| /* |
| * Copyright (C) 2008 RuggedCom, Inc. |
| * Richard Retanubun <RichardRetanubun@RuggedCom.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* |
| * Problems with CONFIG_SYS_64BIT_LBA: |
| * |
| * struct disk_partition.start in include/part.h is sized as ulong. |
| * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. |
| * For now, it is cast back to ulong at assignment. |
| * |
| * This limits the maximum size of addressable storage to < 2 Terra Bytes |
| */ |
| #include <asm/unaligned.h> |
| #include <common.h> |
| #include <command.h> |
| #include <ide.h> |
| #include <malloc.h> |
| #include <part_efi.h> |
| #include <linux/ctype.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #if defined(CONFIG_CMD_IDE) || \ |
| defined(CONFIG_CMD_SATA) || \ |
| defined(CONFIG_CMD_SCSI) || \ |
| defined(CONFIG_CMD_USB) || \ |
| defined(CONFIG_MMC) || \ |
| defined(CONFIG_SYSTEMACE) |
| |
| /** |
| * efi_crc32() - EFI version of crc32 function |
| * @buf: buffer to calculate crc32 of |
| * @len - length of buf |
| * |
| * Description: Returns EFI-style CRC32 value for @buf |
| */ |
| static inline u32 efi_crc32(const void *buf, u32 len) |
| { |
| return crc32(0, buf, len); |
| } |
| |
| /* |
| * Private function prototypes |
| */ |
| |
| static int pmbr_part_valid(struct partition *part); |
| static int is_pmbr_valid(legacy_mbr * mbr); |
| static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, |
| gpt_header * pgpt_head, gpt_entry ** pgpt_pte); |
| static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, |
| gpt_header * pgpt_head); |
| static int is_pte_valid(gpt_entry * pte); |
| |
| static char *print_efiname(gpt_entry *pte) |
| { |
| static char name[PARTNAME_SZ + 1]; |
| int i; |
| for (i = 0; i < PARTNAME_SZ; i++) { |
| u8 c; |
| c = pte->partition_name[i] & 0xff; |
| c = (c && !isprint(c)) ? '.' : c; |
| name[i] = c; |
| } |
| name[PARTNAME_SZ] = 0; |
| return name; |
| } |
| |
| static void uuid_string(unsigned char *uuid, char *str) |
| { |
| static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, |
| 12, 13, 14, 15}; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| sprintf(str, "%02x", uuid[le[i]]); |
| str += 2; |
| switch (i) { |
| case 3: |
| case 5: |
| case 7: |
| case 9: |
| *str++ = '-'; |
| break; |
| } |
| } |
| } |
| |
| static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; |
| |
| static inline int is_bootable(gpt_entry *p) |
| { |
| return p->attributes.fields.legacy_bios_bootable || |
| !memcmp(&(p->partition_type_guid), &system_guid, |
| sizeof(efi_guid_t)); |
| } |
| |
| #ifdef CONFIG_EFI_PARTITION |
| /* |
| * Public Functions (include/part.h) |
| */ |
| |
| void print_part_efi(block_dev_desc_t * dev_desc) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); |
| gpt_entry *gpt_pte = NULL; |
| int i = 0; |
| char uuid[37]; |
| |
| if (!dev_desc) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return; |
| } |
| /* This function validates AND fills in the GPT header and PTE */ |
| if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid GPT ***\n", __func__); |
| return; |
| } |
| |
| debug("%s: gpt-entry at %p\n", __func__, gpt_pte); |
| |
| printf("Part\tStart LBA\tEnd LBA\t\tName\n"); |
| printf("\tAttributes\n"); |
| printf("\tType UUID\n"); |
| printf("\tPartition UUID\n"); |
| |
| for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { |
| /* Stop at the first non valid PTE */ |
| if (!is_pte_valid(&gpt_pte[i])) |
| break; |
| |
| printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), |
| le64_to_cpu(gpt_pte[i].starting_lba), |
| le64_to_cpu(gpt_pte[i].ending_lba), |
| print_efiname(&gpt_pte[i])); |
| printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); |
| uuid_string(gpt_pte[i].partition_type_guid.b, uuid); |
| printf("\ttype:\t%s\n", uuid); |
| uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); |
| printf("\tuuid:\t%s\n", uuid); |
| } |
| |
| /* Remember to free pte */ |
| free(gpt_pte); |
| return; |
| } |
| |
| int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, |
| disk_partition_t * info) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); |
| gpt_entry *gpt_pte = NULL; |
| |
