*
* Returns:
* none
*/
static void SetQueueSizes(
SK_AC *pAC) /* pointer to the adapter context */
{
int StandbyRam; /* adapter RAM used for a standby port */
int RemainingRam; /* adapter RAM available for the active port */
int RxRam; /* RAM used for the active port receive queue */
int i; /* loop counter */
if (pAC->RlmtNets == 1) {
StandbyRam = SK_RLMT_STANDBY_QRXSIZE + SK_RLMT_STANDBY_QXASIZE +
SK_RLMT_STANDBY_QXSSIZE;
RemainingRam = pAC->GIni.GIRamSize -
(pAC->GIni.GIMacsFound-1) * StandbyRam;
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
pAC->GIni.GP[i].PRxQSize = SK_RLMT_STANDBY_QRXSIZE;
pAC->GIni.GP[i].PXSQSize = SK_RLMT_STANDBY_QXSSIZE;
pAC->GIni.GP[i].PXAQSize = SK_RLMT_STANDBY_QXASIZE;
}
RxRam = (RemainingRam * 8 / 10) & ~7;
pAC->GIni.GP[pAC->ActivePort].PRxQSize = RxRam;
pAC->GIni.GP[pAC->ActivePort].PXSQSize = 0;
pAC->GIni.GP[pAC->ActivePort].PXAQSize =
(RemainingRam - RxRam) & ~7;
pAC->RxQueueSize = RxRam;
pAC->TxSQueueSize = 0;
pAC->TxAQueueSize = (RemainingRam - RxRam) & ~7;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("queue sizes settings - rx:%d txA:%d txS:%d\n",
pAC->RxQueueSize,pAC->TxAQueueSize, pAC->TxSQueueSize));
} else {
RemainingRam = pAC->GIni.GIRamSize/pAC->GIni.GIMacsFound;
RxRam = (RemainingRam * 8 / 10) & ~7;
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
pAC->GIni.GP[i].PRxQSize = RxRam;
pAC->GIni.GP[i].PXSQSize = 0;
pAC->GIni.GP[i].PXAQSize = (RemainingRam - RxRam) & ~7;
}
pAC->RxQueueSize = RxRam;
pAC->TxSQueueSize = 0;
pAC->TxAQueueSize = (RemainingRam - RxRam) & ~7;
}
for (i=0; i<SK_MAX_MACS; i++) {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing;
}
if (pAC->RlmtNets == 2) {
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing - 100;
}
} else {
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing - 100;
}
/*
* Do not set the Limit to 0, because this could cause
* wrap around with ReQueue'ed buffers (a buffer could
* be requeued in the same position, made accessable to
* the hardware, and the hardware could change its
* contents!
*/
pAC->RxPort[pAC->ActivePort].RxFillLimit = 1;
}
#ifdef DEBUG
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("i: %d, RxQSize: %d, PXSQsize: %d, PXAQSize: %d\n",
i,
pAC->GIni.GP[i].PRxQSize,
pAC->GIni.GP[i].PXSQSize,
pAC->GIni.GP[i].PXAQSize));
}
#endif
} /* SetQueueSizes */
/*****************************************************************************
*
* SkGeSetMacAddr - Set the hardware MAC address
*
* Description:
* This function sets the MAC address used by the adapter.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
{
DEV_NET *pNet = (DEV_NET*) dev->priv;
SK_AC *pAC = pNet->pAC;
struct sockaddr *addr = p;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetMacAddr starts now...\n"));
if(netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (pAC->RlmtNets == 2)
SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
else
SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return 0;
} /* SkGeSetMacAddr */
#endif
/*****************************************************************************
*
* SkGeSetRxMode - set receive mode
*
* Description:
* This function sets the receive mode of an adapter. The adapter
* supports promiscuous mode, allmulticast mode and a number of
* multicast addresses. If more multicast addresses the available
* are selected, a hash function in the hardware is used.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
#if 0
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
struct dev_mc_list *pMcList;
int i;
int PortIdx;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetRxMode starts now... "));
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (dev->flags & IFF_PROMISC) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PROMISCUOUS mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_LLC);
