| /* |
| * (C) Copyright 2000-2004 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <mpc8xx.h> |
| #include <asm/processor.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #if !defined(CONFIG_8xx_CPUCLK_DEFAULT) || defined(CFG_MEASURE_CPUCLK) || defined(DEBUG) |
| |
| #define PITC_SHIFT 16 |
| #define PITR_SHIFT 16 |
| /* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */ |
| #define SPEED_PIT_COUNTS 58 |
| #define SPEED_PITC ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT) |
| #define SPEED_PITC_INIT ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT) |
| |
| /* Access functions for the Machine State Register */ |
| static __inline__ unsigned long get_msr(void) |
| { |
| unsigned long msr; |
| |
| asm volatile("mfmsr %0" : "=r" (msr) :); |
| return msr; |
| } |
| |
| static __inline__ void set_msr(unsigned long msr) |
| { |
| asm volatile("mtmsr %0" : : "r" (msr)); |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Measure CPU clock speed (core clock GCLK1, GCLK2), |
| * also determine bus clock speed (checking bus divider factor) |
| * |
| * (Approx. GCLK frequency in Hz) |
| * |
| * Initializes timer 2 and PIT, but disables them before return. |
| * [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4] |
| * |
| * When measuring the CPU clock against the PIT, we count cpu clocks |
| * for 58/8192 seconds with a prescale divide by 177 for the cpu clock. |
| * These strange values for the timing interval and prescaling are used |
| * because the formula for the CPU clock is: |
| * |
| * CPU clock = count * (177 * (8192 / 58)) |
| * |
| * = count * 24999.7241 |
| * |
| * which is very close to |
| * |
| * = count * 25000 |
| * |
| * Since the count gives the CPU clock divided by 25000, we can get |
| * the CPU clock rounded to the nearest 0.1 MHz by |
| * |
| * CPU clock = ((count + 2) / 4) * 100000; |
| * |
| * The rounding is important since the measurement is sometimes going |
| * to be high or low by 0.025 MHz, depending on exactly how the clocks |
| * and counters interact. By rounding we get the exact answer for any |
| * CPU clock that is an even multiple of 0.1 MHz. |
| */ |
| |
| unsigned long measure_gclk(void) |
| { |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer; |
| ulong timer2_val; |
| ulong msr_val; |
| |
| #ifdef CFG_8XX_XIN |
| /* dont use OSCM, only use EXTCLK/512 */ |
| immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV; |
| #else |
| immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV); |
| #endif |
| |
| /* Reset + Stop Timer 2, no cascading |
| */ |
| timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2); |
| |
| /* Keep stopped, halt in debug mode |
| */ |
| timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2); |
| |
| /* Timer 2 setup: |
| * Output ref. interrupt disable, int. clock |
| * Prescale by 177. Note that prescaler divides by value + 1 |
| * so we must subtract 1 here. |
| */ |
| timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN; |
| |
| timerp->cpmt_tcn2 = 0; /* reset state */ |
| timerp->cpmt_tgcr |= TGCR_RST2; /* enable timer 2 */ |
| |
| /* |
| * PIT setup: |
| * |
| * We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz), |
| * so the count value would be SPEED_PITC_COUNTS - 1. |
| * But there would be an uncertainty in the start time of 1/4 |
| * count since when we enable the PIT the count is not |
| * synchronized to the 32768 Hz oscillator. The trick here is |
| * to start the count higher and wait until the PIT count |
| * changes to the required value before starting timer 2. |
| * |
| * One count high should be enough, but occasionally the start |
| * is off by 1 or 2 counts of 32768 Hz. With the start value |
| * set two counts high it seems very reliable. |
| */ |
| |
