blob: 3abf40ff565d42134e4e679ae47bd7cd75f5b61d [file] [log] [blame]
/******************************************************************************
*
* Name: skxmac2.c
* Project: Gigabit Ethernet Adapters, Common Modules
* Version: $Revision: 2.56 $
* Date: $Date: 2006/04/27 07:50:32 $
* Purpose: Contains functions to initialize the MACs and PHYs
*
******************************************************************************/
/******************************************************************************
*
* LICENSE:
* (C)Copyright 1998-2002 SysKonnect.
* (C)Copyright 2002-2006 Marvell.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* The information in this file is provided "AS IS" without warranty.
* /LICENSE
*
******************************************************************************/
#include <config.h>
#ifdef CONFIG_SK98
#include "h/skdrv1st.h"
#include "h/skdrv2nd.h"
/* typedefs *******************************************************************/
/* BCOM PHY magic pattern list */
typedef struct s_PhyHack {
int PhyReg; /* PHY register */
SK_U16 PhyVal; /* Value to write */
} BCOM_HACK;
/* local variables ************************************************************/
#if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM))))
static const char SysKonnectFileId[] =
"@(#) $Id: skxmac2.c,v 2.56 2006/04/27 07:50:32 malthoff Exp $ (C) Marvell.";
#endif
#ifdef GENESIS
BCOM_HACK BcomRegA1Hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 }
};
BCOM_HACK BcomRegC0Hack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, { 0x17, 0x0013 },
{ 0x15, 0x0A04 }, { 0x18, 0x0420 },
{ 0, 0 }
};
#endif
/* function prototypes ********************************************************/
#ifdef GENESIS
static void SkXmInitPhyXmac(SK_AC*, SK_IOC, int, SK_BOOL);
static void SkXmInitPhyBcom(SK_AC*, SK_IOC, int, SK_BOOL);
static int SkXmAutoNegDoneXmac(SK_AC*, SK_IOC, int);
static int SkXmAutoNegDoneBcom(SK_AC*, SK_IOC, int);
#endif /* GENESIS */
#ifdef YUKON
static void SkGmInitPhyMarv(SK_AC*, SK_IOC, int, SK_BOOL);
static int SkGmAutoNegDoneMarv(SK_AC*, SK_IOC, int);
#endif /* YUKON */
#ifdef OTHER_PHY
static void SkXmInitPhyLone(SK_AC*, SK_IOC, int, SK_BOOL);
static void SkXmInitPhyNat (SK_AC*, SK_IOC, int, SK_BOOL);
static int SkXmAutoNegDoneLone(SK_AC*, SK_IOC, int);
static int SkXmAutoNegDoneNat (SK_AC*, SK_IOC, int);
#endif /* OTHER_PHY */
#ifdef GENESIS
/******************************************************************************
*
* SkXmPhyRead() - Read from XMAC PHY register
*
* Description: reads a 16-bit word from XMAC PHY or ext. PHY
*
* Returns:
* nothing
*/
int SkXmPhyRead(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 SK_FAR *pVal) /* Pointer to Value */
{
SK_U16 Mmu;
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
/* write the PHY register's address */
XM_OUT16(IoC, Port, XM_PHY_ADDR, PhyReg | pPrt->PhyAddr);
/* get the PHY register's value */
XM_IN16(IoC, Port, XM_PHY_DATA, pVal);
if (pPrt->PhyType != SK_PHY_XMAC) {
do {
XM_IN16(IoC, Port, XM_MMU_CMD, &Mmu);
/* wait until 'Ready' is set */
} while ((Mmu & XM_MMU_PHY_RDY) == 0);
/* get the PHY register's value */
XM_IN16(IoC, Port, XM_PHY_DATA, pVal);
}
return(0);
} /* SkXmPhyRead */
/******************************************************************************
*
* SkXmPhyWrite() - Write to XMAC PHY register
*
* Description: writes a 16-bit word to XMAC PHY or ext. PHY
*
* Returns:
* nothing
*/
int SkXmPhyWrite(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 Val) /* Value */
{
SK_U16 Mmu;
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PhyType != SK_PHY_XMAC) {
do {
XM_IN16(IoC, Port, XM_MMU_CMD, &Mmu);
/* wait until 'Busy' is cleared */
} while ((Mmu & XM_MMU_PHY_BUSY) != 0);
}
/* write the PHY register's address */
XM_OUT16(IoC, Port, XM_PHY_ADDR, PhyReg | pPrt->PhyAddr);
/* write the PHY register's value */
XM_OUT16(IoC, Port, XM_PHY_DATA, Val);
if (pPrt->PhyType != SK_PHY_XMAC) {
do {
XM_IN16(IoC, Port, XM_MMU_CMD, &Mmu);
/* wait until 'Busy' is cleared */
} while ((Mmu & XM_MMU_PHY_BUSY) != 0);
}
return(0);
} /* SkXmPhyWrite */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmPhyRead() - Read from GPHY register
*
* Description: reads a 16-bit word from GPHY through MDIO
*
* Returns:
* 0 o.k.
* 1 error during MDIO read
* 2 timeout
*/
int SkGmPhyRead(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 SK_FAR *pVal) /* Pointer to Value */
{
SK_U16 Word;
SK_U16 Ctrl;
SK_GEPORT *pPrt;
SK_U32 StartTime;
SK_U32 CurrTime;
SK_U32 Delta;
SK_U32 TimeOut;
int Rtv;
Rtv = 0;
*pVal = 0xffff;
pPrt = &pAC->GIni.GP[Port];
/* set PHY-Register offset and 'Read' OpCode (= 1) */
Word = (SK_U16)(GM_SMI_CT_PHY_AD(pPrt->PhyAddr) |
GM_SMI_CT_REG_AD(PhyReg) | GM_SMI_CT_OP_RD);
GM_OUT16(IoC, Port, GM_SMI_CTRL, Word);
/* additional check for MDC/MDIO activity */
GM_IN16(IoC, Port, GM_SMI_CTRL, &Ctrl);
if (Ctrl == 0xffff || (Ctrl & GM_SMI_CT_OP_RD) == 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("PHY read impossible on Port %d (Ctrl=0x%04x)\n", Port, Ctrl));
return(1);
}
Word |= GM_SMI_CT_BUSY;
SK_IN32(IoC, GMAC_TI_ST_VAL, &StartTime);
/* set timeout to 10 ms */
TimeOut = HW_MS_TO_TICKS(pAC, 10);
do { /* wait until 'Busy' is cleared and 'ReadValid' is set */
#ifdef VCPU
VCPUwaitTime(1000);
#endif /* VCPU */
SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime);
if (CurrTime >= StartTime) {
Delta = CurrTime - StartTime;
}
else {
Delta = CurrTime + ~StartTime + 1;
}
if (Delta > TimeOut) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("PHY read timeout on Port %d (Ctrl=0x%04x)\n", Port, Ctrl));
Rtv = 2;
break;
}
GM_IN16(IoC, Port, GM_SMI_CTRL, &Ctrl);
/* Error on reading SMI Control Register */
if (Ctrl == 0xffff) {
return(1);
}
} while ((Ctrl ^ Word) != (GM_SMI_CT_RD_VAL | GM_SMI_CT_BUSY));
GM_IN16(IoC, Port, GM_SMI_DATA, pVal);
/* dummy read after GM_IN16() */
SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("SkGmPhyRead Port:%d, Reg=%d, Val = 0x%04X\n",
Port, PhyReg, *pVal));
return(Rtv);
} /* SkGmPhyRead */
/******************************************************************************
*
* SkGmPhyWrite() - Write to GPHY register
*
* Description: writes a 16-bit word to GPHY through MDIO
*
* Returns:
* 0 o.k.
* 1 error during MDIO read
* 2 timeout
*/
int SkGmPhyWrite(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 Val) /* Value */
{
SK_U16 Ctrl;
SK_GEPORT *pPrt;
SK_U32 StartTime;
SK_U32 CurrTime;
SK_U32 Delta;
SK_U32 TimeOut;
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("SkGmPhyWrite Port:%d, Reg=%d, Val = 0x%04X\n",
Port, PhyReg, Val));
pPrt = &pAC->GIni.GP[Port];
/* write the PHY register's value */
GM_OUT16(IoC, Port, GM_SMI_DATA, Val);
#ifdef DEBUG
/* additional check for MDC/MDIO activity */
GM_IN16(IoC, Port, GM_SMI_DATA, &Ctrl);
if (Ctrl != Val) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("PHY write impossible on Port %d (Val=0x%04x)\n", Port, Ctrl));
return(1);
}
#endif /* DEBUG */
/* set PHY-Register offset and 'Write' OpCode (= 0) */
Ctrl = (SK_U16)(GM_SMI_CT_PHY_AD(pPrt->PhyAddr) |
GM_SMI_CT_REG_AD(PhyReg));
GM_OUT16(IoC, Port, GM_SMI_CTRL, Ctrl);
SK_IN32(IoC, GMAC_TI_ST_VAL, &StartTime);
/* set timeout to 10 ms */
TimeOut = HW_MS_TO_TICKS(pAC, 10);
do { /* wait until 'Busy' is cleared */
#ifdef VCPU
VCPUwaitTime(1000);
#endif /* VCPU */
SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime);
if (CurrTime >= StartTime) {
Delta = CurrTime - StartTime;
}
else {
Delta = CurrTime + ~StartTime + 1;
}
if (Delta > TimeOut) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("PHY write timeout on Port %d (Ctrl=0x%04x)\n", Port, Ctrl));
return(2);
}
GM_IN16(IoC, Port, GM_SMI_CTRL, &Ctrl);
/* Error on reading SMI Control Register */
if (Ctrl == 0xffff) {
return(1);
}
} while ((Ctrl & GM_SMI_CT_BUSY) != 0);
/* dummy read after GM_IN16() */
SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime);
return(0);
} /* SkGmPhyWrite */
#endif /* YUKON */
#ifdef SK_DIAG
/******************************************************************************
*
* SkGePhyRead() - Read from PHY register
*
* Description: calls a read PHY routine dep. on board type
*
* Returns:
* nothing
*/
void SkGePhyRead(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 *pVal) /* Pointer to Value */
{
pAC->GIni.GIFunc.pFnMacPhyRead(pAC, IoC, Port, PhyReg, pVal);
} /* SkGePhyRead */
/******************************************************************************
*
* SkGePhyWrite() - Write to PHY register
*
* Description: calls a write PHY routine dep. on board type
*
* Returns:
* nothing
*/
void SkGePhyWrite(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int PhyReg, /* Register Address (Offset) */
SK_U16 Val) /* Value */
{
pAC->GIni.GIFunc.pFnMacPhyWrite(pAC, IoC, Port, PhyReg, Val);
} /* SkGePhyWrite */
#endif /* SK_DIAG */
/******************************************************************************
*
* SkMacPromiscMode() - Enable / Disable Promiscuous Mode
*
* Description:
* enables / disables promiscuous mode by setting Mode Register (XMAC) or
* Receive Control Register (GMAC) dep. on board type
*
* Returns:
* nothing
*/
void SkMacPromiscMode(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL Enable) /* Enable / Disable */
{
#ifdef YUKON
SK_U16 RcReg;
#endif
#ifdef GENESIS
SK_U32 MdReg;
#endif
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
/* enable or disable promiscuous mode */
if (Enable) {
MdReg |= XM_MD_ENA_PROM;
}
else {
MdReg &= ~XM_MD_ENA_PROM;
}
/* setup Mode Register */
XM_OUT32(IoC, Port, XM_MODE, MdReg);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
GM_IN16(IoC, Port, GM_RX_CTRL, &RcReg);
/* enable or disable unicast and multicast filtering */
if (Enable) {
RcReg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
else {
RcReg |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
}
/* setup Receive Control Register */
GM_OUT16(IoC, Port, GM_RX_CTRL, RcReg);
}
#endif /* YUKON */
} /* SkMacPromiscMode*/
/******************************************************************************
*
* SkMacHashing() - Enable / Disable Hashing
*
* Description:
* enables / disables hashing by setting Mode Register (XMAC) or
* Receive Control Register (GMAC) dep. on board type
*
* Returns:
* nothing
*/
void SkMacHashing(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL Enable) /* Enable / Disable */
{
#ifdef YUKON
SK_U16 RcReg;
#endif
#ifdef GENESIS
SK_U32 MdReg;
#endif
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
/* enable or disable hashing */
if (Enable) {
MdReg |= XM_MD_ENA_HASH;
}
else {
MdReg &= ~XM_MD_ENA_HASH;
}
/* setup Mode Register */
XM_OUT32(IoC, Port, XM_MODE, MdReg);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
GM_IN16(IoC, Port, GM_RX_CTRL, &RcReg);
/* enable or disable multicast filtering */
if (Enable) {
RcReg |= GM_RXCR_MCF_ENA;
}
else {
RcReg &= ~GM_RXCR_MCF_ENA;
}
/* setup Receive Control Register */
GM_OUT16(IoC, Port, GM_RX_CTRL, RcReg);
}
#endif /* YUKON */
} /* SkMacHashing*/
#ifdef SK_DIAG
/******************************************************************************
*
* SkXmSetRxCmd() - Modify the value of the XMAC's Rx Command Register
*
* Description:
* The features
* - FCS stripping, SK_STRIP_FCS_ON/OFF
* - pad byte stripping, SK_STRIP_PAD_ON/OFF
* - don't set XMR_FS_ERR in status SK_LENERR_OK_ON/OFF
* for inrange length error frames
* - don't set XMR_FS_ERR in status SK_BIG_PK_OK_ON/OFF
* for frames > 1514 bytes
* - enable Rx of own packets SK_SELF_RX_ON/OFF
*
* for incoming packets may be enabled/disabled by this function.
* Additional modes may be added later.
* Multiple modes can be enabled/disabled at the same time.
* The new configuration is written to the Rx Command register immediately.
*
* Returns:
* nothing
*/
static void SkXmSetRxCmd(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Mode) /* Mode is SK_STRIP_FCS_ON/OFF, SK_STRIP_PAD_ON/OFF,
SK_LENERR_OK_ON/OFF, or SK_BIG_PK_OK_ON/OFF */
{
SK_U16 OldRxCmd;
SK_U16 RxCmd;
XM_IN16(IoC, Port, XM_RX_CMD, &OldRxCmd);
RxCmd = OldRxCmd;
switch (Mode & (SK_STRIP_FCS_ON | SK_STRIP_FCS_OFF)) {
case SK_STRIP_FCS_ON:
RxCmd |= XM_RX_STRIP_FCS;
break;
case SK_STRIP_FCS_OFF:
RxCmd &= ~XM_RX_STRIP_FCS;
break;
}
switch (Mode & (SK_STRIP_PAD_ON | SK_STRIP_PAD_OFF)) {
case SK_STRIP_PAD_ON:
RxCmd |= XM_RX_STRIP_PAD;
break;
case SK_STRIP_PAD_OFF:
RxCmd &= ~XM_RX_STRIP_PAD;
break;
}
switch (Mode & (SK_LENERR_OK_ON | SK_LENERR_OK_OFF)) {
case SK_LENERR_OK_ON:
RxCmd |= XM_RX_LENERR_OK;
break;
case SK_LENERR_OK_OFF:
RxCmd &= ~XM_RX_LENERR_OK;
break;
}
switch (Mode & (SK_BIG_PK_OK_ON | SK_BIG_PK_OK_OFF)) {
case SK_BIG_PK_OK_ON:
RxCmd |= XM_RX_BIG_PK_OK;
break;
case SK_BIG_PK_OK_OFF:
RxCmd &= ~XM_RX_BIG_PK_OK;
break;
}
switch (Mode & (SK_SELF_RX_ON | SK_SELF_RX_OFF)) {
case SK_SELF_RX_ON:
RxCmd |= XM_RX_SELF_RX;
break;
case SK_SELF_RX_OFF:
RxCmd &= ~XM_RX_SELF_RX;
break;
}
/* Write the new mode to the Rx command register if required */
if (OldRxCmd != RxCmd) {
XM_OUT16(IoC, Port, XM_RX_CMD, RxCmd);
}
} /* SkXmSetRxCmd */
/******************************************************************************
*
* SkGmSetRxCmd() - Modify the value of the GMAC's Rx Control Register
*
* Description:
* The features
* - FCS (CRC) stripping, SK_STRIP_FCS_ON/OFF
* - don't set GMR_FS_LONG_ERR SK_BIG_PK_OK_ON/OFF
* for frames > 1514 bytes
* - enable Rx of own packets SK_SELF_RX_ON/OFF
*
* for incoming packets may be enabled/disabled by this function.
