| /* |
| * (C) Copyright 2001, 2002 |
| * Dave Ellis, SIXNET, dge@sixnetio.com. |
| * Based on code by: |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * and other contributors to U-Boot. See file CREDITS for list |
| * of people who contributed to this project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <config.h> |
| #include <jffs2/jffs2.h> |
| #include <mpc8xx.h> |
| #include <net.h> /* for eth_init() */ |
| #include <rtc.h> |
| #include "sixnet.h" |
| #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| # include <status_led.h> |
| #endif |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define ORMASK(size) ((-size) & OR_AM_MSK) |
| |
| static long ram_size(ulong *, long); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| void show_boot_progress (int status) |
| { |
| #if defined(CONFIG_STATUS_LED) |
| # if defined(STATUS_LED_BOOT) |
| if (status == 15) { |
| /* ready to transfer to kernel, make sure LED is proper state */ |
| status_led_set(STATUS_LED_BOOT, CONFIG_BOOT_LED_STATE); |
| } |
| # endif /* STATUS_LED_BOOT */ |
| #endif /* CONFIG_STATUS_LED */ |
| } |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Check Board Identity: |
| * returns 0 if recognized, -1 if unknown |
| */ |
| |
| int checkboard (void) |
| { |
| puts ("Board: SIXNET SXNI855T\n"); |
| return 0; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #if defined(CONFIG_CMD_PCMCIA) |
| #error "SXNI855T has no PCMCIA port" |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #define _not_used_ 0xffffffff |
| |
| /* UPMB table for dual UART. */ |
| |
| /* this table is for 50MHz operation, it should work at all lower speeds */ |
| const uint duart_table[] = |
| { |
| /* single read. (offset 0 in upm RAM) */ |
| 0xfffffc04, 0x0ffffc04, 0x0ff3fc04, 0x0ff3fc04, |
| 0x0ff3fc00, 0x0ff3fc04, 0xfffffc04, 0xfffffc05, |
| |
| /* burst read. (offset 8 in upm RAM) */ |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* single write. (offset 18 in upm RAM) */ |
| 0xfffffc04, 0x0ffffc04, 0x00fffc04, 0x00fffc04, |
| 0x00fffc04, 0x00fffc00, 0xfffffc04, 0xfffffc05, |
| |
| /* burst write. (offset 20 in upm RAM) */ |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* refresh. (offset 30 in upm RAM) */ |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* exception. (offset 3c in upm RAM) */ |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| }; |
| |
| /* Load FPGA very early in boot sequence, since it must be |
| * loaded before the 16C2550 serial channels can be used as |
| * console channels. |
| * |
| * Note: Much of the configuration is not complete. The |
| * stack is in DPRAM since SDRAM has not been initialized, |
| * so the stack must be kept small. Global variables |
| * are still in FLASH, so they cannot be written. |
| * Only the FLASH, DPRAM, immap and FPGA can be addressed, |
| * the other chip selects may not have been initialized. |
| * The clocks have been initialized, so udelay() can be |
| * used. |
| */ |
| #define FPGA_DONE 0x0080 /* PA8, input, high when FPGA load complete */ |
| #define FPGA_PROGRAM_L 0x0040 /* PA9, output, low to reset, high to start */ |
| #define FPGA_INIT_L 0x0020 /* PA10, input, low indicates not ready */ |
| #define fpga (*(volatile unsigned char *)(CONFIG_SYS_FPGA_PROG)) /* FPGA port */ |
| |
| int board_postclk_init (void) |
| { |
| |
| /* the data to load to the XCSxxXL FPGA */ |
| static const unsigned char fpgadata[] = { |
| # include "fpgadata.c" |
| }; |
| |
| volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; |
| volatile memctl8xx_t *memctl = &immap->im_memctl; |
| #define porta (immap->im_ioport.iop_padat) |
| const unsigned char* pdata; |
| |