} else if (dev->flags & IFF_ALLMULTI) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("ALLMULTI mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_ALL_MC);
} else {
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("Number of MC entries: %d ", dev->mc_count));
pMcList = dev->mc_list;
for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
(SK_MAC_ADDR*)pMcList->dmi_addr, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
("%02x:%02x:%02x:%02x:%02x:%02x\n",
pMcList->dmi_addr[0],
pMcList->dmi_addr[1],
pMcList->dmi_addr[2],
pMcList->dmi_addr[3],
pMcList->dmi_addr[4],
pMcList->dmi_addr[5]));
}
SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return;
} /* SkGeSetRxMode */
/*****************************************************************************
*
* SkGeChangeMtu - set the MTU to another value
*
* Description:
* This function sets is called whenever the MTU size is changed
* (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
* ethernet MTU size, long frame support is activated.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
{
DEV_NET *pNet;
DEV_NET *pOtherNet;
SK_AC *pAC;
unsigned long Flags;
int i;
SK_EVPARA EvPara;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeChangeMtu starts now...\n"));
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
return -EINVAL;
}
if(pAC->BoardLevel != 2) {
return -EINVAL;
}
pNet->Mtu = NewMtu;
pOtherNet = (DEV_NET*)pAC->dev[1 - pNet->NetNr]->priv;
if ((pOtherNet->Mtu > 1500) && (NewMtu <= 1500) && (pOtherNet->Up==1)) {
return(0);
}
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
pAC->RxBufSize = NewMtu + 32;
dev->mtu = NewMtu;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("New MTU: %d\n", NewMtu));
/* prevent reconfiguration while changing the MTU */
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* Found more than one port */
if ((pAC->GIni.GIMacsFound == 2 ) &&
(pAC->RlmtNets == 2)) {
/* Stop both ports */
EvPara.Para32[0] = 0;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
EvPara.Para32[0] = 1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
} else {
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
}
SkEventDispatcher(pAC, pAC->IoBase);
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
spin_lock_irqsave(
&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock, Flags);
netif_stop_queue(pAC->dev[i]);
}
/*
* adjust number of rx buffers allocated
*/
if (NewMtu > 1500) {
/* use less rx buffers */
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
/* Found more than one port */
if ((pAC->GIni.GIMacsFound == 2 ) &&
(pAC->RlmtNets == 2)) {
pAC->RxPort[i].RxFillLimit =
pAC->RxDescrPerRing - 100;
} else {
if (i == pAC->ActivePort)
pAC->RxPort[i].RxFillLimit =
pAC->RxDescrPerRing - 100;
else
pAC->RxPort[i].RxFillLimit =
pAC->RxDescrPerRing - 10;
}
}
}
else {
/* use normal amount of rx buffers */
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
/* Found more than one port */
if ((pAC->GIni.GIMacsFound == 2 ) &&
(pAC->RlmtNets == 2)) {
pAC->RxPort[i].RxFillLimit = 1;
} else {
if (i == pAC->ActivePort)
pAC->RxPort[i].RxFillLimit = 1;
else
pAC->RxPort[i].RxFillLimit =
pAC->RxDescrPerRing - 100;
}
}
}
SkGeDeInit(pAC, pAC->IoBase);
/*
* enable/disable hardware support for long frames
*/
if (NewMtu > 1500) {
/* pAC->JumboActivated = SK_TRUE; /#* is never set back !!! */
pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
}
else {
if ((pAC->GIni.GIMacsFound == 2 ) &&
(pAC->RlmtNets == 2)) {
pAC->GIni.GIPortUsage = SK_MUL_LINK;
} else {
pAC->GIni.GIPortUsage = SK_RED_LINK;
}
}
SkGeInit( pAC, pAC->IoBase, 1);
SkI2cInit( pAC, pAC->IoBase, 1);
SkEventInit(pAC, pAC->IoBase, 1);
SkPnmiInit( pAC, pAC->IoBase, 1);
SkAddrInit( pAC, pAC->IoBase, 1);
SkRlmtInit( pAC, pAC->IoBase, 1);
SkTimerInit(pAC, pAC->IoBase, 1);
/*
* tschilling:
* Speed and others are set back to default in level 1 init!