* Additional modes may be added later.
* Multiple modes can be enabled/disabled at the same time.
* The new configuration is written to the Rx Command register immediately.
*
* Returns:
* nothing
*/
static void SkGmSetRxCmd(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Mode) /* Mode is SK_STRIP_FCS_ON/OFF, SK_STRIP_PAD_ON/OFF,
SK_LENERR_OK_ON/OFF, or SK_BIG_PK_OK_ON/OFF */
{
SK_U16 RxCmd;
if ((Mode & (SK_STRIP_FCS_ON | SK_STRIP_FCS_OFF)) != 0) {
GM_IN16(IoC, Port, GM_RX_CTRL, &RxCmd);
if ((Mode & SK_STRIP_FCS_ON) != 0) {
RxCmd |= GM_RXCR_CRC_DIS;
}
else {
RxCmd &= ~GM_RXCR_CRC_DIS;
}
/* Write the new mode to the Rx Control register */
GM_OUT16(IoC, Port, GM_RX_CTRL, RxCmd);
}
if ((Mode & (SK_BIG_PK_OK_ON | SK_BIG_PK_OK_OFF)) != 0) {
GM_IN16(IoC, Port, GM_SERIAL_MODE, &RxCmd);
if ((Mode & SK_BIG_PK_OK_ON) != 0) {
RxCmd |= GM_SMOD_JUMBO_ENA;
}
else {
RxCmd &= ~GM_SMOD_JUMBO_ENA;
}
/* Write the new mode to the Serial Mode register */
GM_OUT16(IoC, Port, GM_SERIAL_MODE, RxCmd);
}
} /* SkGmSetRxCmd */
/******************************************************************************
*
* SkMacSetRxCmd() - Modify the value of the MAC's Rx Control Register
*
* Description: modifies the MAC's Rx Control reg. dep. on board type
*
* Returns:
* nothing
*/
void SkMacSetRxCmd(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Mode) /* Rx Mode */
{
if (pAC->GIni.GIGenesis) {
SkXmSetRxCmd(pAC, IoC, Port, Mode);
}
else {
SkGmSetRxCmd(pAC, IoC, Port, Mode);
}
} /* SkMacSetRxCmd */
/******************************************************************************
*
* SkMacCrcGener() - Enable / Disable CRC Generation
*
* Description: enables / disables CRC generation dep. on board type
*
* Returns:
* nothing
*/
void SkMacCrcGener(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL Enable) /* Enable / Disable */
{
SK_U16 Word;
if (pAC->GIni.GIGenesis) {
XM_IN16(IoC, Port, XM_TX_CMD, &Word);
if (Enable) {
Word &= ~XM_TX_NO_CRC;
}
else {
Word |= XM_TX_NO_CRC;
}
/* setup Tx Command Register */
XM_OUT16(IoC, Port, XM_TX_CMD, Word);
}
else {
GM_IN16(IoC, Port, GM_TX_CTRL, &Word);
if (Enable) {
Word &= ~GM_TXCR_CRC_DIS;
}
else {
Word |= GM_TXCR_CRC_DIS;
}
/* setup Tx Control Register */
GM_OUT16(IoC, Port, GM_TX_CTRL, Word);
}
} /* SkMacCrcGener*/
#endif /* SK_DIAG */
#ifdef GENESIS
/******************************************************************************
*
* SkXmClrExactAddr() - Clear Exact Match Address Registers
*
* Description:
* All Exact Match Address registers of the XMAC 'Port' will be
* cleared starting with 'StartNum' up to (and including) the
* Exact Match address number of 'StopNum'.
*
* Returns:
* nothing
*/
void SkXmClrExactAddr(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int StartNum, /* Begin with this Address Register Index (0..15) */
int StopNum) /* Stop after finished with this Register Idx (0..15) */
{
int i;
SK_U16 ZeroAddr[3] = {0, 0, 0};
if ((unsigned)StartNum > 15 || (unsigned)StopNum > 15 ||
StartNum > StopNum) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E001, SKERR_HWI_E001MSG);
return;
}
for (i = StartNum; i <= StopNum; i++) {
XM_OUTADDR(IoC, Port, XM_EXM(i), ZeroAddr);
}
} /* SkXmClrExactAddr */
#endif /* GENESIS */
/******************************************************************************
*
* SkMacFlushTxFifo() - Flush the MAC's transmit FIFO
*
* Description:
* Flush the transmit FIFO of the MAC specified by the index 'Port'
*
* Returns:
* nothing
*/
void SkMacFlushTxFifo(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
SK_U32 MdReg;
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
XM_OUT32(IoC, Port, XM_MODE, MdReg | XM_MD_FTF);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* no way to flush the FIFO we have to issue a reset */
/* TBD */
}
#endif /* YUKON */
} /* SkMacFlushTxFifo */
/******************************************************************************
*
* SkMacFlushRxFifo() - Flush the MAC's receive FIFO
*
* Description:
* Flush the receive FIFO of the MAC specified by the index 'Port'
*
* Returns:
* nothing
*/
void SkMacFlushRxFifo(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
SK_U32 MdReg;
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
XM_OUT32(IoC, Port, XM_MODE, MdReg | XM_MD_FRF);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* no way to flush the FIFO we have to issue a reset */
/* TBD */
}
#endif /* YUKON */
} /* SkMacFlushRxFifo */
#ifdef GENESIS
/******************************************************************************
*
* SkXmSoftRst() - Do a XMAC software reset
*
* Description:
* The PHY registers should not be destroyed during this
* kind of software reset. Therefore the XMAC Software Reset
* (XM_GP_RES_MAC bit in XM_GP_PORT) must not be used!
*
* The software reset is done by
* - disabling the Rx and Tx state machine,
* - resetting the statistics module,
* - clear all other significant XMAC Mode,
* Command, and Control Registers
* - clearing the Hash Register and the
* Exact Match Address registers, and
* - flushing the XMAC's Rx and Tx FIFOs.
*
* Note:
* Another requirement when stopping the XMAC is to
* avoid sending corrupted frames on the network.
* Disabling the Tx state machine will NOT interrupt
* the currently transmitted frame. But we must take care
* that the Tx FIFO is cleared AFTER the current frame
* is complete sent to the network.
*
* It takes about 12ns to send a frame with 1538 bytes.
* One PCI clock goes at least 15ns (66MHz). Therefore
* after reading XM_GP_PORT back, we are sure that the
* transmitter is disabled AND idle. And this means
* we may flush the transmit FIFO now.
*
* Returns:
* nothing
*/
static void SkXmSoftRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U16 ZeroAddr[4] = {0, 0, 0, 0};
/* reset the statistics module */
XM_OUT32(IoC, Port, XM_GP_PORT, XM_GP_RES_STAT);
/* disable all XMAC IRQs */
XM_OUT16(IoC, Port, XM_IMSK, 0xffff);
XM_OUT32(IoC, Port, XM_MODE, 0); /* clear Mode Reg */
XM_OUT16(IoC, Port, XM_TX_CMD, 0); /* reset TX CMD Reg */
XM_OUT16(IoC, Port, XM_RX_CMD, 0); /* reset RX CMD Reg */
/* disable all PHY IRQs */
switch (pAC->GIni.GP[Port].PhyType) {
case SK_PHY_BCOM:
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_INT_MASK, 0xffff);
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_INT_ENAB, 0);
break;
case SK_PHY_NAT:
/* todo: National
SkXmPhyWrite(pAC, IoC, Port, PHY_NAT_INT_MASK, 0xffff); */
break;
#endif /* OTHER_PHY */
}
/* clear the Hash Register */
XM_OUTHASH(IoC, Port, XM_HSM, ZeroAddr);
/* clear the Exact Match Address registers */
SkXmClrExactAddr(pAC, IoC, Port, 0, 15);
/* clear the Source Check Address registers */
XM_OUTHASH(IoC, Port, XM_SRC_CHK, ZeroAddr);
} /* SkXmSoftRst */
/******************************************************************************
*
* SkXmHardRst() - Do a XMAC hardware reset
*
* Description:
* The XMAC of the specified 'Port' and all connected devices
* (PHY and SERDES) will receive a reset signal on its *Reset pins.
* External PHYs must be reset by clearing a bit in the GPIO register
* (Timing requirements: Broadcom: 400ns, Level One: none, National: 80ns).
*
* ATTENTION:
* It is absolutely necessary to reset the SW_RST Bit first
* before calling this function.
*
* Returns:
* nothing
*/
static void SkXmHardRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U32 Reg;
int i;
int TOut;
SK_U16 Word;
for (i = 0; i < 4; i++) {
/* TX_MFF_CTRL1 has 32 bits, but only the lowest 16 bits are used */
SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
TOut = 0;
do {
if (TOut++ > 10000) {
/*
* Adapter seems to be in RESET state.
* Registers cannot be written.
*/
return;
}
SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
SK_IN16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), &Word);
} while ((Word & MFF_SET_MAC_RST) == 0);
}
/* For external PHYs there must be special handling */
if (pAC->GIni.GP[Port].PhyType != SK_PHY_XMAC) {
SK_IN32(IoC, B2_GP_IO, &Reg);
if (Port == 0) {
Reg |= GP_DIR_0; /* set to output */
Reg &= ~GP_IO_0; /* set PHY reset (active low) */
}
else {
Reg |= GP_DIR_2; /* set to output */
Reg &= ~GP_IO_2; /* set PHY reset (active low) */
}
/* reset external PHY */
SK_OUT32(IoC, B2_GP_IO, Reg);
/* short delay */
SK_IN32(IoC, B2_GP_IO, &Reg);
}
} /* SkXmHardRst */
/******************************************************************************
*
* SkXmClearRst() - Release the PHY & XMAC reset
*
* Description:
*
* Returns:
* nothing
*/
static void SkXmClearRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U32 DWord;
/* clear HW reset */
SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
if (pAC->GIni.GP[Port].PhyType != SK_PHY_XMAC) {
SK_IN32(IoC, B2_GP_IO, &DWord);
if (Port == 0) {
DWord |= (GP_DIR_0 | GP_IO_0); /* set to output */
}
else {
DWord |= (GP_DIR_2 | GP_IO_2); /* set to output */
}
/* Clear PHY reset */
SK_OUT32(IoC, B2_GP_IO, DWord);
/* enable GMII interface */
XM_OUT16(IoC, Port, XM_HW_CFG, XM_HW_GMII_MD);
}
} /* SkXmClearRst */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmSoftRst() - Do a GMAC software reset
*
* Description:
* The GPHY registers should not be destroyed during this
* kind of software reset.
*
* Returns:
* nothing
*/
static void SkGmSoftRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U16 EmptyHash[4] = { 0x0000, 0x0000, 0x0000, 0x0000 };
SK_U16 RxCtrl;
/* reset the statistics module */
/* disable all GMAC IRQs */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_IRQ_MSK), 0);
/* disable all PHY IRQs */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_INT_MASK, 0);
/* clear the Hash Register */
GM_OUTHASH(IoC, Port, GM_MC_ADDR_H1, EmptyHash);
/* enable Unicast and Multicast filtering */
GM_IN16(IoC, Port, GM_RX_CTRL, &RxCtrl);
GM_OUT16(IoC, Port, GM_RX_CTRL, RxCtrl | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
} /* SkGmSoftRst */
/******************************************************************************
*
* SkGmHardRst() - Do a GMAC hardware reset
*
* Description:
*
* Returns:
* nothing
*/
static void SkGmHardRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U32 DWord;
/* WA code for COMA mode */
if (pAC->GIni.GIYukonLite &&
pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3) {
SK_IN32(IoC, B2_GP_IO, &DWord);
DWord |= (GP_DIR_9 | GP_IO_9);
/* set PHY reset */
SK_OUT32(IoC, B2_GP_IO, DWord);
}
/* set GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_SET);
/* set GMAC Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_RST_SET);
} /* SkGmHardRst */
/******************************************************************************
*
* SkGmClearRst() - Release the GPHY & GMAC reset
*
* Description:
*
* Returns:
* nothing
*/
static void SkGmClearRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U32 DWord;
#ifdef SK_DIAG
SK_U16 PhyId0;
SK_U16 PhyId1;
#endif /* SK_DIAG */
#if defined(SK_DIAG) || defined(DEBUG)
SK_U16 Word;
#endif /* SK_DIAG || DEBUG */
/* WA code for COMA mode */
if (pAC->GIni.GIYukonLite &&
pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3) {
SK_IN32(IoC, B2_GP_IO, &DWord);
DWord |= GP_DIR_9; /* set to output */
DWord &= ~GP_IO_9; /* clear PHY reset (active high) */
/* clear PHY reset */
SK_OUT32(IoC, B2_GP_IO, DWord);
}
#ifdef VCPU
/* set MAC Reset before PHY reset is set */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_RST_SET);
#endif /* VCPU */
if (CHIP_ID_YUKON_2(pAC)) {
/* set GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_SET);
/* release GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_CLR);
#ifdef DEBUG
/* additional check for PEX */
SK_IN16(IoC, GPHY_CTRL, &Word);
if (pAC->GIni.GIPciBus == SK_PEX_BUS && Word != GPC_RST_CLR) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("Error on PEX-bus after GPHY reset\n"));
}
#endif /* DEBUG */
}
else {
/* set HWCFG_MODE */
DWord = GPC_INT_POL | GPC_DIS_FC | GPC_DIS_SLEEP |
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE |
(pAC->GIni.GICopperType ? GPC_HWCFG_GMII_COP :
GPC_HWCFG_GMII_FIB);
/* set GPHY Control reset */
SK_OUT32(IoC, MR_ADDR(Port, GPHY_CTRL), DWord | GPC_RST_SET);
/* release GPHY Control reset */
SK_OUT32(IoC, MR_ADDR(Port, GPHY_CTRL), DWord | GPC_RST_CLR);
}
#ifdef VCPU
/* wait for internal initialization of GPHY */
VCPUprintf(0, "Waiting until PHY %d is ready to initialize\n", Port);
VCpuWait(10000);
/* release GMAC reset */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_RST_CLR);
/* wait for stable GMAC clock */
VCpuWait(9000);
#endif /* VCPU */
/* clear GMAC Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_RST_CLR);
#ifdef SK_DIAG
if (HW_FEATURE(pAC, HWF_WA_DEV_472) && Port == MAC_2) {
/* clear GMAC 1 Control reset */
SK_OUT8(IoC, MR_ADDR(MAC_1, GMAC_CTRL), (SK_U8)GMC_RST_CLR);
do {
/* set GMAC 2 Control reset */
SK_OUT8(IoC, MR_ADDR(MAC_2, GMAC_CTRL), (SK_U8)GMC_RST_SET);
/* clear GMAC 2 Control reset */
SK_OUT8(IoC, MR_ADDR(MAC_2, GMAC_CTRL), (SK_U8)GMC_RST_CLR);
SkGmPhyRead(pAC, IoC, MAC_2, PHY_MARV_ID0, &PhyId0);
SkGmPhyRead(pAC, IoC, MAC_2, PHY_MARV_ID1, &PhyId1);
SkGmPhyRead(pAC, IoC, MAC_2, PHY_MARV_INT_MASK, &Word);
} while (Word != 0 || PhyId0 != PHY_MARV_ID0_VAL ||
PhyId1 != PHY_MARV_ID1_Y2);
}
#endif /* SK_DIAG */
#ifdef VCPU
VCpuWait(2000);
SK_IN32(IoC, MR_ADDR(Port, GPHY_CTRL), &DWord);
SK_IN32(IoC, B0_ISRC, &DWord);
#endif /* VCPU */
} /* SkGmClearRst */
#endif /* YUKON */
/******************************************************************************
*
* SkMacSoftRst() - Do a MAC software reset
*
* Description: calls a MAC software reset routine dep. on board type
*
* Returns:
* nothing
*/
void SkMacSoftRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
/* disable receiver and transmitter */
SkMacRxTxDisable(pAC, IoC, Port);
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
SkXmSoftRst(pAC, IoC, Port);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmSoftRst(pAC, IoC, Port);
}
#endif /* YUKON */
/* flush the MAC's Rx and Tx FIFOs */
SkMacFlushTxFifo(pAC, IoC, Port);
SkMacFlushRxFifo(pAC, IoC, Port);
pAC->GIni.GP[Port].PState = SK_PRT_STOP;
} /* SkMacSoftRst */
/******************************************************************************
*
* SkMacHardRst() - Do a MAC hardware reset
*
* Description: calls a MAC hardware reset routine dep. on board type
*
* Returns:
* nothing
*/
void SkMacHardRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
SkXmHardRst(pAC, IoC, Port);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmHardRst(pAC, IoC, Port);
}
#endif /* YUKON */
pAC->GIni.GP[Port].PHWLinkUp = SK_FALSE;
pAC->GIni.GP[Port].PState = SK_PRT_RESET;
} /* SkMacHardRst */
#ifndef SK_SLIM
/******************************************************************************
*
* SkMacClearRst() - Clear the MAC reset
*
* Description: calls a clear MAC reset routine dep. on board type
*
* Returns:
* nothing
*/
void SkMacClearRst(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
SkXmClearRst(pAC, IoC, Port);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmClearRst(pAC, IoC, Port);
}
#endif /* YUKON */
} /* SkMacClearRst */
#endif /* !SK_SLIM */
#ifdef GENESIS
/******************************************************************************
*
* SkXmInitMac() - Initialize the XMAC II
*
* Description:
* Initialize the XMAC of the specified port.