| /* /INITFPGA and DONEFPGA signals are inputs */ |
| immap->im_ioport.iop_padir &= ~(FPGA_INIT_L | FPGA_DONE); |
| |
| /* Force output pin to begin at 0, /PROGRAM asserted (0) resets FPGA */ |
| porta &= ~FPGA_PROGRAM_L; |
| |
| /* Set FPGA as an output */ |
| immap->im_ioport.iop_padir |= FPGA_PROGRAM_L; |
| |
| /* delay a little to make sure FPGA sees it, really |
| * only need less than a microsecond. |
| */ |
| udelay(10); |
| |
| /* unassert /PROGRAM */ |
| porta |= FPGA_PROGRAM_L; |
| |
| /* delay while FPGA does last erase, indicated by |
| * /INITFPGA going high. This should happen within a |
| * few milliseconds. |
| */ |
| /* ### FIXME - a timeout check would be good, maybe flash |
| * the status LED to indicate the error? |
| */ |
| while ((porta & FPGA_INIT_L) == 0) |
| ; /* waiting */ |
| |
| /* write program data to FPGA at the programming address |
| * so extra /CS1 strobes at end of configuration don't actually |
| * write to any registers. |
| */ |
| fpga = 0xff; /* first write is ignored */ |
| fpga = 0xff; /* fill byte */ |
| fpga = 0xff; /* fill byte */ |
| fpga = 0x4f; /* preamble code */ |
| fpga = 0x80; fpga = 0xaf; fpga = 0x9b; /* length (ignored) */ |
| fpga = 0x4b; /* field check code */ |
| |
| pdata = fpgadata; |
| /* while no error write out each of the 28 byte frames */ |
| while ((porta & (FPGA_INIT_L | FPGA_DONE)) == FPGA_INIT_L |
| && pdata < fpgadata + sizeof(fpgadata)) { |
| |
| fpga = 0x4f; /* preamble code */ |
| |
| /* 21 bytes of data in a frame */ |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); fpga = *(pdata++); |
| fpga = *(pdata++); |
| |
| fpga = 0x4b; /* field check code */ |
| fpga = 0xff; /* extended write cycle */ |
| fpga = 0x4b; /* extended write cycle |
| * (actually 0x4b from bitgen.exe) |
| */ |
| fpga = 0xff; /* extended write cycle */ |
| fpga = 0xff; /* extended write cycle */ |
| fpga = 0xff; /* extended write cycle */ |
| } |
| |
| fpga = 0xff; /* startup byte */ |
| fpga = 0xff; /* startup byte */ |
| fpga = 0xff; /* startup byte */ |
| fpga = 0xff; /* startup byte */ |
| |
| #if 0 /* ### FIXME */ |
| /* If didn't load all the data or FPGA_DONE is low the load failed. |
| * Maybe someday stop here and flash the status LED? The console |
| * is not configured, so can't print an error message. Can't write |
| * global variables to set a flag (except gd?). |
| * For now it must work. |
| */ |
| #endif |
| |
| /* Now that the FPGA is loaded, set up the Dual UART chip |
| * selects. Must be done here since it may be used as the console. |
| */ |
| upmconfig(UPMB, (uint *)duart_table, sizeof(duart_table)/sizeof(uint)); |
| |
| memctl->memc_mbmr = DUART_MBMR; |
| memctl->memc_or5 = DUART_OR_VALUE; |
| memctl->memc_br5 = DUART_BR5_VALUE; |
| memctl->memc_or6 = DUART_OR_VALUE; |
| memctl->memc_br6 = DUART_BR6_VALUE; |
| |
| return (0); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* base address for SRAM, assume 32-bit port, valid */ |
| #define NVRAM_BR_VALUE (CONFIG_SYS_SRAM_BASE | BR_PS_32 | BR_V) |
| |
| /* up to 64MB - will be adjusted for actual size */ |
| #define NVRAM_OR_PRELIM (ORMASK(CONFIG_SYS_SRAM_SIZE) \ |
| | OR_CSNT_SAM | OR_ACS_DIV4 | OR_BI | OR_SCY_5_CLK | OR_EHTR) |
| /* |
| * Miscellaneous platform dependent initializations after running in RAM. |
| */ |
| |
| int misc_init_r (void) |
| { |
| volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; |
| volatile memctl8xx_t *memctl = &immap->im_memctl; |
| bd_t *bd = gd->bd; |
| uchar enetaddr[6]; |
| |
| memctl->memc_or2 = NVRAM_OR_PRELIM; |
| memctl->memc_br2 = NVRAM_BR_VALUE; |
| |
| /* Is there any SRAM? Is it 16 or 32 bits wide? */ |
| |
| /* First look for 32-bit SRAM */ |