| /* "part" argument must be at least 1 */ |
| if (!dev_desc || !info || part < 1) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return -1; |
| } |
| |
| /* This function validates AND fills in the GPT header and PTE */ |
| if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid GPT ***\n", __func__); |
| return -1; |
| } |
| |
| if (part > le32_to_cpu(gpt_head->num_partition_entries) || |
| !is_pte_valid(&gpt_pte[part - 1])) { |
| printf("%s: *** ERROR: Invalid partition number %d ***\n", |
| __func__, part); |
| return -1; |
| } |
| |
| /* The ulong casting limits the maximum disk size to 2 TB */ |
| info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); |
| /* The ending LBA is inclusive, to calculate size, add 1 to it */ |
| info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) |
| - info->start; |
| info->blksz = dev_desc->blksz; |
| |
| sprintf((char *)info->name, "%s", |
| print_efiname(&gpt_pte[part - 1])); |
| sprintf((char *)info->type, "U-Boot"); |
| info->bootable = is_bootable(&gpt_pte[part - 1]); |
| #ifdef CONFIG_PARTITION_UUIDS |
| uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); |
| #endif |
| |
| debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, |
| info->start, info->size, info->name); |
| |
| /* Remember to free pte */ |
| free(gpt_pte); |
| return 0; |
| } |
| |
| int test_part_efi(block_dev_desc_t * dev_desc) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); |
| |
| /* Read legacy MBR from block 0 and validate it */ |
| if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) |
| || (is_pmbr_valid(legacymbr) != 1)) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * set_protective_mbr(): Set the EFI protective MBR |
| * @param dev_desc - block device descriptor |
| * |
| * @return - zero on success, otherwise error |
| */ |
| static int set_protective_mbr(block_dev_desc_t *dev_desc) |
| { |
| legacy_mbr *p_mbr; |
| |
| /* Setup the Protective MBR */ |
| p_mbr = (legacy_mbr *)calloc(1, sizeof(legacy_mbr)); |
| if (p_mbr == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| return -1; |
| } |
| /* Append signature */ |
| p_mbr->signature = MSDOS_MBR_SIGNATURE; |
| p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; |
| put_unaligned_le32(1, &p_mbr->partition_record[0].start_sect); |
| put_unaligned_le32(dev_desc->lba, &p_mbr->partition_record[0].nr_sects); |
| |
| /* Write MBR sector to the MMC device */ |
| if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { |
| printf("** Can't write to device %d **\n", |
| dev_desc->dev); |
| free(p_mbr); |
| return -1; |
| } |
| |
| free(p_mbr); |
| return 0; |
| } |
| |
| /** |
| * string_uuid(); Convert UUID stored as string to bytes |
| * |
| * @param uuid - UUID represented as string |
| * @param dst - GUID buffer |
| * |
| * @return return 0 on successful conversion |
| */ |
| static int string_uuid(char *uuid, u8 *dst) |
| { |
| efi_guid_t guid; |
| u16 b, c, d; |
| u64 e; |
| u32 a; |
| u8 *p; |
| u8 i; |
| |
| const u8 uuid_str_len = 36; |
| |
| /* The UUID is written in text: */ |
| /* 1 9 14 19 24 */ |
| /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ |
| |
| debug("%s: uuid: %s\n", __func__, uuid); |
| |
| if (strlen(uuid) != uuid_str_len) |
| return -1; |
| |
| for (i = 0; i < uuid_str_len; i++) { |
| if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { |
| if (uuid[i] != '-') |
| return -1; |
| } else { |
| if (!isxdigit(uuid[i])) |
| return -1; |
| } |
| } |
| |
| a = (u32)simple_strtoul(uuid, NULL, 16); |
| b = (u16)simple_strtoul(uuid + 9, NULL, 16); |
| c = (u16)simple_strtoul(uuid + 14, NULL, 16); |
| d = (u16)simple_strtoul(uuid + 19, NULL, 16); |
| e = (u64)simple_strtoull(uuid + 24, NULL, 16); |
| |
| p = (u8 *) &e; |
| guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, |
| *(p + 5), *(p + 4), *(p + 3), |
| *(p + 2), *(p + 1) , *p); |
| |
| memcpy(dst, guid.b, sizeof(efi_guid_t)); |
| |
| return 0; |
| } |
| |
| int write_gpt_table(block_dev_desc_t *dev_desc, |
| gpt_header *gpt_h, gpt_entry *gpt_e) |
| { |
| const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries |
| * sizeof(gpt_entry)), dev_desc); |
| u32 calc_crc32; |
| u64 val; |
| |
