| /* |
| * (C) Copyright 2002 |
| * Hyperion Entertainment, ThomasF@hyperion-entertainment.com |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <pci.h> |
| #include <asm/processor.h> |
| #include "memio.h" |
| #include "articiaS.h" |
| #include "smbus.h" |
| #include "via686.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #undef DEBUG |
| |
| struct dimm_bank { |
| uint8 used; /* Bank is populated */ |
| uint32 rows; /* Number of row addresses */ |
| uint32 columns; /* Number of column addresses */ |
| uint8 registered; /* SIMM is registered */ |
| uint8 ecc; /* SIMM has ecc */ |
| uint8 burst_len; /* Supported burst lengths */ |
| uint32 cas_lat; /* Supported CAS latencies */ |
| uint32 cas_used; /* CAS to use (not set by user) */ |
| uint32 trcd; /* RAS to CAS latency */ |
| uint32 trp; /* Precharge latency */ |
| uint32 tclk_hi; /* SDRAM cycle time (highest CAS latency) */ |
| uint32 tclk_2hi; /* SDRAM second highest CAS latency */ |
| uint32 size; /* Size of bank in bytes */ |
| uint8 auto_refresh; /* Module supports auto refresh */ |
| uint32 refresh_time; /* Refresh time (in ns) */ |
| }; |
| |
| |
| /* |
| ** Based in part on the evb64260 code |
| */ |
| |
| /* |
| * translate ns.ns/10 coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NS10to10PS (unsigned char spd_byte) |
| { |
| unsigned short ns, ns10; |
| |
| /* isolate upper nibble */ |
| ns = (spd_byte >> 4) & 0x0F; |
| /* isolate lower nibble */ |
| ns10 = (spd_byte & 0x0F); |
| |
| return (ns * 100 + ns10 * 10); |
| } |
| |
| /* |
| * translate ns coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NSto10PS (unsigned char spd_byte) |
| { |
| return (spd_byte * 100); |
| } |
| |
| |
| long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks) |
| { |
| int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR; |
| uint32 busclock = gd->bus_clk; |
| uint32 memclock = busclock; |
| uint32 tmemclock = 1000000000 / (memclock / 100); |
| uint32 datawidth; |
| |
| if (sm_get_data (rom, dimm_address) == 0) { |
| /* Nothing in slot, make both banks empty */ |
| debug ("Slot %d: vacant\n", dimmNum); |
| banks[0].used = 0; |
| banks[1].used = 0; |
| return 0; |
| } |
| |
| if (rom[2] != 0x04) { |
| debug ("Slot %d: No SDRAM\n", dimmNum); |
| banks[0].used = 0; |
| banks[1].used = 0; |
| return 0; |
| } |
| |
| /* Determine number of banks/rows */ |
| if (rom[5] == 1) { |
| banks[0].used = 1; |
| banks[1].used = 0; |
| } else { |
| banks[0].used = 1; |
| banks[1].used = 1; |
| } |
| |
| /* Determine number of row addresses */ |
| if (rom[3] & 0xf0) { |
| /* Different banks sizes */ |
| banks[0].rows = rom[3] & 0x0f; |
| banks[1].rows = (rom[3] & 0xf0) >> 4; |
| } else { |
| /* Equal sized banks */ |
| banks[0].rows = rom[3] & 0x0f; |
| banks[1].rows = banks[0].rows; |
| } |
| |
| /* Determine number of column addresses */ |
| if (rom[4] & 0xf0) { |
| /* Different bank sizes */ |
| banks[0].columns = rom[4] & 0x0f; |
| banks[1].columns = (rom[4] & 0xf0) >> 4; |
| } else { |
| banks[0].columns = rom[4] & 0x0f; |
| banks[1].columns = banks[0].columns; |
| } |
| |
| /* Check Jedec revision, and modify row/column accordingly */ |
| if (rom[62] > 0x10) { |
| if (banks[0].rows <= 3) |
| banks[0].rows += 15; |
| if (banks[1].rows <= 3) |
| banks[1].rows += 15; |
| if (banks[0].columns <= 3) |
| banks[0].columns += 15; |
| if (banks[0].columns <= 3) |
| banks[0].columns += 15; |
| } |
| |
| /* Check registered/unregisterd */ |
| if (rom[21] & 0x12) { |
| banks[0].registered = 1; |
| banks[1].registered = 1; |
| } else { |
| banks[0].registered = 0; |
| banks[1].registered = 0; |
| } |
| |
| #ifdef CONFIG_ECC |
| /* Check parity/ECC */ |
| banks[0].ecc = (rom[11] == 0x02); |
| banks[1].ecc = (rom[11] == 0x02); |