* The XMAC must be reset or stopped before calling this function.
*
* Note:
* The XMAC's Rx and Tx state machine is still disabled when returning.
*
* Returns:
* nothing
*/
void SkXmInitMac(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
int i;
SK_U16 SWord;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PState == SK_PRT_STOP) {
/* Verify that the reset bit is cleared */
SK_IN16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), &SWord);
if ((SWord & MFF_SET_MAC_RST) != 0) {
/* PState does not match HW state */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT,
("SkXmInitMac: PState does not match HW state"));
/* Correct it */
pPrt->PState = SK_PRT_RESET;
}
}
if (pPrt->PState == SK_PRT_RESET) {
SkXmClearRst(pAC, IoC, Port);
if (pPrt->PhyType != SK_PHY_XMAC) {
/* read Id from external PHY (all have the same address) */
SkXmPhyRead(pAC, IoC, Port, PHY_XMAC_ID1, &pPrt->PhyId1);
/*
* Optimize MDIO transfer by suppressing preamble.
* Must be done AFTER first access to BCOM chip.
*/
XM_IN16(IoC, Port, XM_MMU_CMD, &SWord);
XM_OUT16(IoC, Port, XM_MMU_CMD, SWord | XM_MMU_NO_PRE);
if (pPrt->PhyId1 == PHY_BCOM_ID1_C0) {
/*
* Workaround BCOM Errata for the C0 type.
* Write magic patterns to reserved registers.
*/
i = 0;
while (BcomRegC0Hack[i].PhyReg != 0) {
SkXmPhyWrite(pAC, IoC, Port, BcomRegC0Hack[i].PhyReg,
BcomRegC0Hack[i].PhyVal);
i++;
}
}
else if (pPrt->PhyId1 == PHY_BCOM_ID1_A1) {
/*
* Workaround BCOM Errata for the A1 type.
* Write magic patterns to reserved registers.
*/
i = 0;
while (BcomRegA1Hack[i].PhyReg != 0) {
SkXmPhyWrite(pAC, IoC, Port, BcomRegA1Hack[i].PhyReg,
BcomRegA1Hack[i].PhyVal);
i++;
}
}
/*
* Workaround BCOM Errata (#10523) for all BCom PHYs.
* Disable Power Management after reset.
*/
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_AUX_CTRL, &SWord);
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_AUX_CTRL,
(SK_U16)(SWord | PHY_B_AC_DIS_PM));
/* PHY LED initialization is done in SkGeXmitLED() */
}
/* Dummy read the Interrupt source register */
XM_IN16(IoC, Port, XM_ISRC, &SWord);
/*
* The auto-negotiation process starts immediately after
* clearing the reset. The auto-negotiation process should be
* started by the SIRQ, therefore stop it here immediately.
*/
SkMacInitPhy(pAC, IoC, Port, SK_FALSE);
}
/*
* configure the XMACs Station Address
* B2_MAC_2 = xx xx xx xx xx x1 is programmed to XMAC A
* B2_MAC_3 = xx xx xx xx xx x2 is programmed to XMAC B
*/
for (i = 0; i < 3; i++) {
/*
* The following 2 statements are together endianess
* independent. Remember this when changing.
*/
SK_IN16(IoC, (B2_MAC_2 + Port * 8 + i * 2), &SWord);
XM_OUT16(IoC, Port, (XM_SA + i * 2), SWord);
}
/* Tx Inter Packet Gap (XM_TX_IPG): use default */
/* Tx High Water Mark (XM_TX_HI_WM): use default */
/* Tx Low Water Mark (XM_TX_LO_WM): use default */
/* Host Request Threshold (XM_HT_THR): use default */
/* Rx Request Threshold (XM_RX_THR): use default */
/* Rx Low Water Mark (XM_RX_LO_WM): use default */
/* configure Rx High Water Mark (XM_RX_HI_WM) */
XM_OUT16(IoC, Port, XM_RX_HI_WM, SK_XM_RX_HI_WM);
/* Configure Tx Request Threshold */
SWord = SK_XM_THR_SL; /* for single port */
if (pAC->GIni.GIMacsFound > 1) {
switch (pPrt->PPortUsage) {
case SK_RED_LINK:
SWord = SK_XM_THR_REDL; /* redundant link */
break;
case SK_MUL_LINK:
SWord = SK_XM_THR_MULL; /* load balancing */
break;
case SK_JUMBO_LINK:
SWord = SK_XM_THR_JUMBO; /* jumbo frames */
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E014, SKERR_HWI_E014MSG);
break;
}
}
XM_OUT16(IoC, Port, XM_TX_THR, SWord);
/* setup register defaults for the Tx Command Register */
XM_OUT16(IoC, Port, XM_TX_CMD, XM_TX_AUTO_PAD);
/* setup register defaults for the Rx Command Register */
SWord = XM_RX_STRIP_FCS | XM_RX_LENERR_OK;
if (pPrt->PPortUsage == SK_JUMBO_LINK) {
SWord |= XM_RX_BIG_PK_OK;
}
if (pPrt->PLinkMode == SK_LMODE_HALF) {
/*
* If in manual half duplex mode the other side might be in
* full duplex mode, so ignore if a carrier extension is not seen
* on frames received
*/
SWord |= XM_RX_DIS_CEXT;
}
XM_OUT16(IoC, Port, XM_RX_CMD, SWord);
/*
* setup register defaults for the Mode Register
* - Don't strip error frames to avoid Store & Forward
* on the Rx side.
* - Enable 'Check Station Address' bit
* - Enable 'Check Address Array' bit
*/
XM_OUT32(IoC, Port, XM_MODE, XM_DEF_MODE);
/*
* Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
* - Enable all bits excepting 'Octets Rx OK Low CntOv'
* and 'Octets Rx OK Hi Cnt Ov'.
*/
XM_OUT32(IoC, Port, XM_RX_EV_MSK, XMR_DEF_MSK);
/*
* Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
* - Enable all bits excepting 'Octets Tx OK Low CntOv'
* and 'Octets Tx OK Hi Cnt Ov'.
*/
XM_OUT32(IoC, Port, XM_TX_EV_MSK, XMT_DEF_MSK);
/*
* Do NOT init XMAC interrupt mask here.
* All interrupts remain disable until link comes up!
*/
/*
* Any additional configuration changes may be done now.
* The last action is to enable the Rx and Tx state machine.
* This should be done after the auto-negotiation process
* has been completed successfully.
*/
} /* SkXmInitMac */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmInitMac() - Initialize the GMAC
*
* Description:
* Initialize the GMAC of the specified port.
* The GMAC must be reset or stopped before calling this function.
*
* Note:
* The GMAC's Rx and Tx state machine is still disabled when returning.
*
* Returns:
* nothing
*/
void SkGmInitMac(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
int i;
SK_U16 SWord;
SK_U32 DWord;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PState == SK_PRT_STOP) {
/* Verify that the reset bit is cleared */
SK_IN32(IoC, MR_ADDR(Port, GMAC_CTRL), &DWord);
if ((DWord & GMC_RST_SET) != 0) {
/* PState does not match HW state */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("SkGmInitMac: PState does not match HW state"));
/* Correct it */
pPrt->PState = SK_PRT_RESET;
}
else {
/* enable PHY interrupts */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_INT_MASK,
(SK_U16)PHY_M_DEF_MSK);
}
}
if (pPrt->PState == SK_PRT_RESET) {
SkGmHardRst(pAC, IoC, Port);
SkGmClearRst(pAC, IoC, Port);
#ifndef SK_SLIM
if (HW_FEATURE(pAC, HWF_FORCE_AUTO_NEG) &&
pPrt->PLinkModeConf < SK_LMODE_AUTOHALF) {
/* Force Auto-Negotiation */
pPrt->PLinkMode = (pPrt->PLinkModeConf == SK_LMODE_FULL) ?
SK_LMODE_AUTOBOTH : SK_LMODE_AUTOHALF;
}
#endif /* !SK_SLIM */
/* Auto-negotiation ? */
if (pPrt->PLinkMode == SK_LMODE_HALF ||
pPrt->PLinkMode == SK_LMODE_FULL) {
/* Auto-negotiation disabled */
/* get General Purpose Control */
GM_IN16(IoC, Port, GM_GP_CTRL, &SWord);
/* disable auto-update for speed, duplex and flow-control */
SWord |= GM_GPCR_AU_ALL_DIS;
/* setup General Purpose Control Register */
GM_OUT16(IoC, Port, GM_GP_CTRL, SWord);
SWord = GM_GPCR_AU_ALL_DIS;
}
else {
SWord = 0;
}
/* speed settings */
switch (pPrt->PLinkSpeed) {
case SK_LSPEED_AUTO:
case SK_LSPEED_1000MBPS:
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) {
SWord |= GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100;
}
break;
case SK_LSPEED_100MBPS:
SWord |= GM_GPCR_SPEED_100;
break;
case SK_LSPEED_10MBPS:
break;
}
/* duplex settings */
if (pPrt->PLinkMode != SK_LMODE_HALF) {
/* set full duplex */
SWord |= GM_GPCR_DUP_FULL;
}
/* flow-control settings */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
/* disable Tx & Rx flow-control */
SWord |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case SK_FLOW_MODE_LOC_SEND:
/* disable Rx flow-control */
SWord |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
break;
case SK_FLOW_MODE_SYMMETRIC:
case SK_FLOW_MODE_SYM_OR_REM:
/* enable Tx & Rx flow-control */
break;
}
/* setup General Purpose Control Register */
GM_OUT16(IoC, Port, GM_GP_CTRL, SWord);
/* dummy read the Interrupt Source Register */
SK_IN16(IoC, MR_ADDR(Port, GMAC_IRQ_SRC), &SWord);
#ifndef VCPU
SkGmInitPhyMarv(pAC, IoC, Port, SK_FALSE);
#endif /* !VCPU */
}
(void)SkGmResetCounter(pAC, IoC, Port);
/* setup Transmit Control Register */
GM_OUT16(IoC, Port, GM_TX_CTRL, (SK_U16)TX_COL_THR(pPrt->PMacColThres));
/* setup Receive Control Register */
SWord = GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA | GM_RXCR_CRC_DIS;
GM_OUT16(IoC, Port, GM_RX_CTRL, SWord);
/* setup Transmit Flow Control Register */
GM_OUT16(IoC, Port, GM_TX_FLOW_CTRL, 0xffff);
/* setup Transmit Parameter Register */
#ifdef VCPU
GM_IN16(IoC, Port, GM_TX_PARAM, &SWord);
#endif /* VCPU */
SWord = (SK_U16)(TX_JAM_LEN_VAL(pPrt->PMacJamLen) |
TX_JAM_IPG_VAL(pPrt->PMacJamIpgVal) |
TX_IPG_JAM_DATA(pPrt->PMacJamIpgData) |
TX_BACK_OFF_LIM(pPrt->PMacBackOffLim));
GM_OUT16(IoC, Port, GM_TX_PARAM, SWord);
/* configure the Serial Mode Register */
SWord = (SK_U16)(DATA_BLIND_VAL(pPrt->PMacDataBlind) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(pPrt->PMacIpgData));
if (pPrt->PMacLimit4) {
/* reset of collision counter after 4 consecutive collisions */
SWord |= GM_SMOD_LIMIT_4;
}
if (pPrt->PPortUsage == SK_JUMBO_LINK) {
/* enable jumbo mode (Max. Frame Length = 9018) */
SWord |= GM_SMOD_JUMBO_ENA;
}
GM_OUT16(IoC, Port, GM_SERIAL_MODE, SWord);
/*
* configure the GMACs Station Addresses
* in PROM you can find our addresses at:
* B2_MAC_1 = xx xx xx xx xx x0 virtual address
* B2_MAC_2 = xx xx xx xx xx x1 is programmed to GMAC A
* B2_MAC_3 = xx xx xx xx xx x2 is reserved for DualPort
*/
for (i = 0; i < 3; i++) {
/*
* The following 2 statements are together endianess
* independent. Remember this when changing.
*/
/* physical address: will be used for pause frames */
SK_IN16(IoC, (B2_MAC_2 + Port * 8 + i * 2), &SWord);
#ifdef WA_DEV_16
/* WA for deviation #16 */
if (pAC->GIni.GIChipId == CHIP_ID_YUKON && pAC->GIni.GIChipRev == 0) {
/* swap the address bytes */
SWord = ((SWord & 0xff00) >> 8) | ((SWord & 0x00ff) << 8);
/* write to register in reversed order */
GM_OUT16(IoC, Port, (GM_SRC_ADDR_1L + (2 - i) * 4), SWord);
}
else {
GM_OUT16(IoC, Port, (GM_SRC_ADDR_1L + i * 4), SWord);
}
#else
GM_OUT16(IoC, Port, (GM_SRC_ADDR_1L + i * 4), SWord);
#endif /* WA_DEV_16 */
/* virtual address: will be used for data */
SK_IN16(IoC, (B2_MAC_1 + Port * 8 + i * 2), &SWord);
GM_OUT16(IoC, Port, (GM_SRC_ADDR_2L + i * 4), SWord);
/* reset Multicast filtering Hash registers 1-3 */
GM_OUT16(IoC, Port, GM_MC_ADDR_H1 + i * 4, 0);
}
/* reset Multicast filtering Hash register 4 */
GM_OUT16(IoC, Port, GM_MC_ADDR_H4, 0);
/* enable interrupt mask for counter overflows */
GM_OUT16(IoC, Port, GM_TX_IRQ_MSK, 0);
GM_OUT16(IoC, Port, GM_RX_IRQ_MSK, 0);
GM_OUT16(IoC, Port, GM_TR_IRQ_MSK, 0);
} /* SkGmInitMac */
#endif /* YUKON */
#ifdef GENESIS
/******************************************************************************
*
* SkXmInitDupMd() - Initialize the XMACs Duplex Mode
*
* Description:
* This function initializes the XMACs Duplex Mode.