| debug("max lba: %x\n", (u32) dev_desc->lba); |
| /* Setup the Protective MBR */ |
| if (set_protective_mbr(dev_desc) < 0) |
| goto err; |
| |
| /* Generate CRC for the Primary GPT Header */ |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_e, |
| le32_to_cpu(gpt_h->num_partition_entries) * |
| le32_to_cpu(gpt_h->sizeof_partition_entry)); |
| gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); |
| |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_h, |
| le32_to_cpu(gpt_h->header_size)); |
| gpt_h->header_crc32 = cpu_to_le32(calc_crc32); |
| |
| /* Write the First GPT to the block right after the Legacy MBR */ |
| if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) |
| goto err; |
| |
| if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) |
| != pte_blk_cnt) |
| goto err; |
| |
| /* recalculate the values for the Second GPT Header */ |
| val = le64_to_cpu(gpt_h->my_lba); |
| gpt_h->my_lba = gpt_h->alternate_lba; |
| gpt_h->alternate_lba = cpu_to_le64(val); |
| gpt_h->header_crc32 = 0; |
| |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_h, |
| le32_to_cpu(gpt_h->header_size)); |
| gpt_h->header_crc32 = cpu_to_le32(calc_crc32); |
| |
| if (dev_desc->block_write(dev_desc->dev, |
| le32_to_cpu(gpt_h->last_usable_lba + 1), |
| pte_blk_cnt, gpt_e) != pte_blk_cnt) |
| goto err; |
| |
| if (dev_desc->block_write(dev_desc->dev, |
| le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) |
| goto err; |
| |
| debug("GPT successfully written to block device!\n"); |
| return 0; |
| |
| err: |
| printf("** Can't write to device %d **\n", dev_desc->dev); |
| return -1; |
| } |
| |
| int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, |
| disk_partition_t *partitions, int parts) |
| { |
| u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); |
| ulong start; |
| int i, k; |
| size_t name_len; |
| #ifdef CONFIG_PARTITION_UUIDS |
| char *str_uuid; |
| #endif |
| printf("first_usable_lba=0x%08x\n", offset); |
| printf("%2s: %-10s %-10s %-10s %-16s %-16s %s\n", |
| "#", "start", "size", "blksz", "name", "type", "uuid"); |
| for (i = 0; i < parts; i++) { |
| disk_partition_t* p = &partitions[i]; |
| printf( |
| #ifdef CONFIG_SYS_64BIT_LBA |
| "%2d: 0x%08llx 0x%08llx 0x%08lx %-16s %-16s %s\n", |
| #else |
| "%2d: 0x%08lx 0x%08lx 0x%08lx %-16s %-16s %s\n", |
| #endif |
| i, p->start, p->size, p->blksz, p->name, p->type, p->uuid); |
| } |
| |
| for (i = 0; i < parts; i++) { |
| /* partition starting lba */ |
| start = partitions[i].start; |
| if (start && (start < offset)) { |
| printf("Partition overlap: i=%d start=0x%08lx offset=0x%08x\n", |
| i, start, offset); |
| return -1; |
| } |
| if (start) { |
| gpt_e[i].starting_lba = cpu_to_le64(start); |
| offset = start + partitions[i].size; |
| } else { |
| gpt_e[i].starting_lba = cpu_to_le64(offset); |
| offset += partitions[i].size; |
| } |
| if (offset >= gpt_h->last_usable_lba) { |
| printf("Partitions layout exceds disk size\n"); |
| return -1; |
| } |
| /* partition ending lba */ |
| if ((i == parts - 1) && (partitions[i].size == 0)) |
| /* extend the last partition to maximuim */ |
| gpt_e[i].ending_lba = gpt_h->last_usable_lba; |
| else |
| gpt_e[i].ending_lba = cpu_to_le64(offset - 1); |
| |
| /* partition type GUID */ |
| static efi_guid_t basic = PARTITION_BASIC_DATA_GUID; |
| memcpy(gpt_e[i].partition_type_guid.b, |
| &basic, 16); |
| |
| #ifdef CONFIG_PARTITION_UUIDS |
| str_uuid = partitions[i].uuid; |
| if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { |
| printf("Partition no. %d: invalid guid: %s\n", |
| i, str_uuid); |
| return -1; |
| } |
| #endif |
| |
| /* partition attributes */ |
| memset(&gpt_e[i].attributes, 0, |
| sizeof(gpt_entry_attributes)); |
| |
| /* partition name */ |
| name_len = MIN(ARRAY_SIZE(gpt_e[i].partition_name), |
| ARRAY_SIZE(partitions[i].name)); |
| for (k = 0; k < name_len; k++) |
| gpt_e[i].partition_name[k] = |
| (efi_char16_t)(partitions[i].name[k]); |
| |
| debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", |
| __func__, partitions[i].name, i, |
| offset, i, partitions[i].size); |
| } |
| |
| return 0; |
| } |
| |
| int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, |