| #endif |
| |
| /* Find burst lengths supported */ |
| banks[0].burst_len = rom[16] & 0x8f; |
| banks[1].burst_len = rom[16] & 0x8f; |
| |
| /* Find possible cas latencies */ |
| banks[0].cas_lat = rom[18] & 0x7F; |
| banks[1].cas_lat = rom[18] & 0x7F; |
| |
| /* RAS/CAS latency */ |
| banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock; |
| banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock; |
| |
| /* Precharge latency */ |
| banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock; |
| banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock; |
| |
| /* highest CAS latency */ |
| banks[0].tclk_hi = NS10to10PS (rom[9]); |
| banks[1].tclk_hi = NS10to10PS (rom[9]); |
| |
| /* second highest CAS latency */ |
| banks[0].tclk_2hi = NS10to10PS (rom[23]); |
| banks[1].tclk_2hi = NS10to10PS (rom[23]); |
| |
| /* bank sizes */ |
| datawidth = rom[13] & 0x7f; |
| banks[0].size = |
| (1L << (banks[0].rows + banks[0].columns)) * |
| /* FIXME datawidth */ 8 * rom[17]; |
| if (rom[13] & 0x80) |
| banks[1].size = 2 * banks[0].size; |
| else |
| banks[1].size = (1L << (banks[1].rows + banks[1].columns)) * |
| /* FIXME datawidth */ 8 * rom[17]; |
| |
| /* Refresh */ |
| if (rom[12] & 0x80) { |
| banks[0].auto_refresh = 1; |
| banks[1].auto_refresh = 1; |
| } else { |
| banks[0].auto_refresh = 0; |
| banks[1].auto_refresh = 0; |
| } |
| |
| switch (rom[12] & 0x7f) { |
| case 0: |
| banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock; |
| break; |
| case 1: |
| banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock; |
| break; |
| case 2: |
| banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock; |
| break; |
| case 3: |
| banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock; |
| break; |
| case 4: |
| banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock; |
| break; |
| case 5: |
| banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock; |
| banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock; |
| break; |
| default: |
| banks[0].refresh_time = 0x100; /* Default of Articia S */ |
| banks[1].refresh_time = 0x100; |
| break; |
| } |
| |
| #ifdef DEBUG |
| printf ("\nInformation for SIMM bank %ld:\n", dimmNum); |
| printf ("Number of banks: %ld\n", banks[0].used + banks[1].used); |
| printf ("Number of row addresses: %ld\n", banks[0].rows); |
| printf ("Number of coumns addresses: %ld\n", banks[0].columns); |
| printf ("SIMM is %sregistered\n", |
| banks[0].registered == 0 ? "not " : ""); |
| #ifdef CONFIG_ECC |
| printf ("SIMM %s ECC\n", |
| banks[0].ecc == 1 ? "supports" : "doesn't support"); |
| #endif |
| printf ("Supported burst lenghts: %s %s %s %s %s\n", |
| banks[0].burst_len & 0x08 ? "8" : " ", |
| banks[0].burst_len & 0x04 ? "4" : " ", |
| banks[0].burst_len & 0x02 ? "2" : " ", |
| banks[0].burst_len & 0x01 ? "1" : " ", |
| banks[0].burst_len & 0x80 ? "PAGE" : " "); |
| printf ("Supported CAS latencies: %s %s %s\n", |
| banks[0].cas_lat & 0x04 ? "CAS 3" : " ", |
| banks[0].cas_lat & 0x02 ? "CAS 2" : " ", |
| banks[0].cas_lat & 0x01 ? "CAS 1" : " "); |
| printf ("RAS to CAS latency: %ld\n", banks[0].trcd); |
| printf ("Precharge latency: %ld\n", banks[0].trp); |
| printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi); |
| printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi); |
| printf ("SDRAM data width: %ld\n", datawidth); |
| printf ("Auto Refresh %ssupported\n", |
| banks[0].auto_refresh ? "" : "not "); |
| printf ("Refresh time: %ld clocks\n", banks[0].refresh_time); |
| if (banks[0].used) |
| printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024); |
| if (banks[1].used) |
| printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024); |
| |
| printf ("\n"); |
| #endif |
| |
| sm_term (); |