* It should be called after successfully finishing
* the Auto-negotiation Process
*
* Returns:
* nothing
*/
void SkXmInitDupMd(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
switch (pAC->GIni.GP[Port].PLinkModeStatus) {
case SK_LMODE_STAT_AUTOHALF:
case SK_LMODE_STAT_HALF:
/* Configuration Actions for Half Duplex Mode */
/*
* XM_BURST = default value. We are probable not quick
* enough at the 'XMAC' bus to burst 8kB.
* The XMAC stops bursting if no transmit frames
* are available or the burst limit is exceeded.
*/
/* XM_TX_RT_LIM = default value (15) */
/* XM_TX_STIME = default value (0xff = 4096 bit times) */
break;
case SK_LMODE_STAT_AUTOFULL:
case SK_LMODE_STAT_FULL:
/* Configuration Actions for Full Duplex Mode */
/*
* The duplex mode is configured by the PHY,
* therefore it seems to be that there is nothing
* to do here.
*/
break;
case SK_LMODE_STAT_UNKNOWN:
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E007, SKERR_HWI_E007MSG);
break;
}
} /* SkXmInitDupMd */
/******************************************************************************
*
* SkXmInitPauseMd() - initialize the Pause Mode to be used for this port
*
* Description:
* This function initializes the Pause Mode which should
* be used for this port.
* It should be called after successfully finishing
* the Auto-negotiation Process
*
* Returns:
* nothing
*/
void SkXmInitPauseMd(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U32 DWord;
SK_U16 Word;
pPrt = &pAC->GIni.GP[Port];
XM_IN16(IoC, Port, XM_MMU_CMD, &Word);
if (pPrt->PFlowCtrlStatus == SK_FLOW_STAT_NONE ||
pPrt->PFlowCtrlStatus == SK_FLOW_STAT_LOC_SEND) {
/* disable Pause Frame Reception */
Word |= XM_MMU_IGN_PF;
}
else {
/*
* enabling pause frame reception is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* enable Pause Frame Reception */
Word &= ~XM_MMU_IGN_PF;
}
XM_OUT16(IoC, Port, XM_MMU_CMD, Word);
XM_IN32(IoC, Port, XM_MODE, &DWord);
if (pPrt->PFlowCtrlStatus == SK_FLOW_STAT_SYMMETRIC ||
pPrt->PFlowCtrlStatus == SK_FLOW_STAT_LOC_SEND) {
/*
* Configure Pause Frame Generation
* Use internal and external Pause Frame Generation.
* Sending pause frames is edge triggered.
* Send a Pause frame with the maximum pause time if
* internal oder external FIFO full condition occurs.
* Send a zero pause time frame to re-start transmission.
*/
/* XM_PAUSE_DA = '010000C28001' (default) */
/* XM_MAC_PTIME = 0xffff (maximum) */
/* remember this value is defined in big endian (!) */
XM_OUT16(IoC, Port, XM_MAC_PTIME, 0xffff);
/* set Pause Mode in Mode Register */
DWord |= XM_PAUSE_MODE;
/* set Pause Mode in MAC Rx FIFO */
SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
}
else {
/*
* disable pause frame generation is required for 1000BT
* because the XMAC is not reset if the link is going down
*/
/* disable Pause Mode in Mode Register */
DWord &= ~XM_PAUSE_MODE;
/* disable Pause Mode in MAC Rx FIFO */
SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
}
XM_OUT32(IoC, Port, XM_MODE, DWord);
} /* SkXmInitPauseMd*/
/******************************************************************************
*
* SkXmInitPhyXmac() - Initialize the XMAC PHY registers
*
* Description: initializes all the XMACs PHY registers
*
* Note:
*
* Returns:
* nothing
*/
static void SkXmInitPhyXmac(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
SK_GEPORT *pPrt;
SK_U16 Ctrl;
pPrt = &pAC->GIni.GP[Port];
Ctrl = 0;
/* Auto-negotiation ? */
if (pPrt->PLinkMode == SK_LMODE_HALF || pPrt->PLinkMode == SK_LMODE_FULL) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyXmac: no auto-negotiation Port %d\n", Port));
/* set DuplexMode in Config register */
if (pPrt->PLinkMode == SK_LMODE_FULL) {
Ctrl |= PHY_CT_DUP_MD;
}
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLEs are transmitted
*/
}
else {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyXmac: with auto-negotiation Port %d\n", Port));
/* set Auto-negotiation advertisement */
/* set Full/half duplex capabilities */
switch (pPrt->PLinkMode) {
case SK_LMODE_AUTOHALF:
Ctrl |= PHY_X_AN_HD;
break;
case SK_LMODE_AUTOFULL:
Ctrl |= PHY_X_AN_FD;
break;
case SK_LMODE_AUTOBOTH:
Ctrl |= PHY_X_AN_FD | PHY_X_AN_HD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E015,
SKERR_HWI_E015MSG);
}
/* set Flow-control capabilities */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
Ctrl |= PHY_X_P_NO_PAUSE;
break;
case SK_FLOW_MODE_LOC_SEND:
Ctrl |= PHY_X_P_ASYM_MD;
break;
case SK_FLOW_MODE_SYMMETRIC:
Ctrl |= PHY_X_P_SYM_MD;
break;
case SK_FLOW_MODE_SYM_OR_REM:
Ctrl |= PHY_X_P_BOTH_MD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
/* Write AutoNeg Advertisement Register */
SkXmPhyWrite(pAC, IoC, Port, PHY_XMAC_AUNE_ADV, Ctrl);
/* Restart Auto-negotiation */
Ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
}
if (DoLoop) {
/* set the PHY Loopback bit, too */
Ctrl |= PHY_CT_LOOP;
}
/* Write to the PHY control register */
SkXmPhyWrite(pAC, IoC, Port, PHY_XMAC_CTRL, Ctrl);
} /* SkXmInitPhyXmac */
/******************************************************************************
*
* SkXmInitPhyBcom() - Initialize the Broadcom PHY registers
*
* Description: initializes all the Broadcom PHY registers
*
* Note:
*
* Returns:
* nothing
*/
static void SkXmInitPhyBcom(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
SK_GEPORT *pPrt;
SK_U16 Ctrl1;
SK_U16 Ctrl2;
SK_U16 Ctrl3;
SK_U16 Ctrl4;
SK_U16 Ctrl5;
Ctrl1 = PHY_CT_SP1000;
Ctrl2 = 0;
Ctrl3 = PHY_SEL_TYPE;
Ctrl4 = PHY_B_PEC_EN_LTR;
Ctrl5 = PHY_B_AC_TX_TST;
pPrt = &pAC->GIni.GP[Port];
/* manually Master/Slave ? */
if (pPrt->PMSMode != SK_MS_MODE_AUTO) {
Ctrl2 |= PHY_B_1000C_MSE;
if (pPrt->PMSMode == SK_MS_MODE_MASTER) {
Ctrl2 |= PHY_B_1000C_MSC;
}
}
/* Auto-negotiation ? */
if (pPrt->PLinkMode == SK_LMODE_HALF || pPrt->PLinkMode == SK_LMODE_FULL) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyBcom: no auto-negotiation Port %d\n", Port));
/* set DuplexMode in Config register */
if (pPrt->PLinkMode == SK_LMODE_FULL) {
Ctrl1 |= PHY_CT_DUP_MD;
}
/* Determine Master/Slave manually if not already done */
if (pPrt->PMSMode == SK_MS_MODE_AUTO) {
Ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
}
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLES are transmitted
*/
}
else {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyBcom: with auto-negotiation Port %d\n", Port));
/* set Auto-negotiation advertisement */
/*
* Workaround BCOM Errata #1 for the C5 type.
* 1000Base-T Link Acquisition Failure in Slave Mode
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
*/
Ctrl2 |= PHY_B_1000C_RD;
/* set Full/half duplex capabilities */
switch (pPrt->PLinkMode) {
case SK_LMODE_AUTOHALF:
Ctrl2 |= PHY_B_1000C_AHD;
break;
case SK_LMODE_AUTOFULL:
Ctrl2 |= PHY_B_1000C_AFD;
break;
case SK_LMODE_AUTOBOTH:
Ctrl2 |= PHY_B_1000C_AFD | PHY_B_1000C_AHD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E015,
SKERR_HWI_E015MSG);
}
/* set Flow-control capabilities */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
Ctrl3 |= PHY_B_P_NO_PAUSE;
break;
case SK_FLOW_MODE_LOC_SEND:
Ctrl3 |= PHY_B_P_ASYM_MD;
break;
case SK_FLOW_MODE_SYMMETRIC:
Ctrl3 |= PHY_B_P_SYM_MD;
break;
case SK_FLOW_MODE_SYM_OR_REM:
Ctrl3 |= PHY_B_P_BOTH_MD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
/* Restart Auto-negotiation */
Ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
}
/* Initialize LED register here? */
/* No. Please do it in SkDgXmitLed() (if required) and swap
init order of LEDs and XMAC. (MAl) */
/* Write 1000Base-T Control Register */
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_1000T_CTRL, Ctrl2);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set 1000B-T Ctrl Reg = 0x%04X\n", Ctrl2));
/* Write AutoNeg Advertisement Register */
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_AUNE_ADV, Ctrl3);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set Auto-Neg.Adv.Reg = 0x%04X\n", Ctrl3));
if (DoLoop) {
/* set the PHY Loopback bit, too */
Ctrl1 |= PHY_CT_LOOP;
}
if (pPrt->PPortUsage == SK_JUMBO_LINK) {
/* configure FIFO to high latency for transmission of ext. packets */
Ctrl4 |= PHY_B_PEC_HIGH_LA;
/* configure reception of extended packets */
Ctrl5 |= PHY_B_AC_LONG_PACK;
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_AUX_CTRL, Ctrl5);
}
/* Configure LED Traffic Mode and Jumbo Frame usage if specified */
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_P_EXT_CTRL, Ctrl4);
/* Write to the PHY control register */
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_CTRL, Ctrl1);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Control Reg = 0x%04X\n", Ctrl1));
} /* SkXmInitPhyBcom */
#endif /* GENESIS */
#ifdef YUKON
#ifdef SK_PHY_LP_MODE
/******************************************************************************
*
* SkGmEnterLowPowerMode()
*
* Description:
* This function sets the Marvell Alaska PHY to the low power mode
* given by parameter mode.
* The following low power modes are available:
*
* - COMA Mode (Deep Sleep):
* The PHY cannot wake up on its own.
*
* - IEEE 22.2.4.1.5 compatible power down mode
* The PHY cannot wake up on its own.
*
* - energy detect mode
* The PHY can wake up on its own by detecting activity
* on the CAT 5 cable.
*
* - energy detect plus mode
* The PHY can wake up on its own by detecting activity
* on the CAT 5 cable.
* Connected devices can be woken up by sending normal link
* pulses every second.
*
* Note:
*
* Returns:
* 0: ok
* 1: error
*/
int SkGmEnterLowPowerMode(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (e.g. MAC_1) */
SK_U8 Mode) /* low power mode */
{
SK_U8 LastMode;
SK_U8 Byte;
SK_U16 Word;
SK_U16 ClkDiv;
SK_U32 DWord;
SK_U32 PowerDownBit;
int ChipId;
int Ret = 0;
if (!(CHIP_ID_YUKON_2(pAC) || (pAC->GIni.GIYukonLite &&
pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3))) {
return(1);
}
/* save current power mode */
LastMode = pAC->GIni.GP[Port].PPhyPowerState;
pAC->GIni.GP[Port].PPhyPowerState = Mode;
ChipId = pAC->GIni.GIChipId;
SK_DBG_MSG(pAC, SK_DBGMOD_POWM, SK_DBGCAT_CTRL,
("SkGmEnterLowPowerMode: %u\n", Mode));
/* release GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_CLR);
/* release GMAC reset */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_RST_CLR);
if (ChipId == CHIP_ID_YUKON_EC_U) {
/* select page 2 to access MAC control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 2);
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
/* allow GMII Power Down */
Word &= ~PHY_M_MAC_GMIF_PUP;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 0);
}
switch (Mode) {
/* COMA mode (deep sleep) */
case PHY_PM_DEEP_SLEEP:
/* setup General Purpose Control Register */
GM_OUT16(IoC, Port, GM_GP_CTRL, GM_GPCR_FL_PASS |
GM_GPCR_SPEED_100 | GM_GPCR_AU_ALL_DIS);
if (CHIP_ID_YUKON_2(pAC)) {
/* set power down bit */
PowerDownBit = (Port == MAC_1) ? PCI_Y2_PHY1_POWD :
PCI_Y2_PHY2_POWD;
if (ChipId != CHIP_ID_YUKON_EC) {
if (ChipId == CHIP_ID_YUKON_EC_U) {
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
/* enable Power Down */
Word |= PHY_M_PC_POW_D_ENA;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
}
/* set IEEE compatible Power Down Mode (dev. #4.99) */
Ret = SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, PHY_CT_PDOWN);
}
}
else {
/* apply COMA mode workaround */
(void)SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_ADDR, 0x001f);
Ret = SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xfff3);
PowerDownBit = PCI_PHY_COMA;
}
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON);
SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_1), &DWord);
/* set PHY to PowerDown/COMA Mode */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_1), DWord | PowerDownBit);
/* check if this routine was called from a for() loop */
if (pAC->GIni.GIMacsFound == 1 || Port == MAC_2) {
/* ASF system clock stopped */
SK_OUT8(IoC, B28_Y2_ASF_STAT_CMD, (SK_U8)Y2_ASF_CLK_HALT);
if (ChipId == CHIP_ID_YUKON_EC_U) {
/* set GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_SET);
/* additional power saving measurements */
SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_4), &DWord);
/* set gating core clock for LTSSM in L1 state */
DWord |= (P_PEX_LTSSM_STAT(P_PEX_LTSSM_L1_STAT) |
/* auto clock gated scheme controlled by CLKREQ */
P_ASPM_A1_MODE_SELECT |
/* enable Gate Root Core Clock */
P_CLK_GATE_ROOT_COR_ENA);
if (HW_FEATURE(pAC, HWF_WA_DEV_4200)) {
/* enable Clock Power Management (CLKREQ) */
SK_IN16(IoC, PCI_C(pAC, PEX_LNK_CTRL), &Word);
Word |= PEX_LC_CLK_PM_ENA;
SK_OUT16(IoC, PCI_C(pAC, PEX_LNK_CTRL), Word);
}
else {
/* force CLKREQ Enable in Our4 (A1b only) */
DWord |= P_ASPM_FORCE_CLKREQ_ENA;
}
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_4), DWord);
/* set Mask Register for Release/Gate Clock */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_5),
P_REL_PCIE_EXIT_L1_ST | P_GAT_PCIE_ENTER_L1_ST |
P_REL_PCIE_RX_EX_IDLE | P_GAT_PCIE_RX_EL_IDLE |
P_REL_GPHY_LINK_UP | P_GAT_GPHY_LINK_DOWN);
}
if (HW_FEATURE(pAC, HWF_RED_CORE_CLK_SUP)) {
/* divide clock by 4 only for Yukon-EC */
ClkDiv = (ChipId == CHIP_ID_YUKON_EC) ? 1 : 0;
/* on Yukon-2 clock select value is 31 */
DWord = (ChipId == CHIP_ID_YUKON_XL) ?