| char *str_guid, int parts_count) |
| { |
| gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); |
| gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); |
| gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); |
| gpt_h->my_lba = cpu_to_le64(1); |
| gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); |
| gpt_h->first_usable_lba = cpu_to_le64(34); |
| gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); |
| gpt_h->partition_entry_lba = cpu_to_le64(2); |
| gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); |
| gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); |
| gpt_h->header_crc32 = 0; |
| gpt_h->partition_entry_array_crc32 = 0; |
| |
| if (string_uuid(str_guid, gpt_h->disk_guid.b)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, |
| disk_partition_t *partitions, int parts_count) |
| { |
| int ret; |
| |
| gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), |
| dev_desc)); |
| gpt_entry *gpt_e; |
| |
| if (gpt_h == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| return -1; |
| } |
| |
| gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS |
| * sizeof(gpt_entry), |
| dev_desc)); |
| if (gpt_e == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| free(gpt_h); |
| return -1; |
| } |
| |
| /* Generate Primary GPT header (LBA1) */ |
| ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); |
| if (ret) |
| goto err; |
| |
| /* Generate partition entries */ |
| ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); |
| if (ret) |
| goto err; |
| |
| /* Write GPT partition table */ |
| ret = write_gpt_table(dev_desc, gpt_h, gpt_e); |
| |
| err: |
| free(gpt_e); |
| free(gpt_h); |
| return ret; |
| } |
| #endif |
| |
| /* |
| * Private functions |
| */ |
| /* |
| * pmbr_part_valid(): Check for EFI partition signature |
| * |
| * Returns: 1 if EFI GPT partition type is found. |
| */ |
| static int pmbr_part_valid(struct partition *part) |
| { |
| if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && |
| get_unaligned_le32(&part->start_sect) == 1UL) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * is_pmbr_valid(): test Protective MBR for validity |
| * |
| * Returns: 1 if PMBR is valid, 0 otherwise. |
| * Validity depends on two things: |
| * 1) MSDOS signature is in the last two bytes of the MBR |
| * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() |
| */ |
| static int is_pmbr_valid(legacy_mbr * mbr) |
| { |
| int i = 0; |
| |
| if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) |
| return 0; |
| |
| for (i = 0; i < 4; i++) { |
| if (pmbr_part_valid(&mbr->partition_record[i])) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * is_gpt_valid() - tests one GPT header and PTEs for validity |
| * |
| * lba is the logical block address of the GPT header to test |
| * gpt is a GPT header ptr, filled on return. |
| * ptes is a PTEs ptr, filled on return. |
| * |
| * Description: returns 1 if valid, 0 on error. |
| * If valid, returns pointers to PTEs. |
| */ |
| static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, |
| gpt_header * pgpt_head, gpt_entry ** pgpt_pte) |
| { |
| u32 crc32_backup = 0; |
| u32 calc_crc32; |
| unsigned long long lastlba; |
| |
| if (!dev_desc || !pgpt_head) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return 0; |
| } |
| |
| /* Read GPT Header from device */ |
| if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { |
| printf("*** ERROR: Can't read GPT header ***\n"); |
| return 0; |
| } |
| |
| /* Check the GPT header signature */ |
| if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { |
| printf("GUID Partition Table Header signature is wrong:" |
| "0x%llX != 0x%llX\n", |
| le64_to_cpu(pgpt_head->signature), |
| GPT_HEADER_SIGNATURE); |
| return 0; |
| } |
| |
| /* Check the GUID Partition Table CRC */ |
| memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); |
| memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); |
| |
| calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, |
| le32_to_cpu(pgpt_head->header_size)); |
| |
| memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); |
| |
| if (calc_crc32 != le32_to_cpu(crc32_backup)) { |