| immr->im_sitk.sitk_pitck = KAPWR_KEY; /* PIT initialization */ |
| immr->im_sit.sit_pitc = SPEED_PITC_INIT; |
| |
| immr->im_sitk.sitk_piscrk = KAPWR_KEY; |
| immr->im_sit.sit_piscr = CFG_PISCR; |
| |
| /* |
| * Start measurement - disable interrupts, just in case |
| */ |
| msr_val = get_msr (); |
| set_msr (msr_val & ~MSR_EE); |
| |
| immr->im_sit.sit_piscr |= PISCR_PTE; |
| |
| /* spin until get exact count when we want to start */ |
| while (immr->im_sit.sit_pitr > SPEED_PITC); |
| |
| timerp->cpmt_tgcr &= ~TGCR_STP2; /* Start Timer 2 */ |
| while ((immr->im_sit.sit_piscr & PISCR_PS) == 0); |
| timerp->cpmt_tgcr |= TGCR_STP2; /* Stop Timer 2 */ |
| |
| /* re-enable external interrupts if they were on */ |
| set_msr (msr_val); |
| |
| /* Disable timer and PIT |
| */ |
| timer2_val = timerp->cpmt_tcn2; /* save before reset timer */ |
| |
| timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2); |
| immr->im_sit.sit_piscr &= ~PISCR_PTE; |
| |
| #if defined(CFG_8XX_XIN) |
| /* not using OSCM, using XIN, so scale appropriately */ |
| return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L; |
| #else |
| return ((timer2_val + 2) / 4) * 100000L; /* convert to Hz */ |
| #endif |
| } |
| |
| #endif |
| |
| #if !defined(CONFIG_8xx_CPUCLK_DEFAULT) |
| |
| /* |
| * get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ |
| * or (if it is not defined) measure_gclk() (which uses the ref clock) |
| * from above. |
| */ |
| int get_clocks (void) |
| { |
| uint immr = get_immr (0); /* Return full IMMR contents */ |
| volatile immap_t *immap = (immap_t *) (immr & 0xFFFF0000); |
| uint sccr = immap->im_clkrst.car_sccr; |
| /* |
| * If for some reason measuring the gclk frequency won't |
| * work, we return the hardwired value. |
| * (For example, the cogent CMA286-60 CPU module has no |
| * separate oscillator for PITRTCLK) |
| */ |
| #if defined(CONFIG_8xx_GCLK_FREQ) |
| gd->cpu_clk = CONFIG_8xx_GCLK_FREQ; |
| #elif defined(CONFIG_8xx_OSCLK) |
| #define PLPRCR_val(a) ((pll & PLPRCR_ ## a ## _MSK) >> PLPRCR_ ## a ## _SHIFT) |
| uint pll = immap->im_clkrst.car_plprcr; |
| uint clk; |
| |
| if ((immr & 0x0FFF) >= MPC8xx_NEW_CLK) { /* MPC866/87x/88x series */ |
| clk = ((CONFIG_8xx_OSCLK / (PLPRCR_val(PDF)+1)) * |
| (PLPRCR_val(MFI) + PLPRCR_val(MFN) / (PLPRCR_val(MFD)+1))) / |
| (1<<PLPRCR_val(S)); |
| } else { |
| clk = CONFIG_8xx_OSCLK * (PLPRCR_val(MF)+1); |
| } |
| if (pll & PLPRCR_CSRC) { /* Low frequency division factor is used */ |
| gd->cpu_clk = clk / (2 << ((sccr >> 8) & 7)); |
| } else { /* High frequency division factor is used */ |
| gd->cpu_clk = clk / (1 << ((sccr >> 5) & 7)); |
| } |
| #else |
| gd->cpu_clk = measure_gclk(); |
| #endif /* CONFIG_8xx_GCLK_FREQ */ |
| |
| if ((sccr & SCCR_EBDF11) == 0) { |
| /* No Bus Divider active */ |
| gd->bus_clk = gd->cpu_clk; |
| } else { |
| /* The MPC8xx has only one BDF: half clock speed */ |
| gd->bus_clk = gd->cpu_clk / 2; |
| } |
| |
| return (0); |
| } |
| |
| #else /* CONFIG_8xx_CPUCLK_DEFAULT defined, use dynamic clock setting */ |
| |
| static long init_pll_866 (long clk); |
| |
| /* This function sets up PLL (init_pll_866() is called) and |
| * fills gd->cpu_clk and gd->bus_clk according to the environment |
| * variable 'cpuclk' or to CONFIG_8xx_CPUCLK_DEFAULT (if 'cpuclk' |
| * contains invalid value). |
| * This functions requires an MPC866 or newer series CPU. |
| */ |
| int get_clocks_866 (void) |
| { |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| char tmp[64]; |
| long cpuclk = 0; |
| long sccr_reg; |
| |
| if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0) |
| cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000; |
| |
| if ((CFG_8xx_CPUCLK_MIN > cpuclk) || (CFG_8xx_CPUCLK_MAX < cpuclk)) |
| cpuclk = CONFIG_8xx_CPUCLK_DEFAULT; |