(Y2_CLK_DIV_VAL_2(0) | Y2_CLK_SEL_VAL_2(31)) :
Y2_CLK_DIV_VAL(ClkDiv);
/* check for Yukon-2 dual port PCI-Express adapter */
if (!(pAC->GIni.GIMacsFound == 2 &&
pAC->GIni.GIPciBus == SK_PEX_BUS)) {
/* enable Core Clock Division */
DWord |= Y2_CLK_DIV_ENA;
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set Core Clock: 0x%08X\n", DWord));
/* reduce Core Clock Frequency */
SK_OUT32(IoC, B2_Y2_CLK_CTRL, DWord);
}
if (HW_FEATURE(pAC, HWF_CLK_GATING_ENABLE)) {
/* check for Yukon-2 Rev. A2 */
if (ChipId == CHIP_ID_YUKON_XL &&
pAC->GIni.GIChipRev > CHIP_REV_YU_XL_A1) {
/* enable bits are inverted */
Byte = 0;
}
else {
Byte = (SK_U8)(Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set Clock Gating: 0x%02X\n", Byte));
/* disable MAC/PHY, PCI and Core Clock for both Links */
SK_OUT8(IoC, B2_Y2_CLK_GATE, Byte);
}
if (pAC->GIni.GIVauxAvail) {
/* switch power to VAUX */
SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
}
#ifdef DEBUG
SK_IN32(IoC, B0_CTST, &DWord);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Ctrl/Stat & Switch: 0x%08x\n", DWord));
#endif /* DEBUG */
if (pAC->GIni.GILevel != SK_INIT_IO &&
pAC->GIni.GIMacsFound == 1 &&
pAC->GIni.GIPciBus == SK_PEX_BUS) {
if (ChipId == CHIP_ID_YUKON_EC_U) {
#ifdef PCI_E_L1_STATE
SK_IN16(IoC, PCI_C(pAC, PCI_OUR_REG_1), &Word);
/* force to PCIe L1 */
Word |= (SK_U16)PCI_FORCE_PEX_L1;
SK_OUT16(IoC, PCI_C(pAC, PCI_OUR_REG_1), Word);
#endif /* PCI_E_L1_STATE */
}
else {
/* switch to D1 state */
SK_OUT8(IoC, PCI_C(pAC, PCI_PM_CTL_STS), PCI_PM_STATE_D1);
}
}
}
break;
/* IEEE 22.2.4.1.5 compatible power down mode */
case PHY_PM_IEEE_POWER_DOWN:
Ret = SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
if (!CHIP_ID_YUKON_2(pAC)) {
/* disable MAC 125 MHz clock */
Word |= PHY_M_PC_DIS_125CLK;
Word &= ~PHY_M_PC_MAC_POW_UP;
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
/* these register changes must be followed by a software reset */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &Word);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word | PHY_CT_RESET);
/* switch IEEE compatible power down mode on */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word | PHY_CT_PDOWN);
break;
/* energy detect and energy detect plus mode */
case PHY_PM_ENERGY_DETECT:
case PHY_PM_ENERGY_DETECT_PLUS:
Ret = SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
/* disable Polarity Reversal */
Word |= PHY_M_PC_POL_R_DIS;
if (!CHIP_ID_YUKON_2(pAC)) {
/* disable MAC 125 MHz clock */
Word |= PHY_M_PC_DIS_125CLK;
}
if (ChipId == CHIP_ID_YUKON_FE) {
/* enable Energy Detect (sense & pulse) */
Word |= PHY_M_PC_ENA_ENE_DT;
}
else {
/* clear energy detect mode bits */
Word &= ~PHY_M_PC_EN_DET_MSK;
Word |= (Mode == PHY_PM_ENERGY_DETECT) ? PHY_M_PC_EN_DET :
PHY_M_PC_EN_DET_PLUS;
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
/* these register changes must be followed by a software reset */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &Word);
Word |= PHY_CT_RESET;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word);
if (ChipId == CHIP_ID_YUKON_EC_U) {
/* additional power saving measurements */
SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_4), &DWord);
/* set gating core clock for LTSSM in L1 state */
DWord |= (P_PEX_LTSSM_STAT(P_PEX_LTSSM_L1_STAT) |
/* Enable Gate Root Core Clock */
P_CLK_GATE_ROOT_COR_ENA);
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_4), DWord);
/* set Mask Register for Release/Gate Clock */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_5),
P_REL_PCIE_EXIT_L1_ST | P_GAT_PCIE_ENTER_L1_ST |
P_REL_PCIE_RX_EX_IDLE | P_GAT_PCIE_RX_EL_IDLE |
P_REL_GPHY_LINK_UP | P_GAT_GPHY_LINK_DOWN);
#ifdef PCI_E_L1_STATE
SK_IN16(IoC, PCI_C(pAC, PCI_OUR_REG_1), &Word);
/* enable PCIe L1 on GPHY link down */
Word |= (SK_U16)PCI_ENA_GPHY_LNK;
SK_OUT16(IoC, PCI_C(pAC, PCI_OUR_REG_1), Word);
#endif /* PCI_E_L1_STATE */
}
break;
/* don't change current power mode */
default:
pAC->GIni.GP[Port].PPhyPowerState = LastMode;
Ret = 1;
}
return(Ret);
} /* SkGmEnterLowPowerMode */
/******************************************************************************
*
* SkGmLeaveLowPowerMode()
*
* Description:
* Leave the current low power mode and switch to normal mode
*
* Note:
*
* Returns:
* 0: ok
* 1: error
*/
int SkGmLeaveLowPowerMode(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (e.g. MAC_1) */
{
SK_U32 DWord;
SK_U32 PowerDownBit;
SK_U16 Word;
SK_U8 LastMode;
int ChipId;
int Ret = 0;
if (!(CHIP_ID_YUKON_2(pAC) || (pAC->GIni.GIYukonLite &&
pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3))) {
return(1);
}
/* save current power mode */
LastMode = pAC->GIni.GP[Port].PPhyPowerState;
pAC->GIni.GP[Port].PPhyPowerState = PHY_PM_OPERATIONAL_MODE;
ChipId = pAC->GIni.GIChipId;
SK_DBG_MSG(pAC, SK_DBGMOD_POWM, SK_DBGCAT_CTRL,
("SkGmLeaveLowPowerMode: %u\n", LastMode));
switch (LastMode) {
/* COMA mode (deep sleep) */
case PHY_PM_DEEP_SLEEP:
if (ChipId == CHIP_ID_YUKON_EC_U) {
#ifdef PCI_E_L1_STATE
/* set to default value (leave PCIe L1) */
SkPciWriteCfgWord(pAC, PCI_OUR_REG_1, 0);
#endif /* PCI_E_L1_STATE */
SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_4), &DWord);
DWord &= P_ASPM_CONTROL_MSK;
/* set all bits to 0 except bits 15..12 */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_4), DWord);
/* set to default value */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_5), 0);
}
else {
SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &Word);
/* reset all DState bits */
Word &= ~PCI_PM_STATE_MSK;
/* switch to D0 state */
SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, Word);
}
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON);
if (CHIP_ID_YUKON_2(pAC)) {
/* disable Core Clock Division */
SK_OUT32(IoC, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
/* set power down bit */
PowerDownBit = (Port == MAC_1) ? PCI_Y2_PHY1_POWD :
PCI_Y2_PHY2_POWD;
}
else {
PowerDownBit = PCI_PHY_COMA;
}
SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_1), &DWord);
/* Release PHY from PowerDown/COMA Mode */
SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_1), DWord & ~PowerDownBit);
SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
if (CHIP_ID_YUKON_2(pAC)) {
if (ChipId == CHIP_ID_YUKON_FE) {
/* release IEEE compatible Power Down Mode */
Ret = SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, PHY_CT_ANE);
}
else if (ChipId == CHIP_ID_YUKON_EC_U) {
/* release GPHY Control reset */
SK_OUT8(IoC, MR_ADDR(Port, GPHY_CTRL), (SK_U8)GPC_RST_CLR);
}
}
else {
SK_IN32(IoC, B2_GP_IO, &DWord);
/* set to output */
DWord |= (GP_DIR_9 | GP_IO_9);
/* set PHY reset */
SK_OUT32(IoC, B2_GP_IO, DWord);
DWord &= ~GP_IO_9; /* clear PHY reset (active high) */
/* clear PHY reset */
SK_OUT32(IoC, B2_GP_IO, DWord);
}
break;
/* IEEE 22.2.4.1.5 compatible power down mode */
case PHY_PM_IEEE_POWER_DOWN:
if (ChipId != CHIP_ID_YUKON_XL) {
Ret = SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
Word &= ~PHY_M_PC_DIS_125CLK; /* enable MAC 125 MHz clock */
Word |= PHY_M_PC_MAC_POW_UP; /* set MAC power up */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
/* these register changes must be followed by a software reset */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &Word);
Word |= PHY_CT_RESET;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word);
}
/* switch IEEE compatible power down mode off */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &Word);
Word &= ~PHY_CT_PDOWN;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word);
break;
/* energy detect and energy detect plus mode */
case PHY_PM_ENERGY_DETECT:
case PHY_PM_ENERGY_DETECT_PLUS:
if (ChipId != CHIP_ID_YUKON_XL) {
Ret = SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
if (ChipId == CHIP_ID_YUKON_FE) {
/* disable Energy Detect */
Word &= ~PHY_M_PC_ENA_ENE_DT;
}
else {
/* disable energy detect mode & enable MAC 125 MHz clock */
Word &= ~(PHY_M_PC_EN_DET_MSK | PHY_M_PC_DIS_125CLK);
}
/* enable Polarity Reversal */
Word &= ~PHY_M_PC_POL_R_DIS;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
/* these register changes must be followed by a software reset */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &Word);
Word |= PHY_CT_RESET;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, Word);
}
break;
/* don't change current power mode */
default:
pAC->GIni.GP[Port].PPhyPowerState = LastMode;
Ret = 1;
}
return(Ret);
} /* SkGmLeaveLowPowerMode */
#endif /* SK_PHY_LP_MODE */
/******************************************************************************
*
* SkGmInitPhyMarv() - Initialize the Marvell PHY registers
*
* Description: initializes all the Marvell PHY registers
*
* Note:
*
* Returns:
* nothing
*/
static void SkGmInitPhyMarv(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
SK_GEPORT *pPrt;
SK_BOOL AutoNeg;
SK_U16 PhyCtrl;
SK_U16 C1000BaseT;
SK_U16 AutoNegAdv;
SK_U8 PauseMode;
int ChipId;
int Mode;
#ifndef VCPU
SK_U16 Word;
SK_U16 PageReg;
#ifndef SK_SLIM
SK_U16 LoopSpeed;
#endif /* !SK_SLIM */
SK_U16 ExtPhyCtrl;
SK_U16 BlinkCtrl;
SK_U16 LedCtrl;
SK_U16 LedConf;
SK_U16 LedOver;
#ifndef SK_DIAG
SK_EVPARA Para;
#endif /* !SK_DIAG */
#if defined(SK_DIAG) || defined(DEBUG)
SK_U16 PhyStat;
SK_U16 PhyStat1;
SK_U16 PhySpecStat;
#endif /* SK_DIAG || DEBUG */
#endif /* !VCPU */
/* set Pause On */
PauseMode = (SK_U8)GMC_PAUSE_ON;
pPrt = &pAC->GIni.GP[Port];
ChipId = pAC->GIni.GIChipId;
/* Auto-negotiation ? */
AutoNeg = pPrt->PLinkMode != SK_LMODE_HALF &&
pPrt->PLinkMode != SK_LMODE_FULL;
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyMarv: Port %d, Auto-neg. %s, LMode %d, LSpeed %d, FlowC %d\n",
Port, AutoNeg ? "ON" : "OFF",
pPrt->PLinkMode, pPrt->PLinkSpeed, pPrt->PFlowCtrlMode));
#ifndef VCPU
/* read Id from PHY */
if (SkGmPhyRead(pAC, IoC, Port, PHY_MARV_ID1, &pPrt->PhyId1) != 0) {
#ifndef SK_DIAG
Para.Para64 = Port;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para);
#endif /* !SK_DIAG */
return;
}
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) {
#ifndef SK_SLIM
if (DoLoop) {
/* special setup for PHY 88E1112 */
if (ChipId == CHIP_ID_YUKON_XL) {
LoopSpeed = pPrt->PLinkSpeed;
if (LoopSpeed == SK_LSPEED_AUTO) {
/* force 1000 Mbps */
LoopSpeed = SK_LSPEED_1000MBPS;
}
LoopSpeed += 2;
/* save page register */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_EXT_ADR, &PageReg);
/* select page 2 to access MAC control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 2);
/* set MAC interface speed */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, LoopSpeed << 4);
/* restore page register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, PageReg);
/* disable link pulses */
Word = PHY_M_PC_DIS_LINK_P;
}
else {
/* set 'MAC Power up'-bit, set Manual MDI configuration */
Word = PHY_M_PC_MAC_POW_UP;
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
}
else
#endif /* !SK_SLIM */
if (AutoNeg && pPrt->PLinkSpeed == SK_LSPEED_AUTO &&
!(ChipId == CHIP_ID_YUKON_XL || ChipId == CHIP_ID_YUKON_EC_U)) {
/* Read Ext. PHY Specific Control */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_EXT_CTRL, &ExtPhyCtrl);
ExtPhyCtrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ExtPhyCtrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
/* on PHY 88E1040 Rev.D0 (and newer) downshift control changed */
if (pAC->GIni.GIYukonLite || ChipId == CHIP_ID_YUKON_EC) {
/* set downshift counter to 3x and enable downshift */
ExtPhyCtrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
}
else {
/* set master & slave downshift counter to 1x */
ExtPhyCtrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_CTRL, ExtPhyCtrl);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set Ext. PHY Ctrl = 0x%04X\n", ExtPhyCtrl));
}
}
if (CHIP_ID_YUKON_2(pAC)) {
/* Read PHY Specific Control */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &PhyCtrl);
if (!DoLoop && pAC->GIni.GICopperType) {
if (ChipId == CHIP_ID_YUKON_FE) {
/* enable Automatic Crossover (!!! Bits 5..4) */
PhyCtrl |= (SK_U16)(PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1);
}
else {
#ifndef SK_DIAG
/* disable Energy Detect Mode */
PhyCtrl &= ~PHY_M_PC_EN_DET_MSK;
#endif /* !SK_DIAG */
/* enable Automatic Crossover */
PhyCtrl |= (SK_U16)PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
/* downshift on PHY 88E1112 and 88E1149 is changed */
if (AutoNeg && pPrt->PLinkSpeed == SK_LSPEED_AUTO &&
(ChipId == CHIP_ID_YUKON_XL ||
ChipId == CHIP_ID_YUKON_EC_U)) {
/* set downshift counter to 3x and enable downshift */
PhyCtrl &= ~PHY_M_PC_DSC_MSK;
PhyCtrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
}
}
}
/* workaround for deviation #4.88 (CRC errors) */
else {
/* disable Automatic Crossover */
PhyCtrl &= ~PHY_M_PC_MDIX_MSK;
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, PhyCtrl);
}
/* special setup for PHY 88E1112 Fiber */
if (ChipId == CHIP_ID_YUKON_XL && !pAC->GIni.GICopperType) {
/* select 1000BASE-X only mode in MAC Specific Ctrl Reg. */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 2);
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
Word &= ~PHY_M_MAC_MD_MSK;
Word |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
/* select page 1 to access Fiber registers */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 1);
if (pAC->GIni.GIPmdTyp == 'P') {
/* for SFP-module set SIGDET polarity to low */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Word);
Word |= PHY_M_FIB_SIGD_POL;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Word);
}
}
/* Read PHY Control */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &PhyCtrl);
#ifndef SK_SLIM
if (!AutoNeg) {
/* disable Auto-negotiation */
PhyCtrl &= ~PHY_CT_ANE;
}
#endif /* !SK_SLIM */
PhyCtrl |= PHY_CT_RESET;
/* assert software reset */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, PhyCtrl);
#endif /* !VCPU */
PhyCtrl = 0 /* PHY_CT_COL_TST */;
C1000BaseT = 0;
AutoNegAdv = PHY_SEL_TYPE;
#ifndef SK_SLIM
/* manually Master/Slave ? */
if (pPrt->PMSMode != SK_MS_MODE_AUTO) {
/* enable Manual Master/Slave */
C1000BaseT |= PHY_M_1000C_MSE;
if (pPrt->PMSMode == SK_MS_MODE_MASTER) {
C1000BaseT |= PHY_M_1000C_MSC; /* set it to Master */
}
}
#endif /* !SK_SLIM */
/* Auto-negotiation ? */
if (!AutoNeg) {
#ifndef SK_SLIM
if (pPrt->PLinkMode == SK_LMODE_FULL) {
/* set Full Duplex Mode */
PhyCtrl |= PHY_CT_DUP_MD;
}
/* set Master/Slave manually if not already done */
if (pPrt->PMSMode == SK_MS_MODE_AUTO) {
C1000BaseT |= PHY_M_1000C_MSE; /* set it to Slave */
}
/* set Speed */
switch (pPrt->PLinkSpeed) {
case SK_LSPEED_AUTO:
case SK_LSPEED_1000MBPS:
PhyCtrl |= (((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) ?