| return 1; |
| } |
| |
| void select_cas (struct dimm_bank *banks, uint8 fast) |
| { |
| if (!banks[0].used) { |
| banks[0].cas_used = 0; |
| banks[0].cas_used = 0; |
| return; |
| } |
| |
| if (fast) { |
| /* Search for fast CAS */ |
| uint32 i; |
| uint32 c = 0x01; |
| |
| for (i = 1; i < 5; i++) { |
| if (banks[0].cas_lat & c) { |
| banks[0].cas_used = i; |
| banks[1].cas_used = i; |
| debug ("Using CAS %d (fast)\n", i); |
| return; |
| } |
| c <<= 1; |
| } |
| |
| /* Default to CAS 3 */ |
| banks[0].cas_used = 3; |
| banks[1].cas_used = 3; |
| debug ("Using CAS 3 (fast)\n"); |
| |
| return; |
| } else { |
| /* Search for slow cas */ |
| uint32 i; |
| uint32 c = 0x08; |
| |
| for (i = 4; i > 1; i--) { |
| if (banks[0].cas_lat & c) { |
| banks[0].cas_used = i; |
| banks[1].cas_used = i; |
| debug ("Using CAS %d (slow)\n", i); |
| return; |
| } |
| c >>= 1; |
| } |
| |
| /* Default to CAS 3 */ |
| banks[0].cas_used = 3; |
| banks[1].cas_used = 3; |
| debug ("Using CAS 3 (slow)\n"); |
| |
| return; |
| } |
| |
| banks[0].cas_used = 3; |
| banks[1].cas_used = 3; |
| debug ("Using CAS 3\n"); |
| |
| return; |
| } |
| |
| uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size) |
| { |
| uint32 i; |
| |
| struct RowColumnSize { |
| uint32 banks; |
| uint32 rows; |
| uint32 columns; |
| uint32 size; |
| uint32 register_value; |
| }; |
| |
| struct RowColumnSize rcs_map[] = { |
| /* Sbk Radr Cadr MB Value */ |
| {1, 11, 8, 8, 0x00840f00}, |
| {1, 11, 9, 16, 0x00925f00}, |
| {1, 11, 10, 32, 0x00a64f00}, |
| {2, 12, 8, 32, 0x00c55f00}, |
| {2, 12, 9, 64, 0x00d66f00}, |
| {2, 12, 10, 128, 0x00e77f00}, |
| {2, 12, 11, 256, 0x00ff8f00}, |
| {2, 13, 11, 512, 0x00ff9f00}, |
| {0, 0, 0, 0, 0x00000000} |
| }; |
| |
| |
| i = 0; |
| |
| while (rcs_map[i].banks != 0) { |
| if (rows == rcs_map[i].rows |
| && columns == rcs_map[i].columns |
| && (size / 1024 / 1024) == rcs_map[i].size) |
| return rcs_map[i].register_value; |
| |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| uint32 burst_to_len (uint32 support) |
| { |
| if (support & 0x80) |
| return 0x7; |
| else if (support & 0x8) |
| return 0x3; |
| else if (support & 0x4) |
| return 0x2; |
| else if (support & 0x2) |
| return 0x1; |
| else if (support & 0x1) |
| return 0x0; |
| |
| return 0; |
| } |
| |
| long articiaS_ram_init (void) |
| { |
| register uint32 i; |
| register uint32 value1; |
| register uint32 value2; |
| uint8 rom[128]; |
| uint32 burst_len; |
| uint32 burst_support; |
| uint32 total_ram = 0; |
| |
| struct dimm_bank banks[4]; /* FIXME: Move to initram */ |
| uint32 busclock = gd->bus_clk; |
| uint32 memclock = busclock; |
| uint32 reg32; |
| uint32 refresh_clocks; |
| uint8 auto_refresh; |
| |
| memset (banks, 0, sizeof (struct dimm_bank) * 4); |
| |
| detect_sdram (rom, 0, &banks[0]); |
| detect_sdram (rom, 1, &banks[2]); |
| |
| for (i = 0; i < 4; i++) { |
| total_ram = total_ram + (banks[i].used * banks[i].size); |
| } |
| |
| pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0); |
| pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0); |
| pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */ |
| pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f); |
| pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /* was: 0x04); */ |
| pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020); /* was: 0x2400); No ECC yet */ |
| |
| /* FIXME: Move this stuff to seperate function, like setup_dimm_bank */ |
| if (banks[0].used) { |
| value1 = get_reg_setting (banks[0].used + banks[1].used, |
| banks[0].rows, banks[0].columns, |
| banks[0].size); |
| } else { |
| value1 = 0; |
| } |
| |
| if (banks[1].used) { |
| value2 = get_reg_setting (banks[0].used + banks[1].used, |
| banks[1].rows, banks[1].columns, |