| |
| gd->cpu_clk = init_pll_866 (cpuclk); |
| #if defined(CFG_MEASURE_CPUCLK) |
| gd->cpu_clk = measure_gclk (); |
| #endif |
| |
| /* if cpu clock <= 66 MHz then set bus division factor to 1, |
| * otherwise set it to 2 |
| */ |
| sccr_reg = immr->im_clkrst.car_sccr; |
| sccr_reg &= ~SCCR_EBDF11; |
| #if defined(CONFIG_TQM885D) |
| if (gd->cpu_clk <= 80000000) { |
| #else |
| if (gd->cpu_clk <= 66000000) { |
| #endif |
| sccr_reg |= SCCR_EBDF00; /* bus division factor = 1 */ |
| gd->bus_clk = gd->cpu_clk; |
| } else { |
| sccr_reg |= SCCR_EBDF01; /* bus division factor = 2 */ |
| gd->bus_clk = gd->cpu_clk / 2; |
| } |
| immr->im_clkrst.car_sccr = sccr_reg; |
| |
| return (0); |
| } |
| |
| /* Adjust sdram refresh rate to actual CPU clock. |
| */ |
| int sdram_adjust_866 (void) |
| { |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| long mamr; |
| |
| mamr = immr->im_memctl.memc_mamr; |
| mamr &= ~MAMR_PTA_MSK; |
| mamr |= ((gd->cpu_clk / CFG_PTA_PER_CLK) << MAMR_PTA_SHIFT); |
| immr->im_memctl.memc_mamr = mamr; |
| |
| return (0); |
| } |
| |
| /* Configure PLL for MPC866/859/885 CPU series |
| * PLL multiplication factor is set to the value nearest to the desired clk, |
| * assuming a oscclk of 10 MHz. |
| */ |
| static long init_pll_866 (long clk) |
| { |
| extern void plprcr_write_866 (long); |
| |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| long n, plprcr; |
| char mfi, mfn, mfd, s, pdf; |
| long step_mfi, step_mfn; |
| |
| if (clk < 20000000) { |
| clk *= 2; |
| pdf = 1; |
| } else { |
| pdf = 0; |
| } |
| |
| if (clk < 40000000) { |
| s = 2; |
| step_mfi = CONFIG_8xx_OSCLK / 4; |
| mfd = 7; |
| step_mfn = CONFIG_8xx_OSCLK / 30; |
| } else if (clk < 80000000) { |
| s = 1; |
| step_mfi = CONFIG_8xx_OSCLK / 2; |
| mfd = 14; |
| step_mfn = CONFIG_8xx_OSCLK / 30; |
| } else { |
| s = 0; |
| step_mfi = CONFIG_8xx_OSCLK; |
| mfd = 29; |
| step_mfn = CONFIG_8xx_OSCLK / 30; |
| } |
| |
| /* Calculate integer part of multiplication factor |
| */ |
| n = clk / step_mfi; |
| mfi = (char)n; |
| |
| /* Calculate numerator of fractional part of multiplication factor |
| */ |
| n = clk - (n * step_mfi); |
| mfn = (char)(n / step_mfn); |
| |
| /* Calculate effective clk |
| */ |
| n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1); |
| |
| immr->im_clkrstk.cark_plprcrk = KAPWR_KEY; |
| |
| plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK |
| | PLPRCR_MFD_MSK | PLPRCR_S_MSK |
| | PLPRCR_MFI_MSK | PLPRCR_DBRMO |
| | PLPRCR_PDF_MSK)) |
| | (mfn << PLPRCR_MFN_SHIFT) |
| | (mfd << PLPRCR_MFD_SHIFT) |
| | (s << PLPRCR_S_SHIFT) |
| | (mfi << PLPRCR_MFI_SHIFT) |
| | (pdf << PLPRCR_PDF_SHIFT); |
| |
| if( (mfn > 0) && ((mfd / mfn) > 10) ) |
| plprcr |= PLPRCR_DBRMO; |
| |
| plprcr_write_866 (plprcr); /* set value using SIU4/9 workaround */ |
| immr->im_clkrstk.cark_plprcrk = 0x00000000; |
| |
| return (n); |
| } |
| |
| #endif /* CONFIG_8xx_CPUCLK_DEFAULT */ |
| |
| #if defined(CONFIG_TQM8xxL) && !defined(CONFIG_TQM866M) \ |
| && !defined(CONFIG_TQM885D) |
| /* |
| * Adjust sdram refresh rate to actual CPU clock |
| * and set timebase source according to actual CPU clock |
| */ |
| int adjust_sdram_tbs_8xx (void) |
| { |
| volatile immap_t *immr = (immap_t *) CFG_IMMR; |
| long mamr; |
| long sccr; |
| |
| mamr = immr->im_memctl.memc_mamr; |
| mamr &= ~MAMR_PTA_MSK; |
| mamr |= ((gd->cpu_clk / CFG_PTA_PER_CLK) << MAMR_PTA_SHIFT); |
| immr->im_memctl.memc_mamr = mamr; |
| |
| if (gd->cpu_clk < 67000000) { |
| sccr = immr->im_clkrst.car_sccr; |
| sccr |= SCCR_TBS; |
| immr->im_clkrst.car_sccr = sccr; |
| } |
| |
| return (0); |
| } |
| #endif /* CONFIG_TQM8xxL/M, !TQM866M, !TQM885D */ |
| |
| /* ------------------------------------------------------------------------- */ |