*/
GetConfiguration(pAC);
SkGeInit( pAC, pAC->IoBase, 2);
SkI2cInit( pAC, pAC->IoBase, 2);
SkEventInit(pAC, pAC->IoBase, 2);
SkPnmiInit( pAC, pAC->IoBase, 2);
SkAddrInit( pAC, pAC->IoBase, 2);
SkRlmtInit( pAC, pAC->IoBase, 2);
SkTimerInit(pAC, pAC->IoBase, 2);
/*
* clear and reinit the rx rings here
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[i]);
FillRxRing(pAC, &pAC->RxPort[i]);
/* Enable transmit descriptor polling. */
SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[i]);
};
SkGeYellowLED(pAC, pAC->IoBase, 1);
#ifdef USE_INT_MOD
{
unsigned long ModBase;
ModBase = 53125000 / INTS_PER_SEC;
SK_OUT32(pAC->IoBase, B2_IRQM_INI, ModBase);
SK_OUT32(pAC->IoBase, B2_IRQM_MSK, IRQ_MOD_MASK);
SK_OUT32(pAC->IoBase, B2_IRQM_CTRL, TIM_START);
}
#endif
netif_start_queue(pAC->dev[pNet->PortNr]);
for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
}
/* enable Interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, IRQ_MASK);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
/* Found more than one port */
if ((pAC->GIni.GIMacsFound == 2 ) &&
(pAC->RlmtNets == 2)) {
/* Start both ports */
EvPara.Para32[0] = pAC->RlmtNets;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
EvPara);
EvPara.Para32[1] = -1;
EvPara.Para32[0] = pNet->PortNr;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
if (pOtherNet->Up) {
EvPara.Para32[0] = pOtherNet->PortNr;
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_START, EvPara);
}
} else {
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
}
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return 0;
} /* SkGeChangeMtu */
/*****************************************************************************
*
* SkGeStats - return ethernet device statistics
*
* Description:
* This function return statistic data about the ethernet device
* to the operating system.
*
* Returns:
* pointer to the statistic structure.
*/
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet = (DEV_NET*) dev->priv;
SK_AC *pAC = pNet->pAC;
SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
unsigned int Size; /* size of pnmi struct */
unsigned long Flags; /* for spin lock */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeStats starts now...\n"));
pPnmiStruct = &pAC->PnmiStruct;
memset(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
Size = SK_PNMI_STRUCT_SIZE;
SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pPnmiStat = &pPnmiStruct->Stat[0];
pPnmiConf = &pPnmiStruct->Conf[0];
pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
if (pNet->Mtu <= 1500) {
pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
} else {
pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
}
if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
/* detailed rx_errors: */
pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
/* detailed tx_errors */
pAC->stats.tx_aborted_errors = (SK_U32) 0;
pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
pAC->stats.tx_window_errors = (SK_U32) 0;
return(&pAC->stats);
} /* SkGeStats */
/*****************************************************************************
*
* SkGeIoctl - IO-control function
*
* Description:
* This function is called if an ioctl is issued on the device.
* There are three subfunction for reading, writing and test-writing
* the private MIB data structure (usefull for SysKonnect-internal tools).
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
{
DEV_NET *pNet;
SK_AC *pAC;
SK_GE_IOCTL Ioctl;
unsigned int Err = 0;
int Size;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIoctl starts now...\n"));
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
switch(cmd) {
case SK_IOCTL_SETMIB:
case SK_IOCTL_PRESETMIB:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
case SK_IOCTL_GETMIB:
if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
Ioctl.Len<sizeof(pAC->PnmiStruct)?
Ioctl.Len : sizeof(pAC->PnmiStruct))) {
return -EFAULT;
}
Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
Ioctl.Len<Size? Ioctl.Len : Size)) {
return -EFAULT;
}
Ioctl.Len = Size;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
break;
default:
Err = -EOPNOTSUPP;
}
return(Err);
} /* SkGeIoctl */
/*****************************************************************************
*
* SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
*
* Description:
* This function reads/writes the MIB data using PNMI (Private Network
* Management Interface).
* The destination for the data must be provided with the
* ioctl call and is given to the driver in the form of
* a user space address.
* Copying from the user-provided data area into kernel messages
* and back is done by copy_from_user and copy_to_user calls in
* SkGeIoctl.
*
* Returns:
* returned size from PNMI call
*/
static int SkGeIocMib(
DEV_NET *pNet, /* pointer to the adapter context */
unsigned int Size, /* length of ioctl data */
int mode) /* flag for set/preset */
{
unsigned long Flags; /* for spin lock */
SK_AC *pAC;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIocMib starts now...\n"));
pAC = pNet->pAC;
/* access MIB */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
switch(mode) {
case SK_IOCTL_GETMIB:
SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_PRESETMIB:
SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_SETMIB:
SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
default:
break;
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("MIB data access succeeded\n"));
return (Size);
} /* SkGeIocMib */
#endif
/*****************************************************************************
*
* GetConfiguration - read configuration information
*
* Description:
* This function reads per-adapter configuration information from
* the options provided on the command line.