| banks[1].size); |
| } else { |
| value2 = 0; |
| } |
| |
| pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1); |
| pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2); |
| |
| debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1); |
| debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2); |
| |
| if (banks[2].used) { |
| value1 = get_reg_setting (banks[2].used + banks[3].used, |
| banks[2].rows, banks[2].columns, |
| banks[2].size); |
| } else { |
| value1 = 0; |
| } |
| |
| if (banks[3].used) { |
| value2 = get_reg_setting (banks[2].used + banks[3].used, |
| banks[3].rows, banks[3].columns, |
| banks[3].size); |
| } else { |
| value2 = 0; |
| } |
| |
| pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1); |
| pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2); |
| |
| debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1); |
| debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2); |
| |
| pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0); |
| pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0); |
| pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0); |
| pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0); |
| |
| /* Determine timing */ |
| select_cas (&banks[0], 0); |
| select_cas (&banks[2], 0); |
| |
| /* FIXME: What about write recovery */ |
| /* Auto refresh Precharge */ |
| #if 0 |
| reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) | |
| /* Write recovery CAS Latency */ |
| (0x1 << 6) | (banks[0].cas_used << 4) | |
| /* RAS/CAS latency */ |
| ((banks[0].trcd - 1) << 0); |
| |
| reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) | |
| (0x1 << 6) | (banks[2].cas_used << 4) | |
| ((banks[2].trcd - 1) << 0)) << 16; |
| #else |
| if (100000000 == gd->bus_clk) |
| reg32 = 0x71737173; |
| else |
| reg32 = 0x69736973; |
| #endif |
| pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32); |
| debug ("DIMM0_TCR0 = 0x%08x\n", reg32); |
| |
| /* Write default in DIMM2/3 (not used on A1) */ |
| pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73); |
| |
| |
| /* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */ |
| reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0); |
| reg32 &= 0xFF00FFFF; |
| |
| #if 0 |
| if (banks[0].used && banks[0].registered) |
| reg32 |= 0x1 << 16; |
| |
| if (banks[2].used && banks[2].registered) |
| reg32 |= 0x1 << 18; |
| #else |
| if (banks[0].registered || banks[2].registered) |
| reg32 |= 0x55 << 16; |
| #endif |
| pci_write_cfg_long (0, 0, DRAM_GCR0, reg32); |
| debug ("DRAM_GCR0 = 0x%08x\n", reg32); |
| |
| /* Determine refresh */ |
| refresh_clocks = 0xffffffff; |
| auto_refresh = 1; |
| |
| for (i = 0; i < 4; i++) { |
| if (banks[i].used) { |
| if (banks[i].auto_refresh == 0) |
| auto_refresh = 0; |
| if (banks[i].refresh_time < refresh_clocks) |
| refresh_clocks = banks[i].refresh_time; |
| } |
| } |
| |
| |
| #if 1 |
| /* It seems this is suggested by the ArticiaS data book */ |
| if (100000000 == gd->bus_clk) |
| refresh_clocks = 1561; |
| else |
| refresh_clocks = 2083; |
| #endif |
| |
| |
| debug ("Refresh set to %ld clocks, auto refresh %s\n", |
| refresh_clocks, auto_refresh ? "on" : "off"); |
| |
| pci_write_cfg_long (0, 0, DRAM_REFRESH0, |
| (1 << 16) | (1 << 15) | (auto_refresh << 12) | |
| (refresh_clocks)); |
| debug ("DRAM_REFRESH0 = 0x%08x\n", |
| (1 << 16) | (1 << 15) | (auto_refresh << 12) | |
| (refresh_clocks)); |
| |
| /* pci_write_cfg_long(0, 0, DRAM_REFRESH0, 0x00019400); */ |
| |
| /* Set mode registers */ |
| /* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */ |
| /* Find a common burst len */ |
| burst_support = 0xff; |
| |
| if (banks[0].used) |
| burst_support = banks[0].burst_len; |
| if (banks[1].used) |