PHY_CT_SP1000 : PHY_CT_SP100);
break;
case SK_LSPEED_100MBPS:
PhyCtrl |= PHY_CT_SP100;
break;
case SK_LSPEED_10MBPS:
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E019,
SKERR_HWI_E019MSG);
}
if ((pPrt->PFlowCtrlMode == SK_FLOW_STAT_NONE) ||
/* disable Pause also for 10/100 Mbps in half duplex mode */
((ChipId != CHIP_ID_YUKON_EC_U) &&
(pPrt->PLinkMode == SK_LMODE_HALF) &&
((pPrt->PLinkSpeed == SK_LSPEED_STAT_100MBPS) ||
(pPrt->PLinkSpeed == SK_LSPEED_STAT_10MBPS)))) {
/* set Pause Off */
PauseMode = (SK_U8)GMC_PAUSE_OFF;
}
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), PauseMode);
if (!DoLoop) {
/* assert software reset */
PhyCtrl |= PHY_CT_RESET;
}
#endif /* !SK_SLIM */
}
else {
/* set Auto-negotiation advertisement */
if (pAC->GIni.GICopperType) {
/* set Speed capabilities */
switch (pPrt->PLinkSpeed) {
case SK_LSPEED_AUTO:
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) {
C1000BaseT |= PHY_M_1000C_AFD;
#ifdef xSK_DIAG
C1000BaseT |= PHY_M_1000C_AHD;
#endif /* SK_DIAG */
}
AutoNegAdv |= PHY_M_AN_100_FD | PHY_M_AN_100_HD |
PHY_M_AN_10_FD | PHY_M_AN_10_HD;
break;
case SK_LSPEED_1000MBPS:
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) {
C1000BaseT |= PHY_M_1000C_AFD;
#ifdef xSK_DIAG
C1000BaseT |= PHY_M_1000C_AHD;
#endif /* SK_DIAG */
}
break;
case SK_LSPEED_100MBPS:
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_100MBPS) != 0) {
AutoNegAdv |= PHY_M_AN_100_FD | PHY_M_AN_100_HD |
/* advertise 10Base-T also */
PHY_M_AN_10_FD | PHY_M_AN_10_HD;
}
break;
case SK_LSPEED_10MBPS:
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_10MBPS) != 0) {
AutoNegAdv |= PHY_M_AN_10_FD | PHY_M_AN_10_HD;
}
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E019,
SKERR_HWI_E019MSG);
}
/* set Full/half duplex capabilities */
switch (pPrt->PLinkMode) {
case SK_LMODE_AUTOHALF:
C1000BaseT &= ~PHY_M_1000C_AFD;
AutoNegAdv &= ~(PHY_M_AN_100_FD | PHY_M_AN_10_FD);
break;
case SK_LMODE_AUTOFULL:
C1000BaseT &= ~PHY_M_1000C_AHD;
AutoNegAdv &= ~(PHY_M_AN_100_HD | PHY_M_AN_10_HD);
break;
case SK_LMODE_AUTOBOTH:
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E015,
SKERR_HWI_E015MSG);
}
/* set Flow-control capabilities */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
AutoNegAdv |= PHY_B_P_NO_PAUSE;
break;
case SK_FLOW_MODE_LOC_SEND:
AutoNegAdv |= PHY_B_P_ASYM_MD;
break;
case SK_FLOW_MODE_SYMMETRIC:
AutoNegAdv |= PHY_B_P_SYM_MD;
break;
case SK_FLOW_MODE_SYM_OR_REM:
AutoNegAdv |= PHY_B_P_BOTH_MD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
}
else { /* special defines for FIBER (88E1040S only) */
/* set Full/half duplex capabilities */
switch (pPrt->PLinkMode) {
case SK_LMODE_AUTOHALF:
AutoNegAdv |= PHY_M_AN_1000X_AHD;
break;
case SK_LMODE_AUTOFULL:
AutoNegAdv |= PHY_M_AN_1000X_AFD;
break;
case SK_LMODE_AUTOBOTH:
AutoNegAdv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E015,
SKERR_HWI_E015MSG);
}
/* set Flow-control capabilities */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
AutoNegAdv |= PHY_M_P_NO_PAUSE_X;
break;
case SK_FLOW_MODE_LOC_SEND:
AutoNegAdv |= PHY_M_P_ASYM_MD_X;
break;
case SK_FLOW_MODE_SYMMETRIC:
AutoNegAdv |= PHY_M_P_SYM_MD_X;
break;
case SK_FLOW_MODE_SYM_OR_REM:
AutoNegAdv |= PHY_M_P_BOTH_MD_X;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
}
if (!DoLoop) {
/* Restart Auto-negotiation */
PhyCtrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
}
}
#ifdef VCPU
/*
* E-mail from Gu Lin (08-03-2002):
*/
/* Program PHY register 30 as 16'h0708 for simulation speed up */
SkGmPhyWrite(pAC, IoC, Port, 30, 0x0700 /* 0x0708 */);
VCpuWait(2000);
#else /* !VCPU */
if (ChipId != CHIP_ID_YUKON_FE) {
/* Write 1000Base-T Control Register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_1000T_CTRL, C1000BaseT);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set 1000B-T Ctrl = 0x%04X\n", C1000BaseT));
}
/* Write AutoNeg Advertisement Register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_AUNE_ADV, AutoNegAdv);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set Auto-Neg.Adv. = 0x%04X\n", AutoNegAdv));
#endif /* !VCPU */
#ifndef SK_SLIM
if (DoLoop) {
/* set the PHY Loopback bit */
PhyCtrl |= PHY_CT_LOOP;
}
#endif /* !SK_SLIM */
/* Write to the PHY Control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, PhyCtrl);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Set PHY Ctrl Reg. = 0x%04X\n", PhyCtrl));
#ifdef VCPU
VCpuWait(2000);
#else /* !VCPU */
LedCtrl = PHY_M_LED_PULS_DUR(PULS_170MS);
LedOver = 0;
BlinkCtrl = pAC->GIni.GILedBlinkCtrl;
if ((BlinkCtrl & SK_ACT_LED_BLINK) != 0) {
if (ChipId == CHIP_ID_YUKON_FE) {
/* on 88E3082 these bits are at 11..9 (shifted left) */
LedCtrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_FE_LED_PAR, &Word);
/* delete ACT LED control bits */
Word &= ~PHY_M_FELP_LED1_MSK;
/* change ACT LED control to blink mode */
Word |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_FE_LED_PAR, Word);
}
else if (ChipId == CHIP_ID_YUKON_XL || ChipId == CHIP_ID_YUKON_EC_U) {
/* save page register */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_EXT_ADR, &PageReg);
/* select page 3 to access LED control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 3);
LedConf = PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7); /* 1000 Mbps */
Mode = 7; /* 10 Mbps: On */
if (ChipId == CHIP_ID_YUKON_XL) {
/* set Polarity Control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_STAT, (SK_U16)
(PHY_M_POLC_LS1_P_MIX(4) | PHY_M_POLC_IS0_P_MIX(4) |
PHY_M_POLC_LOS_CTRL(2) | PHY_M_POLC_INIT_CTRL(2) |
PHY_M_POLC_STA1_CTRL(2) | PHY_M_POLC_STA0_CTRL(2)));
}
else if (ChipId == CHIP_ID_YUKON_EC_U) {
/* check for LINK_LED mux */
if ((BlinkCtrl & SK_LED_LINK_MUX_P60) != 0) {
SK_IN16(pAC, GPHY_CTRL, &Word);
Word |= GPC_LED_CONF_VAL(4);
/* set GPHY LED Config */
SK_OUT16(pAC, GPHY_CTRL, Word);
}
else {
Mode = 8; /* Forced Off */
}
/* set Blink Rate in LED Timer Control Register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_INT_MASK,
LedCtrl | (SK_U16)PHY_M_LED_BLINK_RT(BLINK_84MS));
}
LedConf |= PHY_M_LEDC_INIT_CTRL(Mode);
/* set LED Function Control register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, LedConf);
#if (defined(SK_DIAG) || (defined(DEBUG) && !defined(SK_SLIM)))
/* select page 6 to access Packet Generation register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 6);
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &PhyCtrl);
PhyCtrl |= BIT_4S; /* enable CRC checker */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, PhyCtrl);
#endif /* SK_DIAG || (DEBUG && !SK_SLIM) */
/* restore page register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, PageReg);
}
else {
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
LedCtrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* on PHY 88E1111 there is a change for LED control */
if (ChipId == CHIP_ID_YUKON_EC &&
(BlinkCtrl & SK_DUAL_LED_ACT_LNK) != 0) {
/* Yukon-EC needs setting of 2 bits: 0,6=11) */
LedCtrl |= PHY_M_LEDC_TX_C_LSB;
}
/* turn off the Rx LED (LED_RX) */
LedOver |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
}
if ((BlinkCtrl & SK_DUP_LED_NORMAL) != 0) {
/* disable blink mode (LED_DUPLEX) on collisions */
LedCtrl |= PHY_M_LEDC_DP_CTRL;
}
if (ChipId == CHIP_ID_YUKON_EC_U) {
if (pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A1) {
/* apply fixes in PHY AFE */
SkGmPhyWrite(pAC, IoC, Port, 22, 255);
/* increase differential signal amplitude in 10BASE-T */
SkGmPhyWrite(pAC, IoC, Port, 24, 0xaa99);
SkGmPhyWrite(pAC, IoC, Port, 23, 0x2011);
/* fix for IEEE A/B Symmetry failure in 1000BASE-T */
SkGmPhyWrite(pAC, IoC, Port, 24, 0xa204);
SkGmPhyWrite(pAC, IoC, Port, 23, 0x2002);
/* set page register to 0 */
SkGmPhyWrite(pAC, IoC, Port, 22, 0);
}
}
else {
/* no effect on Yukon-XL */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_LED_CTRL, LedCtrl);
#ifndef SK_SLIM
if ((BlinkCtrl & SK_LED_LINK100_ON) != 0) {
/* only in forced 100 Mbps mode */
if (!AutoNeg && pPrt->PLinkSpeed == SK_LSPEED_100MBPS) {
/* turn on 100 Mbps LED (LED_LINK100) */
LedOver |= PHY_M_LED_MO_100(MO_LED_ON);
}
}
#endif /* !SK_SLIM */
if (LedOver != 0) {
/* set Manual LED Override */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_LED_OVER, LedOver);
}
}
#ifdef SK_DIAG
c_print("Set PHY Ctrl = 0x%04X\n", PhyCtrl);
c_print("Set 1000 B-T = 0x%04X\n", C1000BaseT);
c_print("Set Auto-Neg = 0x%04X\n", AutoNegAdv);
c_print("Set Ext Ctrl = 0x%04X\n", ExtPhyCtrl);
#endif /* SK_DIAG */
#if (defined(SK_DIAG) || (defined(DEBUG) && !defined(SK_SLIM)))
/* Read PHY Control */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_CTRL, &PhyCtrl);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Ctrl Reg. = 0x%04X\n", PhyCtrl));
/* Read AutoNeg Advertisement Register */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_AUNE_ADV, &AutoNegAdv);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Auto-Neg.Adv. = 0x%04X\n", AutoNegAdv));
if (ChipId != CHIP_ID_YUKON_FE) {
/* Read 1000Base-T Control Register */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_1000T_CTRL, &C1000BaseT);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("1000B-T Ctrl = 0x%04X\n", C1000BaseT));
/* Read Ext. PHY Specific Control */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_EXT_CTRL, &ExtPhyCtrl);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Ext. PHY Ctrl = 0x%04X\n", ExtPhyCtrl));
}
/* Read PHY Status */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_STAT, &PhyStat);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Stat Reg. = 0x%04X\n", PhyStat));
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_STAT, &PhyStat1);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Stat Reg. = 0x%04X\n", PhyStat1));
/* Read PHY Specific Status */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_STAT, &PhySpecStat);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Spec Stat = 0x%04X\n", PhySpecStat));
#endif /* SK_DIAG || (DEBUG && !SK_SLIM) */
#ifdef SK_DIAG
c_print("PHY Ctrl Reg = 0x%04X\n", PhyCtrl);
c_print("PHY 1000 Reg = 0x%04X\n", C1000BaseT);
c_print("PHY AnAd Reg = 0x%04X\n", AutoNegAdv);
c_print("Ext Ctrl Reg = 0x%04X\n", ExtPhyCtrl);
c_print("PHY Stat Reg = 0x%04X\n", PhyStat);
c_print("PHY Stat Reg = 0x%04X\n", PhyStat1);
c_print("PHY Spec Reg = 0x%04X\n", PhySpecStat);
#endif /* SK_DIAG */
/* enable PHY interrupts */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_INT_MASK, (SK_U16)PHY_M_DEF_MSK);
#endif /* !VCPU */
} /* SkGmInitPhyMarv */
#endif /* YUKON */
#ifdef OTHER_PHY
/******************************************************************************
*
* SkXmInitPhyLone() - Initialize the Level One PHY registers
*
* Description: initializes all the Level One PHY registers
*
* Note:
*
* Returns:
* nothing
*/
static void SkXmInitPhyLone(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
SK_GEPORT *pPrt;
SK_U16 Ctrl1;
SK_U16 Ctrl2;
SK_U16 Ctrl3;
Ctrl1 = PHY_CT_SP1000;
Ctrl2 = 0;
Ctrl3 = PHY_SEL_TYPE;
pPrt = &pAC->GIni.GP[Port];
/* manually Master/Slave ? */
if (pPrt->PMSMode != SK_MS_MODE_AUTO) {
Ctrl2 |= PHY_L_1000C_MSE;
if (pPrt->PMSMode == SK_MS_MODE_MASTER) {
Ctrl2 |= PHY_L_1000C_MSC;
}
}
/* Auto-negotiation ? */
if (pPrt->PLinkMode == SK_LMODE_HALF || pPrt->PLinkMode == SK_LMODE_FULL) {
/*
* level one spec say: "1000 Mbps: manual mode not allowed"
* but lets see what happens...