| bd->bi_sramsize = ram_size((ulong*)CONFIG_SYS_SRAM_BASE, CONFIG_SYS_SRAM_SIZE); |
| |
| if (bd->bi_sramsize == 0) { |
| /* no 32-bit SRAM, but there could be 16-bit SRAM since |
| * it would report size 0 when configured for 32-bit bus. |
| * Try again with a 16-bit bus. |
| */ |
| memctl->memc_br2 |= BR_PS_16; |
| bd->bi_sramsize = ram_size((ulong*)CONFIG_SYS_SRAM_BASE, CONFIG_SYS_SRAM_SIZE); |
| } |
| |
| if (bd->bi_sramsize == 0) { |
| memctl->memc_br2 = 0; /* disable select since nothing there */ |
| } |
| else { |
| /* adjust or2 for actual size of SRAM */ |
| memctl->memc_or2 |= ORMASK(bd->bi_sramsize); |
| bd->bi_sramstart = CONFIG_SYS_SRAM_BASE; |
| printf("SRAM: %lu KB\n", bd->bi_sramsize >> 10); |
| } |
| |
| |
| /* set standard MPC8xx clock so kernel will see the time |
| * even if it doesn't have a DS1306 clock driver. |
| * This helps with experimenting with standard kernels. |
| */ |
| { |
| ulong tim; |
| struct rtc_time tmp; |
| |
| rtc_get(&tmp); /* get time from DS1306 RTC */ |
| |
| /* convert to seconds since 1970 */ |
| tim = mktime(tmp.tm_year, tmp.tm_mon, tmp.tm_mday, |
| tmp.tm_hour, tmp.tm_min, tmp.tm_sec); |
| |
| immap->im_sitk.sitk_rtck = KAPWR_KEY; |
| immap->im_sit.sit_rtc = tim; |
| } |
| |
| /* set up ethernet address for SCC ethernet. If eth1addr |
| * is present it gets a unique address, otherwise it |
| * shares the FEC address. |
| */ |
| if (!eth_getenv_enetaddr("eth1addr", enetaddr)) { |
| eth_getenv_enetaddr("ethaddr", enetaddr); |
| eth_setenv_enetaddr("eth1addr", enetaddr); |
| } |
| |
| return (0); |
| } |
| |
| #if defined(CONFIG_CMD_NAND) |
| void nand_init(void) |
| { |
| unsigned long totlen = nand_probe(CONFIG_SYS_DFLASH_BASE); |
| |
| printf ("%4lu MB\n", totlen >> 20); |
| } |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Check memory range for valid RAM. A simple memory test determines |
| * the actually available RAM size between addresses `base' and |
| * `base + maxsize'. |
| * |
| * The memory size MUST be a power of 2 for this to work. |
| * |
| * The only memory modified is 8 bytes at offset 0. This is important |
| * since for the SRAM this location is reserved for autosizing, so if |
| * it is modified and the board is reset before ram_size() completes |
| * no damage is done. Normally even the memory at 0 is preserved. The |
| * higher SRAM addresses may contain battery backed RAM disk data which |
| * must never be corrupted. |
| */ |
| |
| static long ram_size(ulong *base, long maxsize) |
| { |
| volatile long *test_addr; |
| volatile ulong *base_addr = base; |
| ulong ofs; /* byte offset from base_addr */ |
| ulong save; /* to make test non-destructive */ |
| ulong save2; /* to make test non-destructive */ |
| long ramsize = -1; /* size not determined yet */ |
| |
| save = *base_addr; /* save value at 0 so can restore */ |
| save2 = *(base_addr+1); /* save value at 4 so can restore */ |
| |
| /* is any SRAM present? */ |
| *base_addr = 0x5555aaaa; |
| |
| /* It is important to drive the data bus with different data so |
| * it doesn't remember the value and look like RAM that isn't there. |
| */ |
| *(base_addr + 1) = 0xaaaa5555; /* use write to modify data bus */ |
| |
| if (*base_addr != 0x5555aaaa) |
| ramsize = 0; /* no RAM present, or defective */ |
| else { |
| *base_addr = 0xaaaa5555; |
| *(base_addr + 1) = 0x5555aaaa; /* use write to modify data bus */ |
| if (*base_addr != 0xaaaa5555) |
| ramsize = 0; /* no RAM present, or defective */ |
| } |
| |
| /* now size it if any is present */ |
| for (ofs = 4; ofs < maxsize && ramsize < 0; ofs <<= 1) { |
| test_addr = (long*)((long)base_addr + ofs); /* location to test */ |
| |