| burst_support = banks[1].burst_len; |
| if (banks[2].used) |
| burst_support = banks[2].burst_len; |
| if (banks[3].used) |
| burst_support = banks[3].burst_len; |
| |
| /* |
| ** Mode register: |
| ** Bits Use |
| ** 0-2 Burst len |
| ** 3 Burst type (0 = sequential, 1 = interleave) |
| ** 4-6 CAS latency |
| ** 7-8 Operation mode (0 = default, all others invalid) |
| ** 9 Write burst |
| ** 10-11 Reserved |
| ** |
| ** Mode register burst table: |
| ** A2 A1 A0 lenght |
| ** 0 0 0 1 |
| ** 0 0 1 2 |
| ** 0 1 0 4 |
| ** 0 1 1 8 |
| ** 1 0 0 invalid |
| ** 1 0 1 invalid |
| ** 1 1 0 invalid |
| ** 1 1 1 page (only valid for non-interleaved) |
| */ |
| |
| burst_len = burst_to_len (burst_support); |
| burst_len = 2; /* FIXME */ |
| |
| if (banks[0].used) { |
| pci_write_cfg_word (0, 0, DRAM_PCR0, |
| 0x8000 | burst_len | (banks[0].cas_used << 4)); |
| debug ("Mode bank 0: 0x%08x\n", |
| 0x8000 | burst_len | (banks[0].cas_used << 4)); |
| } else { |
| /* Seems to be needed to disable the bank */ |
| pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032); |
| } |
| |
| if (banks[1].used) { |
| pci_write_cfg_word (0, 0, DRAM_PCR0, |
| 0x9000 | burst_len | (banks[1].cas_used << 4)); |
| debug ("Mode bank 1: 0x%08x\n", |
| 0x8000 | burst_len | (banks[1].cas_used << 4)); |
| } else { |
| /* Seems to be needed to disable the bank */ |
| pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032); |
| } |
| |
| |
| if (banks[2].used) { |
| pci_write_cfg_word (0, 0, DRAM_PCR0, |
| 0xa000 | burst_len | (banks[2].cas_used << 4)); |
| debug ("Mode bank 2: 0x%08x\n", |
| 0x8000 | burst_len | (banks[2].cas_used << 4)); |
| } else { |
| /* Seems to be needed to disable the bank */ |
| pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032); |
| } |
| |
| |
| if (banks[3].used) { |
| pci_write_cfg_word (0, 0, DRAM_PCR0, |
| 0xb000 | burst_len | (banks[3].cas_used << 4)); |
| debug ("Mode bank 3: 0x%08x\n", |
| 0x8000 | burst_len | (banks[3].cas_used << 4)); |
| } else { |
| /* Seems to be needed to disable the bank */ |
| pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032); |
| } |
| |
| |
| pci_write_cfg_word (0, 0, 0xba, 0x00); |
| |
| return total_ram; |
| } |
| |
| extern int drv_isa_kbd_init (void); |
| |
| int last_stage_init (void) |
| { |
| drv_isa_kbd_init (); |
| return 0; |
| } |
| |
| int overwrite_console (void) |
| { |
| return (0); |
| } |
| |
| #define in_8 read_byte |
| #define out_8 write_byte |
| |
| static __inline__ unsigned long get_msr (void) |
| { |
| unsigned long msr; |
| |
| asm volatile ("mfmsr %0":"=r" (msr):); |
| |
| return msr; |
| } |
| |
| static __inline__ void set_msr (unsigned long msr) |
| { |
| asm volatile ("mtmsr %0"::"r" (msr)); |
| } |
| |
| int board_early_init_f (void) |
| { |
| unsigned char c_value = 0; |
| unsigned long msr; |
| |
| /* Basic init of PS/2 keyboard (needed for some reason)... */ |
| /* Ripped from John's code */ |
| while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); |
| out_8 ((unsigned char *) 0xfe000064, 0xaa); |
| while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0); |
| c_value = in_8 ((unsigned char *) 0xfe000060); |
| while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); |
| out_8 ((unsigned char *) 0xfe000064, 0xab); |
| while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0); |
| c_value = in_8 ((unsigned char *) 0xfe000060); |
| while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); |
| out_8 ((unsigned char *) 0xfe000064, 0xae); |
| /* while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */ |
| /* c_value = in_8((unsigned char *)0xfe000060); */ |
| |
| /* Enable FPU */ |
| msr = get_msr (); |
| set_msr (msr | MSR_FP); |
| |
| via_calibrate_bus_freq (); |
| |
| return 0; |
| } |