*/
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyLone: no auto-negotiation Port %d\n", Port));
/* set DuplexMode in Config register */
if (pPrt->PLinkMode == SK_LMODE_FULL) {
Ctrl1 |= PHY_CT_DUP_MD;
}
/* Determine Master/Slave manually if not already done */
if (pPrt->PMSMode == SK_MS_MODE_AUTO) {
Ctrl2 |= PHY_L_1000C_MSE; /* set it to Slave */
}
/*
* Do NOT enable Auto-negotiation here. This would hold
* the link down because no IDLES are transmitted
*/
}
else {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("InitPhyLone: with auto-negotiation Port %d\n", Port));
/* set Auto-negotiation advertisement */
/* set Full/half duplex capabilities */
switch (pPrt->PLinkMode) {
case SK_LMODE_AUTOHALF:
Ctrl2 |= PHY_L_1000C_AHD;
break;
case SK_LMODE_AUTOFULL:
Ctrl2 |= PHY_L_1000C_AFD;
break;
case SK_LMODE_AUTOBOTH:
Ctrl2 |= PHY_L_1000C_AFD | PHY_L_1000C_AHD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E015,
SKERR_HWI_E015MSG);
}
/* set Flow-control capabilities */
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
Ctrl3 |= PHY_L_P_NO_PAUSE;
break;
case SK_FLOW_MODE_LOC_SEND:
Ctrl3 |= PHY_L_P_ASYM_MD;
break;
case SK_FLOW_MODE_SYMMETRIC:
Ctrl3 |= PHY_L_P_SYM_MD;
break;
case SK_FLOW_MODE_SYM_OR_REM:
Ctrl3 |= PHY_L_P_BOTH_MD;
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
/* Restart Auto-negotiation */
Ctrl1 = PHY_CT_ANE | PHY_CT_RE_CFG;
}
/* Write 1000Base-T Control Register */
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_1000T_CTRL, Ctrl2);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("1000B-T Ctrl Reg = 0x%04X\n", Ctrl2));
/* Write AutoNeg Advertisement Register */
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_AUNE_ADV, Ctrl3);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Auto-Neg.Adv.Reg = 0x%04X\n", Ctrl3));
if (DoLoop) {
/* set the PHY Loopback bit, too */
Ctrl1 |= PHY_CT_LOOP;
}
/* Write to the PHY control register */
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_CTRL, Ctrl1);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Control Reg = 0x%04X\n", Ctrl1));
} /* SkXmInitPhyLone */
/******************************************************************************
*
* SkXmInitPhyNat() - Initialize the National PHY registers
*
* Description: initializes all the National PHY registers
*
* Note:
*
* Returns:
* nothing
*/
static void SkXmInitPhyNat(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
/* todo: National */
} /* SkXmInitPhyNat */
#endif /* OTHER_PHY */
/******************************************************************************
*
* SkMacInitPhy() - Initialize the PHY registers
*
* Description: calls the Init PHY routines dep. on board type
*
* Note:
*
* Returns:
* nothing
*/
void SkMacInitPhy(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL DoLoop) /* Should a PHY LoopBack be set-up? */
{
#ifdef GENESIS
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (pAC->GIni.GIGenesis) {
switch (pPrt->PhyType) {
case SK_PHY_XMAC:
SkXmInitPhyXmac(pAC, IoC, Port, DoLoop);
break;
case SK_PHY_BCOM:
SkXmInitPhyBcom(pAC, IoC, Port, DoLoop);
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
SkXmInitPhyLone(pAC, IoC, Port, DoLoop);
break;
case SK_PHY_NAT:
SkXmInitPhyNat(pAC, IoC, Port, DoLoop);
break;
#endif /* OTHER_PHY */
}
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmInitPhyMarv(pAC, IoC, Port, DoLoop);
}
#endif /* YUKON */
} /* SkMacInitPhy */
#ifdef GENESIS
/******************************************************************************
*
* SkXmAutoNegDoneXmac() - Auto-negotiation handling
*
* Description:
* This function handles the auto-negotiation if the Done bit is set.
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
static int SkXmAutoNegDoneXmac(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 ResAb; /* Resolved Ability */
SK_U16 LinkPartAb; /* Link Partner Ability */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegDoneXmac, Port %d\n", Port));
pPrt = &pAC->GIni.GP[Port];
/* Get PHY parameters */
SkXmPhyRead(pAC, IoC, Port, PHY_XMAC_AUNE_LP, &LinkPartAb);
SkXmPhyRead(pAC, IoC, Port, PHY_XMAC_RES_ABI, &ResAb);
if ((LinkPartAb & PHY_X_AN_RFB) != 0) {
/* At least one of the remote fault bit is set */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Remote fault bit set Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_OTHER);
}
/* Check Duplex mismatch */
if ((ResAb & (PHY_X_RS_HD | PHY_X_RS_FD)) == PHY_X_RS_FD) {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOFULL;
}
else if ((ResAb & (PHY_X_RS_HD | PHY_X_RS_FD)) == PHY_X_RS_HD) {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOHALF;
}
else {
/* Error */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Duplex mode mismatch Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_DUP_CAP);
}
/* Check PAUSE mismatch */
/* We are NOT using chapter 4.23 of the Xaqti manual */
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((pPrt->PFlowCtrlMode == SK_FLOW_MODE_SYMMETRIC ||
pPrt->PFlowCtrlMode == SK_FLOW_MODE_SYM_OR_REM) &&
(LinkPartAb & PHY_X_P_SYM_MD) != 0) {
/* Symmetric PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_SYMMETRIC;
}
else if (pPrt->PFlowCtrlMode == SK_FLOW_MODE_SYM_OR_REM &&
(LinkPartAb & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) {
/* enable PAUSE receive, disable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_REM_SEND;
}
else if (pPrt->PFlowCtrlMode == SK_FLOW_MODE_LOC_SEND &&
(LinkPartAb & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) {
/* disable PAUSE receive, enable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_LOC_SEND;
}
else {
/* PAUSE mismatch -> no PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_NONE;
}
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_1000MBPS;
return(SK_AND_OK);
} /* SkXmAutoNegDoneXmac */
/******************************************************************************
*
* SkXmAutoNegDoneBcom() - Auto-negotiation handling
*
* Description:
* This function handles the auto-negotiation if the Done bit is set.
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
static int SkXmAutoNegDoneBcom(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
#ifdef TEST_ONLY
SK_U16 ResAb; /* Resolved Ability */
#endif
SK_U16 LinkPartAb; /* Link Partner Ability */
SK_U16 AuxStat; /* Auxiliary Status */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegDoneBcom, Port %d\n", Port));
pPrt = &pAC->GIni.GP[Port];
/* Get PHY parameters */
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_AUNE_LP, &LinkPartAb);
#ifdef TEST_ONLY
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_1000T_STAT, &ResAb);
#endif
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_AUX_STAT, &AuxStat);
if ((LinkPartAb & PHY_B_AN_RF) != 0) {
/* Remote fault bit is set: Error */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Remote fault bit set Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_OTHER);
}
/* Check Duplex mismatch */
if ((AuxStat & PHY_B_AS_AN_RES_MSK) == PHY_B_RES_1000FD) {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOFULL;
}
else if ((AuxStat & PHY_B_AS_AN_RES_MSK) == PHY_B_RES_1000HD) {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOHALF;
}
else {
/* Error */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Duplex mode mismatch Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_DUP_CAP);
}
#ifdef TEST_ONLY
/* Check Master/Slave resolution */
if ((ResAb & PHY_B_1000S_MSF) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("Master/Slave Fault Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
pPrt->PMSStatus = SK_MS_STAT_FAULT;
return(SK_AND_OTHER);
}
pPrt->PMSStatus = ((ResAb & PHY_B_1000S_MSR) != 0) ?
SK_MS_STAT_MASTER : SK_MS_STAT_SLAVE;
#endif
/* Check PAUSE mismatch ??? */
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if ((AuxStat & PHY_B_AS_PAUSE_MSK) == PHY_B_AS_PAUSE_MSK) {
/* Symmetric PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_SYMMETRIC;
}
else if ((AuxStat & PHY_B_AS_PAUSE_MSK) == PHY_B_AS_PRR) {
/* enable PAUSE receive, disable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_REM_SEND;
}
else if ((AuxStat & PHY_B_AS_PAUSE_MSK) == PHY_B_AS_PRT) {
/* disable PAUSE receive, enable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_LOC_SEND;
}
else {
/* PAUSE mismatch -> no PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_NONE;
}
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_1000MBPS;
return(SK_AND_OK);
} /* SkXmAutoNegDoneBcom */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmAutoNegDoneMarv() - Auto-negotiation handling
*
* Description:
* This function handles the auto-negotiation if the Done bit is set.
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
static int SkGmAutoNegDoneMarv(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 ResAb; /* Resolved Ability */
SK_U16 AuxStat; /* Auxiliary Status */
SK_U8 PauseMode; /* Pause Mode */
#ifndef SK_SLIM
SK_U16 LinkPartAb; /* Link Partner Ability */
#ifndef SK_DIAG
SK_EVPARA Para;
#endif /* !SK_DIAG */
#endif /* !SK_SLIM */
/* set Pause On */
PauseMode = (SK_U8)GMC_PAUSE_ON;
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegDoneMarv, Port %d\n", Port));
pPrt = &pAC->GIni.GP[Port];
/* Get PHY parameters */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_AUNE_LP, &LinkPartAb);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Link P.Abil. = 0x%04X\n", LinkPartAb));
if ((LinkPartAb & PHY_M_AN_RF) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Remote fault bit set Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_OTHER);
}
#ifndef SK_SLIM
if (pAC->GIni.GICopperType) {
/* Read PHY Auto-Negotiation Expansion */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_AUNE_EXP, &LinkPartAb);
if ((LinkPartAb & PHY_ANE_LP_CAP) == 0) {
#ifndef SK_DIAG
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("Link Partner not Auto-Neg. able, AN Exp.: 0x%04X\n",
LinkPartAb));
#ifndef NDIS_MINIPORT_DRIVER
SK_ERR_LOG(pAC, SK_ERRCL_CONFIG, SKERR_HWI_E025, SKERR_HWI_E025MSG);
#endif
Para.Para64 = Port;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_LIPA_NOT_AN_ABLE, Para);
#else
c_print("Link Partner not Auto-Neg. able, AN Exp.: 0x%04X\n",
LinkPartAb);
#endif /* !SK_DIAG */
if (HW_FEATURE(pAC, HWF_FORCE_AUTO_NEG) &&
pPrt->PLinkModeConf < SK_LMODE_AUTOHALF) {
/* set used link speed */
pPrt->PLinkSpeedUsed = pPrt->PLinkSpeed;
/* Set Link Mode Status */
pPrt->PLinkModeStatus = (pPrt->PLinkModeConf == SK_LMODE_FULL) ?
SK_LMODE_STAT_FULL : SK_LMODE_STAT_HALF;
return(SK_AND_OK);
}
}
}
#endif /* !SK_SLIM */
if ((pPrt->PLinkSpeedCap & SK_LSPEED_CAP_1000MBPS) != 0) {
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_1000T_STAT, &ResAb);
/* Check Master/Slave resolution */
if ((ResAb & PHY_B_1000S_MSF) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("Master/Slave Fault Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
pPrt->PMSStatus = SK_MS_STAT_FAULT;
return(SK_AND_OTHER);
}
pPrt->PMSStatus = ((ResAb & PHY_B_1000S_MSR) != 0) ?
(SK_U8)SK_MS_STAT_MASTER : (SK_U8)SK_MS_STAT_SLAVE;
}
/* Read PHY Specific Status */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_STAT, &AuxStat);
/* Check Speed & Duplex resolved */
if ((AuxStat & PHY_M_PS_SPDUP_RES) == 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Speed & Duplex not resolved, Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN;
return(SK_AND_DUP_CAP);
}
pPrt->PLinkModeStatus = (SK_U8)(((AuxStat & PHY_M_PS_FULL_DUP) != 0) ?
SK_LMODE_STAT_AUTOFULL : SK_LMODE_STAT_AUTOHALF);
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_FE) {
/* set used link speed */
pPrt->PLinkSpeedUsed = (SK_U8)(((AuxStat & PHY_M_PS_SPEED_100) != 0) ?
SK_LSPEED_STAT_100MBPS : SK_LSPEED_STAT_10MBPS);
}
else {
/* set used link speed */
switch ((unsigned)(AuxStat & PHY_M_PS_SPEED_MSK)) {
case (unsigned)PHY_M_PS_SPEED_1000:
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_1000MBPS;
break;
case PHY_M_PS_SPEED_100:
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_100MBPS;
break;
default:
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_10MBPS;
}
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_XL ||
pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U) {
/* Tx & Rx Pause Enabled bits are at 9..8 */
AuxStat >>= 6;
if (!pAC->GIni.GICopperType) {
/* always 1000 Mbps on fiber */
pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_1000MBPS;
}
}
AuxStat &= PHY_M_PS_PAUSE_MSK;
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
if (AuxStat == PHY_M_PS_PAUSE_MSK) {
/* Symmetric PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_SYMMETRIC;
}
else if (AuxStat == PHY_M_PS_RX_P_EN) {
/* enable PAUSE receive, disable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_REM_SEND;
}
else if (AuxStat == PHY_M_PS_TX_P_EN) {
/* disable PAUSE receive, enable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_LOC_SEND;
}
else {
/* PAUSE mismatch -> no PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_NONE;
}
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("LinkSpeedUsed = %d\n", pPrt->PLinkSpeedUsed));
if ((pPrt->PFlowCtrlStatus == SK_FLOW_STAT_NONE) ||
/* disable Pause also for 10/100 Mbps in half duplex mode */
((pAC->GIni.GIChipId != CHIP_ID_YUKON_EC_U) &&
(pPrt->PLinkSpeedUsed < (SK_U8)SK_LSPEED_STAT_1000MBPS) &&
pPrt->PLinkModeStatus == (SK_U8)SK_LMODE_STAT_AUTOHALF)) {
/* set Pause Off */
PauseMode = (SK_U8)GMC_PAUSE_OFF;
}
SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), PauseMode);
return(SK_AND_OK);
} /* SkGmAutoNegDoneMarv */
#endif /* YUKON */
#ifdef OTHER_PHY
/******************************************************************************
*
* SkXmAutoNegDoneLone() - Auto-negotiation handling
*
* Description:
* This function handles the auto-negotiation if the Done bit is set.
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
static int SkXmAutoNegDoneLone(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 ResAb; /* Resolved Ability */
SK_U16 LinkPartAb; /* Link Partner Ability */
SK_U16 QuickStat; /* Auxiliary Status */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegDoneLone, Port %d\n", Port));
pPrt = &pAC->GIni.GP[Port];
/* Get PHY parameters */
SkXmPhyRead(pAC, IoC, Port, PHY_LONE_AUNE_LP, &LinkPartAb);
SkXmPhyRead(pAC, IoC, Port, PHY_LONE_1000T_STAT, &ResAb);
SkXmPhyRead(pAC, IoC, Port, PHY_LONE_Q_STAT, &QuickStat);
if ((LinkPartAb & PHY_L_AN_RF) != 0) {
/* Remote fault bit is set */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("AutoNegFail: Remote fault bit set Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
return(SK_AND_OTHER);
}
/* Check Duplex mismatch */
if ((QuickStat & PHY_L_QS_DUP_MOD) != 0) {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOFULL;
}
else {
pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_AUTOHALF;
}
/* Check Master/Slave resolution */
if ((ResAb & PHY_L_1000S_MSF) != 0) {
/* Error */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("Master/Slave Fault Port %d\n", Port));
pPrt->PAutoNegFail = SK_TRUE;
pPrt->PMSStatus = SK_MS_STAT_FAULT;
return(SK_AND_OTHER);
}
pPrt->PMSStatus = ((ResAb & PHY_L_1000S_MSR) != 0) ?
(SK_U8)SK_MS_STAT_MASTER : (SK_U8)SK_MS_STAT_SLAVE;
/* Check PAUSE mismatch */
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
/* we must manually resolve the abilities here */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_NONE;
switch (pPrt->PFlowCtrlMode) {
case SK_FLOW_MODE_NONE:
/* default */
break;
case SK_FLOW_MODE_LOC_SEND:
if ((QuickStat & (PHY_L_QS_PAUSE | PHY_L_QS_AS_PAUSE)) ==
(PHY_L_QS_PAUSE | PHY_L_QS_AS_PAUSE)) {
/* disable PAUSE receive, enable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_LOC_SEND;
}
break;
case SK_FLOW_MODE_SYMMETRIC:
if ((QuickStat & PHY_L_QS_PAUSE) != 0) {
/* Symmetric PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_SYMMETRIC;
}
break;
case SK_FLOW_MODE_SYM_OR_REM:
if ((QuickStat & (PHY_L_QS_PAUSE | PHY_L_QS_AS_PAUSE)) ==
PHY_L_QS_AS_PAUSE) {
/* enable PAUSE receive, disable PAUSE transmit */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_REM_SEND;
}
else if ((QuickStat & PHY_L_QS_PAUSE) != 0) {
/* Symmetric PAUSE */
pPrt->PFlowCtrlStatus = SK_FLOW_STAT_SYMMETRIC;
}
break;
default:
SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E016,
SKERR_HWI_E016MSG);
}
return(SK_AND_OK);
} /* SkXmAutoNegDoneLone */
/******************************************************************************
*
* SkXmAutoNegDoneNat() - Auto-negotiation handling
*
* Description:
* This function handles the auto-negotiation if the Done bit is set.