| *base_addr = ~*test_addr; |
| if (*base_addr == *test_addr) |
| ramsize = ofs; /* wrapped back to 0, so this is the size */ |
| } |
| |
| *base_addr = save; /* restore value at 0 */ |
| *(base_addr+1) = save2; /* restore value at 4 */ |
| return (ramsize); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| /* sdram table based on the FADS manual */ |
| /* for chip MB811171622A-100 */ |
| |
| /* this table is for 50MHz operation, it should work at all lower speeds */ |
| |
| const uint sdram_table[] = |
| { |
| /* single read. (offset 0 in upm RAM) */ |
| 0x1f07fc04, 0xeeaefc04, 0x11adfc04, 0xefbbbc00, |
| 0x1ff77c47, |
| |
| /* precharge and Mode Register Set initialization (offset 5). |
| * This is also entered at offset 6 to do Mode Register Set |
| * without the precharge. |
| */ |
| 0x1ff77c34, 0xefeabc34, 0x1fb57c35, |
| |
| /* burst read. (offset 8 in upm RAM) */ |
| 0x1f07fc04, 0xeeaefc04, 0x10adfc04, 0xf0affc00, |
| 0xf0affc00, 0xf1affc00, 0xefbbbc00, 0x1ff77c47, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* single write. (offset 18 in upm RAM) */ |
| /* FADS had 0x1f27fc04, ... |
| * but most other boards have 0x1f07fc04, which |
| * sets GPL0 from A11MPC to 0 1/4 clock earlier, |
| * like the single read. |
| * This seems better so I am going with the change. |
| */ |
| 0x1f07fc04, 0xeeaebc00, 0x01b93c04, 0x1ff77c47, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* burst write. (offset 20 in upm RAM) */ |
| 0x1f07fc04, 0xeeaebc00, 0x10ad7c00, 0xf0affc00, |
| 0xf0affc00, 0xe1bbbc04, 0x1ff77c47, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* refresh. (offset 30 in upm RAM) */ |
| 0x1ff5fc84, 0xfffffc04, 0xfffffc04, 0xfffffc04, |
| 0xfffffc84, 0xfffffc07, _not_used_, _not_used_, |
| _not_used_, _not_used_, _not_used_, _not_used_, |
| |
| /* exception. (offset 3c in upm RAM) */ |
| 0x7ffffc07, _not_used_, _not_used_, _not_used_ }; |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #define SDRAM_MAX_SIZE 0x10000000 /* max 256 MB SDRAM */ |
| |
| /* precharge and set Mode Register */ |
| #define SDRAM_MCR_PRE (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \ |
| MCR_MB_CS3 | /* chip select */ \ |
| MCR_MLCF(1) | MCR_MAD(5)) /* 1 time at 0x05 */ |
| |
| /* set Mode Register, no precharge */ |
| #define SDRAM_MCR_MRS (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \ |
| MCR_MB_CS3 | /* chip select */ \ |
| MCR_MLCF(1) | MCR_MAD(6)) /* 1 time at 0x06 */ |
| |
| /* runs refresh loop twice so get 8 refresh cycles */ |
| #define SDRAM_MCR_REFR (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \ |
| MCR_MB_CS3 | /* chip select */ \ |
| MCR_MLCF(2) | MCR_MAD(0x30)) /* twice at 0x30 */ |
| |
| /* MAMR values work in either mamr or mbmr */ |
| #define SDRAM_MAMR_BASE /* refresh at 50MHz */ \ |
| ((195 << MAMR_PTA_SHIFT) | MAMR_PTAE \ |
| | MAMR_DSA_1_CYCL /* 1 cycle disable */ \ |
| | MAMR_RLFA_1X /* Read loop 1 time */ \ |
| | MAMR_WLFA_1X /* Write loop 1 time */ \ |
| | MAMR_TLFA_4X) /* Timer loop 4 times */ |
| /* 8 column SDRAM */ |
| #define SDRAM_MAMR_8COL (SDRAM_MAMR_BASE \ |
| | MAMR_AMA_TYPE_0 /* Address MUX 0 */ \ |
| | MAMR_G0CLA_A11) /* GPL0 A11[MPC] */ |
| |
| /* 9 column SDRAM */ |
| #define SDRAM_MAMR_9COL (SDRAM_MAMR_BASE \ |
| | MAMR_AMA_TYPE_1 /* Address MUX 1 */ \ |
| | MAMR_G0CLA_A10) /* GPL0 A10[MPC] */ |
| |
| /* base address 0, 32-bit port, SDRAM UPM, valid */ |
| #define SDRAM_BR_VALUE (BR_PS_32 | BR_MS_UPMA | BR_V) |
| |
| /* up to 256MB, SAM, G5LS - will be adjusted for actual size */ |
| #define SDRAM_OR_PRELIM (ORMASK(SDRAM_MAX_SIZE) | OR_CSNT_SAM | OR_G5LS) |
| |
| /* This is the Mode Select Register value for the SDRAM. |
| * Burst length: 4 |