*
* Returns:
* none
*/
static void GetConfiguration(
SK_AC *pAC) /* pointer to the adapter context structure */
{
SK_I32 Port; /* preferred port */
int LinkSpeed; /* Link speed */
int AutoNeg; /* auto negotiation off (0) or on (1) */
int DuplexCap; /* duplex capabilities (0=both, 1=full, 2=half */
int MSMode; /* master / slave mode selection */
SK_BOOL AutoSet;
SK_BOOL DupSet;
/*
* The two parameters AutoNeg. and DuplexCap. map to one configuration
* parameter. The mapping is described by this table:
* DuplexCap -> | both | full | half |
* AutoNeg | | | |
* -----------------------------------------------------------------
* Off | illegal | Full | Half |
* -----------------------------------------------------------------
* On | AutoBoth | AutoFull | AutoHalf |
* -----------------------------------------------------------------
* Sense | AutoSense | AutoSense | AutoSense |
*/
int Capabilities[3][3] =
{ { -1, SK_LMODE_FULL, SK_LMODE_HALF},
{SK_LMODE_AUTOBOTH, SK_LMODE_AUTOFULL, SK_LMODE_AUTOHALF},
{SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
#define DC_BOTH 0
#define DC_FULL 1
#define DC_HALF 2
#define AN_OFF 0
#define AN_ON 1
#define AN_SENS 2
/* settings for port A */
/* settings link speed */
LinkSpeed = SK_LSPEED_AUTO; /* default: do auto select */
if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_A[pAC->Index] != NULL) {
if (strcmp(Speed_A[pAC->Index],"")==0) {
LinkSpeed = SK_LSPEED_AUTO;
}
else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
}
else if (strcmp(Speed_A[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
}
else if (strcmp(Speed_A[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
}
else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
LinkSpeed = SK_LSPEED_1000MBPS;
}
else printk("%s: Illegal value for Speed_A\n",
pAC->dev[0]->name);
}
/* Check speed parameter */
/* Only copper type adapter and GE V2 cards */
if (((pAC->GIni.GIChipId != CHIP_ID_YUKON) ||
(pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("%s: Illegal value for Speed_A. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n", pAC->dev[0]->name);
LinkSpeed = SK_LSPEED_1000MBPS;
}
pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
/* Autonegotiation */
AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
AutoSet = SK_FALSE;
if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_A[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
}
else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
}
else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
}
else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
}
else printk("%s: Illegal value for AutoNeg_A\n",
pAC->dev[0]->name);
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_A[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_A[pAC->Index],"")==0) {
DupSet = SK_FALSE;
}
else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
}
else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
}
else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
}
else printk("%s: Illegal value for DupCap_A\n",
pAC->dev[0]->name);
}
/* check for illegal combinations */
if (AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("%s, Port A: DuplexCapabilities"
" ignored using Sense mode\n", pAC->dev[0]->name);
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("%s, Port A: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n", pAC->dev[0]->name);
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
printk("%s, Port A: Duplex setting not"
" possible in\n default AutoNegotiation mode"
" (Sense).\n Using AutoNegotiation On\n",
pAC->dev[0]->name);
AutoNeg = AN_ON;
}
/* set the desired mode */
pAC->GIni.GP[0].PLinkModeConf =
Capabilities[AutoNeg][DuplexCap];
pAC->GIni.GP[0].PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_A[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
}
else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
pAC->GIni.GP[0].PFlowCtrlMode =
SK_FLOW_MODE_SYM_OR_REM;
}
else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
pAC->GIni.GP[0].PFlowCtrlMode =
SK_FLOW_MODE_SYMMETRIC;
}
else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
pAC->GIni.GP[0].PFlowCtrlMode =
SK_FLOW_MODE_LOC_SEND;
}
else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
pAC->GIni.GP[0].PFlowCtrlMode =
SK_FLOW_MODE_NONE;
}
else printk("Illegal value for FlowCtrl_A\n");
}
if (AutoNeg==AN_OFF && pAC->GIni.GP[0].PFlowCtrlMode!=
SK_FLOW_MODE_NONE) {
printk("%s, Port A: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n", pAC->dev[0]->name);
pAC->GIni.GP[0].PFlowCtrlMode = SK_FLOW_MODE_NONE;
}
MSMode = SK_MS_MODE_AUTO; /* default: do auto select */
if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_A[pAC->Index] != NULL) {
if (strcmp(Role_A[pAC->Index],"")==0) {
}
else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
}
else if (strcmp(Role_A[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
}
else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
}
else printk("%s: Illegal value for Role_A\n",
pAC->dev[0]->name);
}
pAC->GIni.GP[0].PMSMode = MSMode;
/* settings for port B */
/* settings link speed */
LinkSpeed = SK_LSPEED_AUTO; /* default: do auto select */
if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_B[pAC->Index] != NULL) {
if (strcmp(Speed_B[pAC->Index],"")==0) {
LinkSpeed = SK_LSPEED_AUTO;