| printf("GUID Partition Table Header CRC is wrong:" |
| "0x%x != 0x%x\n", |
| le32_to_cpu(crc32_backup), calc_crc32); |
| return 0; |
| } |
| |
| /* Check that the my_lba entry points to the LBA that contains the GPT */ |
| if (le64_to_cpu(pgpt_head->my_lba) != lba) { |
| printf("GPT: my_lba incorrect: %llX != %llX\n", |
| le64_to_cpu(pgpt_head->my_lba), |
| lba); |
| return 0; |
| } |
| |
| /* Check the first_usable_lba and last_usable_lba are within the disk. */ |
| lastlba = (unsigned long long)dev_desc->lba; |
| if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { |
| printf("GPT: first_usable_lba incorrect: %llX > %llX\n", |
| le64_to_cpu(pgpt_head->first_usable_lba), lastlba); |
| return 0; |
| } |
| if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { |
| printf("GPT: last_usable_lba incorrect: %llX > %llX\n", |
| (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); |
| return 0; |
| } |
| |
| debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", |
| le64_to_cpu(pgpt_head->first_usable_lba), |
| le64_to_cpu(pgpt_head->last_usable_lba), lastlba); |
| |
| /* Read and allocate Partition Table Entries */ |
| *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); |
| if (*pgpt_pte == NULL) { |
| printf("GPT: Failed to allocate memory for PTE\n"); |
| return 0; |
| } |
| |
| /* Check the GUID Partition Table Entry Array CRC */ |
| calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, |
| le32_to_cpu(pgpt_head->num_partition_entries) * |
| le32_to_cpu(pgpt_head->sizeof_partition_entry)); |
| |
| if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { |
| printf("GUID Partition Table Entry Array CRC is wrong:" |
| "0x%x != 0x%x\n", |
| le32_to_cpu(pgpt_head->partition_entry_array_crc32), |
| calc_crc32); |
| |
| free(*pgpt_pte); |
| return 0; |
| } |
| |
| /* We're done, all's well */ |
| return 1; |
| } |
| |
| /** |
| * alloc_read_gpt_entries(): reads partition entries from disk |
| * @dev_desc |
| * @gpt - GPT header |
| * |
| * Description: Returns ptes on success, NULL on error. |
| * Allocates space for PTEs based on information found in @gpt. |
| * Notes: remember to free pte when you're done! |
| */ |
| static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, |
| gpt_header * pgpt_head) |
| { |
| size_t count = 0, blk_cnt; |
| gpt_entry *pte = NULL; |
| |
| if (!dev_desc || !pgpt_head) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return NULL; |
| } |
| |
| count = le32_to_cpu(pgpt_head->num_partition_entries) * |
| le32_to_cpu(pgpt_head->sizeof_partition_entry); |
| |
| debug("%s: count = %u * %u = %zu\n", __func__, |
| (u32) le32_to_cpu(pgpt_head->num_partition_entries), |
| (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); |
| |
| /* Allocate memory for PTE, remember to FREE */ |
| if (count != 0) { |
| pte = memalign(ARCH_DMA_MINALIGN, |
| PAD_TO_BLOCKSIZE(count, dev_desc)); |
| } |
| |
| if (count == 0 || pte == NULL) { |
| printf("%s: ERROR: Can't allocate 0x%zX " |
| "bytes for GPT Entries\n", |
| __func__, count); |
| return NULL; |
| } |
| |
| /* Read GPT Entries from device */ |
| blk_cnt = BLOCK_CNT(count, dev_desc); |
| if (dev_desc->block_read (dev_desc->dev, |
| le64_to_cpu(pgpt_head->partition_entry_lba), |
| (lbaint_t) (blk_cnt), pte) |
| != blk_cnt) { |
| |
| printf("*** ERROR: Can't read GPT Entries ***\n"); |
| free(pte); |
| return NULL; |
| } |
| return pte; |
| } |
| |
| /** |
| * is_pte_valid(): validates a single Partition Table Entry |
| * @gpt_entry - Pointer to a single Partition Table Entry |
| * |
| * Description: returns 1 if valid, 0 on error. |
| */ |
| static int is_pte_valid(gpt_entry * pte) |
| { |
| efi_guid_t unused_guid; |
| |
| if (!pte) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return 0; |
| } |
| |
| /* Only one validation for now: |
| * The GUID Partition Type != Unused Entry (ALL-ZERO) |
| */ |
| memset(unused_guid.b, 0, sizeof(unused_guid.b)); |
| |
| if (memcmp(pte->partition_type_guid.b, unused_guid.b, |
| sizeof(unused_guid.b)) == 0) { |
| |
| debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, |
| (unsigned int)(uintptr_t)pte); |
| |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| #endif |