| * Burst Type: sequential |
| * CAS Latency: 2 |
| * Write Burst Length: burst |
| */ |
| #define SDRAM_MODE 0x22 /* CAS latency 2, burst length 4 */ |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| phys_size_t initdram(int board_type) |
| { |
| volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; |
| volatile memctl8xx_t *memctl = &immap->im_memctl; |
| uint size_sdram = 0; |
| uint size_sdram9 = 0; |
| uint base = 0; /* SDRAM must start at 0 */ |
| int i; |
| |
| upmconfig(UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint)); |
| |
| /* Configure the refresh (mostly). This needs to be |
| * based upon processor clock speed and optimized to provide |
| * the highest level of performance. |
| * |
| * Preliminary prescaler for refresh. |
| * This value is selected for four cycles in 31.2 us, |
| * which gives 8192 cycles in 64 milliseconds. |
| * This may be too fast, but works for any memory. |
| * It is adjusted to 4096 cycles in 64 milliseconds if |
| * possible once we know what memory we have. |
| * |
| * We have to be careful changing UPM registers after we |
| * ask it to run these commands. |
| * |
| * PTA - periodic timer period for our design is |
| * 50 MHz x 31.2us |
| * --------------- = 195 |
| * 1 x 8 x 1 |
| * |
| * 50MHz clock |
| * 31.2us refresh interval |
| * SCCR[DFBRG] 0 |
| * PTP divide by 8 |
| * 1 chip select |
| */ |
| memctl->memc_mptpr = MPTPR_PTP_DIV8; /* 0x0800 */ |
| memctl->memc_mamr = SDRAM_MAMR_8COL & (~MAMR_PTAE); /* no refresh yet */ |
| |
| /* The SDRAM Mode Register value is shifted left 2 bits since |
| * A30 and A31 don't connect to the SDRAM for 32-bit wide memory. |
| */ |
| memctl->memc_mar = SDRAM_MODE << 2; /* MRS code */ |
| udelay(200); /* SDRAM needs 200uS before set it up */ |
| |
| /* Now run the precharge/nop/mrs commands. */ |
| memctl->memc_mcr = SDRAM_MCR_PRE; |
| udelay(2); |
| |
| /* Run 8 refresh cycles (2 sets of 4) */ |
| memctl->memc_mcr = SDRAM_MCR_REFR; /* run refresh twice */ |
| udelay(2); |
| |
| /* some brands want Mode Register set after the refresh |
| * cycles. This shouldn't hurt anything for the brands |
| * that were happy with the first time we set it. |
| */ |
| memctl->memc_mcr = SDRAM_MCR_MRS; |
| udelay(2); |
| |
| memctl->memc_mamr = SDRAM_MAMR_8COL; /* enable refresh */ |
| memctl->memc_or3 = SDRAM_OR_PRELIM; |
| memctl->memc_br3 = SDRAM_BR_VALUE + base; |
| |
| /* Some brands need at least 10 DRAM accesses to stabilize. |
| * It wont hurt the brands that don't. |
| */ |
| for (i=0; i<10; ++i) { |
| volatile ulong *addr = (volatile ulong *)base; |
| ulong val; |
| |
| val = *(addr + i); |
| *(addr + i) = val; |
| } |
| |
| /* Check SDRAM memory Size in 8 column mode. |
| * For a 9 column memory we will get half the actual size. |
| */ |
| size_sdram = ram_size((ulong *)0, SDRAM_MAX_SIZE); |
| |
| /* Check SDRAM memory Size in 9 column mode. |
| * For an 8 column memory we will see at most 4 megabytes. |
| */ |
| memctl->memc_mamr = SDRAM_MAMR_9COL; |
| size_sdram9 = ram_size((ulong *)0, SDRAM_MAX_SIZE); |
| |
| if (size_sdram < size_sdram9) /* leave configuration at 9 columns */ |
| size_sdram = size_sdram9; |
| else /* go back to 8 columns */ |
| memctl->memc_mamr = SDRAM_MAMR_8COL; |
| |
| /* adjust or3 for actual size of SDRAM |
| */ |
| memctl->memc_or3 |= ORMASK(size_sdram); |
| |
| /* Adjust refresh rate depending on SDRAM type. |
| * For types > 128 MBit (32 Mbyte for 2 x16 devices) leave |
| * it at the current (fast) rate. |
| * For 16, 64 and 128 MBit half the rate will do. |
| */ |
| if (size_sdram <= 32 * 1024 * 1024) |
| memctl->memc_mptpr = MPTPR_PTP_DIV16; /* 0x0400 */ |
| |
| return (size_sdram); |
| } |