}
else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
}
else if (strcmp(Speed_B[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
}
else if (strcmp(Speed_B[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
}
else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
LinkSpeed = SK_LSPEED_1000MBPS;
}
else printk("%s: Illegal value for Speed_B\n",
pAC->dev[1]->name);
}
/* Check speed parameter */
/* Only copper type adapter and GE V2 cards */
if (((pAC->GIni.GIChipId != CHIP_ID_YUKON) ||
(pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("%s: Illegal value for Speed_B. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n", pAC->dev[1]->name);
LinkSpeed = SK_LSPEED_1000MBPS;
}
pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
/* Auto negotiation */
AutoNeg = AN_SENS; /* default: do auto Sense */
AutoSet = SK_FALSE;
if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_B[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
}
else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
}
else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
}
else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
}
else printk("Illegal value for AutoNeg_B\n");
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_B[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_B[pAC->Index],"")==0) {
DupSet = SK_FALSE;
}
else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
}
else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
}
else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
}
else printk("Illegal value for DupCap_B\n");
}
/* check for illegal combinations */
if (AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("%s, Port B: DuplexCapabilities"
" ignored using Sense mode\n", pAC->dev[1]->name);
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("%s, Port B: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n", pAC->dev[1]->name);
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
printk("%s, Port B: Duplex setting not"
" possible in\n default AutoNegotiation mode"
" (Sense).\n Using AutoNegotiation On\n",
pAC->dev[1]->name);
AutoNeg = AN_ON;
}
/* set the desired mode */
pAC->GIni.GP[1].PLinkModeConf =
Capabilities[AutoNeg][DuplexCap];
pAC->GIni.GP[1].PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_B[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
}
else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
pAC->GIni.GP[1].PFlowCtrlMode =
SK_FLOW_MODE_SYM_OR_REM;
}
else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
pAC->GIni.GP[1].PFlowCtrlMode =
SK_FLOW_MODE_SYMMETRIC;
}
else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
pAC->GIni.GP[1].PFlowCtrlMode =
SK_FLOW_MODE_LOC_SEND;
}
else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
pAC->GIni.GP[1].PFlowCtrlMode =
SK_FLOW_MODE_NONE;
}
else printk("Illegal value for FlowCtrl_B\n");
}
if (AutoNeg==AN_OFF && pAC->GIni.GP[1].PFlowCtrlMode!=
SK_FLOW_MODE_NONE) {
printk("%s, Port B: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n", pAC->dev[1]->name);
pAC->GIni.GP[1].PFlowCtrlMode = SK_FLOW_MODE_NONE;
}
MSMode = SK_MS_MODE_AUTO; /* default: do auto select */
if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_B[pAC->Index] != NULL) {
if (strcmp(Role_B[pAC->Index],"")==0) {
}
else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
}
else if (strcmp(Role_B[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
}
else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
}
else printk("%s: Illegal value for Role_B\n",
pAC->dev[1]->name);
}
pAC->GIni.GP[1].PMSMode = MSMode;
/* settings for both ports */
pAC->ActivePort = 0;
if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
PrefPort[pAC->Index] != NULL) {
if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
pAC->ActivePort = 0;
pAC->Rlmt.Net[0].Preference = -1; /* auto */
pAC->Rlmt.Net[0].PrefPort = 0;
}
else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
/*
* do not set ActivePort here, thus a port
* switch is issued after net up.
*/
Port = 0;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
}
else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
/*
* do not set ActivePort here, thus a port
* switch is issued after net up.
*/
Port = 1;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
}
else printk("%s: Illegal value for PrefPort\n",
pAC->dev[0]->name);
}
pAC->RlmtNets = 1;
if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
RlmtMode[pAC->Index] != NULL) {
if (strcmp(RlmtMode[pAC->Index], "") == 0) {
pAC->RlmtMode = 0;
}
else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
}
else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK;
}
else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK |
SK_RLMT_CHECK_SEG;
}
else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
(pAC->GIni.GIMacsFound == 2)) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
}
else {
printk("%s: Illegal value for"
" RlmtMode, using default\n", pAC->dev[0]->name);
pAC->RlmtMode = 0;
}
}
else {
pAC->RlmtMode = 0;
}
} /* GetConfiguration */
/*****************************************************************************
*
* ProductStr - return a adapter identification string from vpd
*
* Description:
* This function reads the product name string from the vpd area
* and puts it the field pAC->DeviceString.
*
* Returns: N/A
*/
static void ProductStr(
SK_AC *pAC /* pointer to adapter context */
)
{
int StrLen = 80; /* length of the string, defined in SK_AC */
char Keyword[] = VPD_NAME; /* vpd productname identifier */
int ReturnCode; /* return code from vpd_read */
unsigned long Flags;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
&StrLen);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
if (ReturnCode != 0) {
/* there was an error reading the vpd data */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Error reading VPD data: %d\n", ReturnCode));
pAC->DeviceStr[0] = '\0';
}
} /* ProductStr */
/****************************************************************************/
/* functions for common modules *********************************************/
/****************************************************************************/
/*****************************************************************************
*
* SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
*
* Description:
* This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
* is embedded into a socket buff data area.
*
* Context:
* runtime
*
* Returns:
* NULL or pointer to Mbuf.
*/
SK_MBUF *SkDrvAllocRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
unsigned BufferSize) /* size of the requested buffer */
{
SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
struct sk_buff *pMsgBlock; /* pointer to a new message block */
pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
if (pMsgBlock == NULL) {
return (NULL);
}
pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
skb_reserve(pMsgBlock, sizeof(SK_MBUF));
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->pOs = pMsgBlock;
pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
return (pRlmtMbuf);
} /* SkDrvAllocRlmtMbuf */
/*****************************************************************************
*
* SkDrvFreeRlmtMbuf - free an RLMT mbuf
*
* Description:
* This routine frees one or more RLMT mbuf(s).
*
* Context:
* runtime
*
* Returns:
* Nothing
*/
void SkDrvFreeRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
SK_MBUF *pMbuf) /* size of the requested buffer */
{
SK_MBUF *pFreeMbuf;
SK_MBUF *pNextMbuf;
pFreeMbuf = pMbuf;
do {
pNextMbuf = pFreeMbuf->pNext;
DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
pFreeMbuf = pNextMbuf;
} while ( pFreeMbuf != NULL );
} /* SkDrvFreeRlmtMbuf */
/*****************************************************************************
*
* SkOsGetTime - provide a time value
*
* Description:
* This routine provides a time value. The unit is 1/HZ (defined by Linux).
* It is not used for absolute time, but only for time differences.
*
*
* Returns:
* Time value
*/
SK_U64 SkOsGetTime(SK_AC *pAC)
{
#if 0
return jiffies;
#else
return get_timer(0);
#endif
} /* SkOsGetTime */
/*****************************************************************************
*
* SkPciReadCfgDWord - read a 32 bit value from pci config space
*
* Description:
* This routine reads a 32 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 *pVal) /* pointer to store the read value */
{
pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgDWord */
/*****************************************************************************
*
* SkPciReadCfgWord - read a 16 bit value from pci config space
*
* Description:
* This routine reads a 16 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 *pVal) /* pointer to store the read value */
{
pci_read_config_word(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgWord */
/*****************************************************************************
*
* SkPciReadCfgByte - read a 8 bit value from pci config space
*
* Description:
* This routine reads a 8 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 *pVal) /* pointer to store the read value */
{
pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgByte */
/*****************************************************************************
*
* SkPciWriteCfgDWord - write a 32 bit value to pci config space
*
* Description:
* This routine writes a 32 bit value to the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 Val) /* pointer to store the read value */
{
pci_write_config_dword(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgDWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 16 bit value to pci config space
*
* Description:
* This routine writes a 16 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 Val) /* pointer to store the read value */
{
pci_write_config_word(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 8 bit value to pci config space
*
* Description:
* This routine writes a 8 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 Val) /* pointer to store the read value */
{
pci_write_config_byte(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgByte */
/*****************************************************************************
*
* SkDrvEvent - handle driver events
*
* Description:
* This function handles events from all modules directed to the driver
*
* Context:
* Is called under protection of slow path lock.
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
int SkDrvEvent(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* io-context */
SK_U32 Event, /* event-id */
SK_EVPARA Param) /* event-parameter */
{
SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
struct sk_buff *pMsg; /* pointer to a message block */
int FromPort; /* the port from which we switch away */
int ToPort; /* the port we switch to */
SK_EVPARA NewPara; /* parameter for further events */
#if 0
int Stat;
#endif
unsigned long Flags;
SK_BOOL DualNet;
switch (Event) {
case SK_DRV_ADAP_FAIL:
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("ADAPTER FAIL EVENT\n"));
printk("%s: Adapter failed.\n", pAC->dev[0]->name);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
/* cgoos */
break;
case SK_DRV_PORT_FAIL:
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT FAIL EVENT, Port: %d\n", FromPort));
if (FromPort == 0) {
printk("%s: Port A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: Port B failed.\n", pAC->dev[1]->name);
}
/* cgoos */
break;
case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
/* action list 4 */
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT RESET EVENT, Port: %d ", FromPort));
NewPara.Para64 = FromPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
#if 0
pAC->dev[Param.Para32[0]]->flags &= ~IFF_RUNNING;
#endif
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
/* clear rx ring from received frames */
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
/* tschilling: Handling of return value inserted. */
if (SkGeInitPort(pAC, IoC, FromPort)) {
if (FromPort == 0) {
printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
}
}
SkAddrMcUpdate(pAC,IoC, FromPort);
PortReInitBmu(pAC, FromPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
ClearAndStartRx(pAC, FromPort);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_NET_UP: /* SK_U32 PortIdx */
/* action list 5 */
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET UP EVENT, Port: %d ", Param.Para32[0]));
#ifdef SK98_INFO
printk("%s: network connection up using"
" port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
/* tschilling: Values changed according to LinkSpeedUsed. */
Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
if (Stat == SK_LSPEED_STAT_10MBPS) {
printk(" speed: 10\n");
} else if (Stat == SK_LSPEED_STAT_100MBPS) {
printk(" speed: 100\n");
} else if (Stat == SK_LSPEED_STAT_1000MBPS) {
printk(" speed: 1000\n");
} else {
printk(" speed: unknown\n");
}
Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
if (Stat == SK_LMODE_STAT_AUTOHALF ||
Stat == SK_LMODE_STAT_AUTOFULL) {
printk(" autonegotiation: yes\n");
}
else {
printk(" autonegotiation: no\n");
}
if (Stat == SK_LMODE_STAT_AUTOHALF ||
Stat == SK_LMODE_STAT_HALF) {
printk(" duplex mode: half\n");
}
else {
printk(" duplex mode: full\n");
}
Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
if (Stat == SK_FLOW_STAT_REM_SEND ) {
printk(" flowctrl: remote send\n");
}
else if (Stat == SK_FLOW_STAT_LOC_SEND ){
printk(" flowctrl: local send\n");
}
else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
printk(" flowctrl: symmetric\n");
}
else {
printk(" flowctrl: none\n");
}
/* tschilling: Check against CopperType now. */
if ((pAC->GIni.GICopperType == SK_TRUE) &&
(pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
SK_LSPEED_STAT_1000MBPS)) {
Stat = pAC->GIni.GP[FromPort].PMSStatus;
if (Stat == SK_MS_STAT_MASTER ) {
printk(" role: master\n");
}
else if (Stat == SK_MS_STAT_SLAVE ) {
printk(" role: slave\n");
}
else {
printk(" role: ???\n");
}
}
#ifdef SK_ZEROCOPY
if (pAC->GIni.GIChipId == CHIP_ID_YUKON)
printk(" scatter-gather: enabled\n");
else
printk(" scatter-gather: disabled\n");
#else
printk(" scatter-gather: disabled\n");
#endif
#endif /* SK98_INFO */
if ((Param.Para32[0] != pAC->ActivePort) &&
(pAC->RlmtNets == 1)) {
NewPara.Para32[0] = pAC->ActivePort;
NewPara.Para32[1] = Param.Para32[0];
SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
NewPara);
}
/* Inform the world that link protocol is up. */
#if 0
pAC->dev[Param.Para32[0]]->flags |= IFF_RUNNING;
#endif
break;
case SK_DRV_NET_DOWN: /* SK_U32 Reason */
/* action list 7 */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET DOWN EVENT "));
#ifdef SK98_INFO
printk("%s: network connection down\n", pAC->dev[Param.Para32[1]]->name);
#endif
#if 0
pAC->dev[Param.Para32[1]]->flags &= ~IFF_RUNNING;
#endif
break;
case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT SWITCH HARD "));
case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
/* action list 6 */
printk("%s: switching to port %c\n", pAC->dev[0]->name,
'A'+Param.Para32[1]);
case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
FromPort = Param.Para32[0];
ToPort = Param.Para32[1];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
NewPara.Para64 = FromPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
NewPara.Para64 = ToPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock_irqsave(
&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
spin_unlock_irqrestore(
&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock_irqsave(
&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
pAC->ActivePort = ToPort;
#if 0
SetQueueSizes(pAC);
#else
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
spin_unlock_irqrestore(
&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
printk("SkGeInitAssignRamToQueues failed.\n");
break;
}
#endif
/* tschilling: Handling of return values inserted. */
if (SkGeInitPort(pAC, IoC, FromPort) ||
SkGeInitPort(pAC, IoC, ToPort)) {
printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
}
if (Event == SK_DRV_SWITCH_SOFT) {
SkMacRxTxEnable(pAC, IoC, FromPort);
}
SkMacRxTxEnable(pAC, IoC, ToPort);
SkAddrSwap(pAC, IoC, FromPort, ToPort);
SkAddrMcUpdate(pAC, IoC, FromPort);
SkAddrMcUpdate(pAC, IoC, ToPort);
PortReInitBmu(pAC, FromPort);
PortReInitBmu(pAC, ToPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
ClearAndStartRx(pAC, FromPort);
ClearAndStartRx(pAC, ToPort);
spin_unlock_irqrestore(
&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock, Flags);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("RLS "));
pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
skb_put(pMsg, pRlmtMbuf->Length);
if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
pMsg) < 0)
DEV_KFREE_SKB_ANY(pMsg);
break;
default:
break;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("END EVENT "));
return (0);
} /* SkDrvEvent */
/*****************************************************************************
*
* SkErrorLog - log errors
*
* Description:
* This function logs errors to the system buffer and to the console
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
void SkErrorLog(
SK_AC *pAC,
int ErrClass,
int ErrNum,
char *pErrorMsg)
{
char ClassStr[80];
switch (ErrClass) {
case SK_ERRCL_OTHER:
strcpy(ClassStr, "Other error");
break;
case SK_ERRCL_CONFIG:
strcpy(ClassStr, "Configuration error");
break;
case SK_ERRCL_INIT:
strcpy(ClassStr, "Initialization error");
break;
case SK_ERRCL_NORES:
strcpy(ClassStr, "Out of resources error");
break;
case SK_ERRCL_SW:
strcpy(ClassStr, "internal Software error");
break;
case SK_ERRCL_HW:
strcpy(ClassStr, "Hardware failure");
break;
case SK_ERRCL_COMM:
strcpy(ClassStr, "Communication error");
break;
}
printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
" Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
ClassStr, ErrNum, pErrorMsg);
} /* SkErrorLog */
#ifdef DEBUG
/****************************************************************************/
/* "debug only" section *****************************************************/
/****************************************************************************/
/*****************************************************************************
*
* DumpMsg - print a frame
*
* Description:
* This function prints frames to the system logfile/to the console.
*
* Returns: N/A
*
*/
static void DumpMsg(struct sk_buff *skb, char *str)
{
int msglen;
if (skb == NULL) {
printk("DumpMsg(): NULL-Message\n");
return;
}
if (skb->data == NULL) {
printk("DumpMsg(): Message empty\n");
return;
}
msglen = skb->len;
if (msglen > 64)
msglen = 64;
printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
DumpData((char *)skb->data, msglen);
printk("------- End of message ---------\n");
} /* DumpMsg */
/*****************************************************************************
*
* DumpData - print a data area
*
* Description:
* This function prints a area of data to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpData(char *p, int size)
{
register int i;
int haddr, addr;
char hex_buffer[180];
char asc_buffer[180];
char HEXCHAR[] = "0123456789ABCDEF";
addr = 0;
haddr = 0;
hex_buffer[0] = 0;
asc_buffer[0] = 0;
for (i=0; i < size; ) {
if (*p >= '0' && *p <='z')
asc_buffer[addr] = *p;
else
asc_buffer[addr] = '.';
addr++;
asc_buffer[addr] = 0;
hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
haddr++;
hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%16 == 0) {
printk("%s %s\n", hex_buffer, asc_buffer);
addr = 0;
haddr = 0;
}
}
} /* DumpData */
/*****************************************************************************
*
* DumpLong - print a data area as long values
*
* Description:
* This function prints a area of data to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpLong(char *pc, int size)
{
register int i;
int haddr, addr;
char hex_buffer[180];
char asc_buffer[180];
char HEXCHAR[] = "0123456789ABCDEF";
long *p;
int l;
addr = 0;
haddr = 0;
hex_buffer[0] = 0;
asc_buffer[0] = 0;
p = (long*) pc;
for (i=0; i < size; ) {
l = (long) *p;
hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[l & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%8 == 0) {
printk("%4x %s\n", (i-8)*4, hex_buffer);
haddr = 0;
}
}
printk("------------------------\n");
} /* DumpLong */
#endif