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
static int SkXmAutoNegDoneNat(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
/* todo: National */
return(SK_AND_OK);
} /* SkXmAutoNegDoneNat */
#endif /* OTHER_PHY */
/******************************************************************************
*
* SkMacAutoNegDone() - Auto-negotiation handling
*
* Description: calls the auto-negotiation done routines dep. on board type
*
* Returns:
* SK_AND_OK o.k.
* SK_AND_DUP_CAP Duplex capability error happened
* SK_AND_OTHER Other error happened
*/
int SkMacAutoNegDone(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
int Rtv;
Rtv = SK_AND_OK;
pPrt = &pAC->GIni.GP[Port];
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
switch (pPrt->PhyType) {
case SK_PHY_XMAC:
Rtv = SkXmAutoNegDoneXmac(pAC, IoC, Port);
break;
case SK_PHY_BCOM:
Rtv = SkXmAutoNegDoneBcom(pAC, IoC, Port);
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
Rtv = SkXmAutoNegDoneLone(pAC, IoC, Port);
break;
case SK_PHY_NAT:
Rtv = SkXmAutoNegDoneNat(pAC, IoC, Port);
break;
#endif /* OTHER_PHY */
default:
return(SK_AND_OTHER);
}
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
Rtv = SkGmAutoNegDoneMarv(pAC, IoC, Port);
}
#endif /* YUKON */
if (Rtv != SK_AND_OK) {
return(Rtv);
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNeg done Port %d\n", Port));
/* We checked everything and may now enable the link */
pPrt->PAutoNegFail = SK_FALSE;
SkMacRxTxEnable(pAC, IoC, Port);
return(SK_AND_OK);
} /* SkMacAutoNegDone */
#ifndef SK_SLIM
#ifdef GENESIS
/******************************************************************************
*
* SkXmSetRxTxEn() - Special Set Rx/Tx Enable and some features in XMAC
*
* Description:
* sets MAC or PHY LoopBack and Duplex Mode in the MMU Command Reg.
* enables Rx/Tx
*
* Returns: N/A
*/
static void SkXmSetRxTxEn(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Para) /* Parameter to set: MAC or PHY LoopBack, Duplex Mode */
{
SK_U16 Word;
XM_IN16(IoC, Port, XM_MMU_CMD, &Word);
switch (Para & (SK_MAC_LOOPB_ON | SK_MAC_LOOPB_OFF)) {
case SK_MAC_LOOPB_ON:
Word |= XM_MMU_MAC_LB;
break;
case SK_MAC_LOOPB_OFF:
Word &= ~XM_MMU_MAC_LB;
break;
}
switch (Para & (SK_PHY_LOOPB_ON | SK_PHY_LOOPB_OFF)) {
case SK_PHY_LOOPB_ON:
Word |= XM_MMU_GMII_LOOP;
break;
case SK_PHY_LOOPB_OFF:
Word &= ~XM_MMU_GMII_LOOP;
break;
}
switch (Para & (SK_PHY_FULLD_ON | SK_PHY_FULLD_OFF)) {
case SK_PHY_FULLD_ON:
Word |= XM_MMU_GMII_FD;
break;
case SK_PHY_FULLD_OFF:
Word &= ~XM_MMU_GMII_FD;
break;
}
XM_OUT16(IoC, Port, XM_MMU_CMD, Word | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
/* dummy read to ensure writing */
XM_IN16(IoC, Port, XM_MMU_CMD, &Word);
} /* SkXmSetRxTxEn */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmSetRxTxEn() - Special Set Rx/Tx Enable and some features in GMAC
*
* Description:
* sets MAC LoopBack and Duplex Mode in the General Purpose Control Reg.
* enables Rx/Tx
*
* Returns: N/A
*/
static void SkGmSetRxTxEn(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Para) /* Parameter to set: MAC LoopBack, Duplex Mode */
{
SK_U16 Ctrl;
GM_IN16(IoC, Port, GM_GP_CTRL, &Ctrl);
switch (Para & (SK_MAC_LOOPB_ON | SK_MAC_LOOPB_OFF)) {
case SK_MAC_LOOPB_ON:
Ctrl |= GM_GPCR_LOOP_ENA;
break;
case SK_MAC_LOOPB_OFF:
Ctrl &= ~GM_GPCR_LOOP_ENA;
break;
}
switch (Para & (SK_PHY_FULLD_ON | SK_PHY_FULLD_OFF)) {
case SK_PHY_FULLD_ON:
Ctrl |= GM_GPCR_DUP_FULL;
break;
case SK_PHY_FULLD_OFF:
Ctrl &= ~GM_GPCR_DUP_FULL;
break;
}
GM_OUT16(IoC, Port, GM_GP_CTRL, Ctrl | GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
} /* SkGmSetRxTxEn */
#endif /* YUKON */
/******************************************************************************
*
* SkMacSetRxTxEn() - Special Set Rx/Tx Enable and parameters
*
* Description: calls the Special Set Rx/Tx Enable routines dep. on board type
*
* Returns: N/A
*/
void SkMacSetRxTxEn(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
int Para)
{
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
SkXmSetRxTxEn(pAC, IoC, Port, Para);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
SkGmSetRxTxEn(pAC, IoC, Port, Para);
}
#endif /* YUKON */
} /* SkMacSetRxTxEn */
#endif /* !SK_SLIM */
/******************************************************************************
*
* SkMacRxTxEnable() - Enable Rx/Tx activity if port is up
*
* Description: enables Rx/Tx dep. on board type
*
* Returns:
* 0 o.k.
* != 0 Error happened
*/
int SkMacRxTxEnable(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 Reg; /* 16-bit register value */
SK_U16 IntMask; /* MAC interrupt mask */
#ifdef GENESIS
SK_U16 SWord;
#endif
pPrt = &pAC->GIni.GP[Port];
if (!pPrt->PHWLinkUp) {
/* The Hardware link is NOT up */
return(0);
}
if ((pPrt->PLinkMode == SK_LMODE_AUTOHALF ||
pPrt->PLinkMode == SK_LMODE_AUTOFULL ||
pPrt->PLinkMode == SK_LMODE_AUTOBOTH) &&
pPrt->PAutoNegFail) {
/* Auto-negotiation is not done or failed */
return(0);
}
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* set Duplex Mode and Pause Mode */
SkXmInitDupMd(pAC, IoC, Port);
SkXmInitPauseMd(pAC, IoC, Port);
/*
* Initialize the Interrupt Mask Register. Default IRQs are...
* - Link Asynchronous Event
* - Link Partner requests config
* - Auto Negotiation Done
* - Rx Counter Event Overflow
* - Tx Counter Event Overflow
* - Transmit FIFO Underrun
*/
IntMask = XM_DEF_MSK;
#ifdef DEBUG
/* add IRQ for Receive FIFO Overflow */
IntMask &= ~XM_IS_RXF_OV;
#endif /* DEBUG */
if (pPrt->PhyType != SK_PHY_XMAC) {
/* disable GP0 interrupt bit */
IntMask |= XM_IS_INP_ASS;
}
XM_OUT16(IoC, Port, XM_IMSK, IntMask);
/* get MMU Command Reg. */
XM_IN16(IoC, Port, XM_MMU_CMD, &Reg);
if (pPrt->PhyType != SK_PHY_XMAC &&
(pPrt->PLinkModeStatus == SK_LMODE_STAT_FULL ||
pPrt->PLinkModeStatus == SK_LMODE_STAT_AUTOFULL)) {
/* set to Full Duplex */
Reg |= XM_MMU_GMII_FD;
}
switch (pPrt->PhyType) {
case SK_PHY_BCOM:
/*
* Workaround BCOM Errata (#10523) for all BCom Phys
* Enable Power Management after link up
*/
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_AUX_CTRL, &SWord);
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_AUX_CTRL,
(SK_U16)(SWord & ~PHY_B_AC_DIS_PM));
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_INT_MASK,
(SK_U16)PHY_B_DEF_MSK);
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_INT_ENAB, PHY_L_DEF_MSK);
break;
case SK_PHY_NAT:
/* todo National:
SkXmPhyWrite(pAC, IoC, Port, PHY_NAT_INT_MASK, PHY_N_DEF_MSK); */
/* no interrupts possible from National ??? */
break;
#endif /* OTHER_PHY */
}
/* enable Rx/Tx */
XM_OUT16(IoC, Port, XM_MMU_CMD, Reg | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/*
* Initialize the Interrupt Mask Register. Default IRQs are...
* - Rx Counter Event Overflow
* - Tx Counter Event Overflow
* - Transmit FIFO Underrun
*/
IntMask = GMAC_DEF_MSK;
#if (defined(DEBUG) || defined(YUK2)) && (!defined(SK_SLIM))
/* add IRQ for Receive FIFO Overrun */
IntMask |= GM_IS_RX_FF_OR;
#endif
SK_OUT8(IoC, MR_ADDR(Port, GMAC_IRQ_MSK), (SK_U8)IntMask);
/* get General Purpose Control */
GM_IN16(IoC, Port, GM_GP_CTRL, &Reg);
if (pPrt->PLinkModeStatus == SK_LMODE_STAT_FULL ||
pPrt->PLinkModeStatus == SK_LMODE_STAT_AUTOFULL) {
/* set to Full Duplex */
Reg |= GM_GPCR_DUP_FULL;
#ifndef SK_SLIM
if (HW_FEATURE(pAC, HWF_FORCE_AUTO_NEG) &&
pPrt->PLinkModeConf < SK_LMODE_AUTOHALF) {
/* disable auto-update for speed, duplex and flow-control */
Reg |= GM_GPCR_AU_ALL_DIS;
}
#endif /* !SK_SLIM */
}
/* WA for dev. #4.209 */
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U &&
pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A1) {
/* enable/disable Store & Forward mode for TX */
SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T),
pPrt->PLinkSpeedUsed != (SK_U8)SK_LSPEED_STAT_1000MBPS ?
TX_STFW_ENA : TX_STFW_DIS);
}
/* enable Rx/Tx */
GM_OUT16(IoC, Port, GM_GP_CTRL, Reg | GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
}
#endif /* YUKON */
pAC->GIni.GP[Port].PState = SK_PRT_RUN;
return(0);
} /* SkMacRxTxEnable */
/******************************************************************************
*
* SkMacRxTxDisable() - Disable Receiver and Transmitter
*
* Description: disables Rx/Tx dep. on board type
*
* Returns: N/A
*/
void SkMacRxTxDisable(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_U16 Word;
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
XM_IN16(IoC, Port, XM_MMU_CMD, &Word);
Word &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
XM_OUT16(IoC, Port, XM_MMU_CMD, Word);
/* dummy read to ensure writing */
XM_IN16(IoC, Port, XM_MMU_CMD, &Word);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
GM_IN16(IoC, Port, GM_GP_CTRL, &Word);
Word &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
GM_OUT16(IoC, Port, GM_GP_CTRL, Word);
}
#endif /* YUKON */
} /* SkMacRxTxDisable */
/******************************************************************************
*
* SkMacIrqDisable() - Disable IRQ from MAC
*
* Description: sets the IRQ-mask to disable IRQ dep. on board type
*
* Returns: N/A
*/
void SkMacIrqDisable(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
SK_GEPORT *pPrt;
SK_U16 Word;
pPrt = &pAC->GIni.GP[Port];
if (pAC->GIni.GIGenesis) {
/* disable all XMAC IRQs */
XM_OUT16(IoC, Port, XM_IMSK, 0xffff);
/* disable all PHY interrupts */
switch (pPrt->PhyType) {
case SK_PHY_BCOM:
/* Make sure that PHY is initialized */
if (pPrt->PState != SK_PRT_RESET) {
/* NOT allowed if BCOM is in RESET state */
/* Workaround BCOM Errata (#10523) all BCom */
/* disable Power Management if link is down */
SkXmPhyRead(pAC, IoC, Port, PHY_BCOM_AUX_CTRL, &Word);
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_AUX_CTRL,
(SK_U16)(Word | PHY_B_AC_DIS_PM));
SkXmPhyWrite(pAC, IoC, Port, PHY_BCOM_INT_MASK, 0xffff);
}
break;
#ifdef OTHER_PHY
case SK_PHY_LONE:
SkXmPhyWrite(pAC, IoC, Port, PHY_LONE_INT_ENAB, 0);
break;
case SK_PHY_NAT:
/* todo: National
SkXmPhyWrite(pAC, IoC, Port, PHY_NAT_INT_MASK, 0xffff); */
break;
#endif /* OTHER_PHY */
}
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* disable all GMAC IRQs */
SK_OUT8(IoC, MR_ADDR(Port, GMAC_IRQ_MSK), 0);
#ifndef VCPU
/* disable all PHY interrupts */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_INT_MASK, 0);
#endif /* !VCPU */
}
#endif /* YUKON */
} /* SkMacIrqDisable */
#ifdef SK_DIAG
/******************************************************************************
*
* SkXmSendCont() - Enable / Disable Send Continuous Mode
*
* Description: enable / disable Send Continuous Mode on XMAC resp.
* Packet Generation on GPHY
*
* Returns:
* nothing
*/
void SkXmSendCont(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL Enable) /* Enable / Disable */
{
SK_U16 Reg;
SK_U16 Save;
SK_U32 MdReg;
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
if (Enable) {
MdReg |= XM_MD_TX_CONT;
}
else {
MdReg &= ~XM_MD_TX_CONT;
}
/* setup Mode Register */
XM_OUT32(IoC, Port, XM_MODE, MdReg);
}
else {
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) {
/* select page 18 */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_ADDR, 18);
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PAGE_DATA, &Reg);
Reg &= ~0x003c; /* clear bits 5..2 */
if (Enable) {
/* enable packet generation, 1518 byte length */
Reg |= (BIT_5S | BIT_3S);
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, Reg);
}
else if (pAC->GIni.GIChipId == CHIP_ID_YUKON_XL) {
/* save page register */
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_EXT_ADR, &Save);
/* select page 6 to access Packet Generation register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 6);
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_PHY_CTRL, &Reg);
Reg &= ~0x003f; /* clear bits 5..0 */
if (Enable) {
/* enable packet generation, 1518 byte length */
Reg |= (BIT_3S | BIT_1S);
}
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PHY_CTRL, Reg);
/* restore page register */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, Save);
}
}
} /* SkXmSendCont */
/******************************************************************************
*
* SkMacTimeStamp() - Enable / Disable Time Stamp
*
* Description: enable / disable Time Stamp generation for Rx packets
*
* Returns:
* nothing
*/
void SkMacTimeStamp(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL Enable) /* Enable / Disable */
{
SK_U32 MdReg;
SK_U8 TimeCtrl;
if (pAC->GIni.GIGenesis) {
XM_IN32(IoC, Port, XM_MODE, &MdReg);
if (Enable) {
MdReg |= XM_MD_ATS;
}
else {
MdReg &= ~XM_MD_ATS;
}
/* setup Mode Register */
XM_OUT32(IoC, Port, XM_MODE, MdReg);
}
else {
if (Enable) {
TimeCtrl = GMT_ST_START | GMT_ST_CLR_IRQ;
}
else {
TimeCtrl = GMT_ST_STOP | GMT_ST_CLR_IRQ;
}
/* Start/Stop Time Stamp Timer */
SK_OUT8(IoC, GMAC_TI_ST_CTRL, TimeCtrl);
}
} /* SkMacTimeStamp*/
#else /* !SK_DIAG */
#ifdef GENESIS
/******************************************************************************
*
* SkXmAutoNegLipaXmac() - Decides whether Link Partner could do auto-neg
*
* This function analyses the Interrupt status word. If any of the
* Auto-negotiating interrupt bits are set, the PLipaAutoNeg variable
* is set true.
*/
void SkXmAutoNegLipaXmac(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_U16 IStatus) /* Interrupt Status word to analyse */
{
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PLipaAutoNeg != SK_LIPA_AUTO &&
(IStatus & (XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND)) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegLipa: AutoNeg detected on Port %d, IStatus = 0x%04X\n",
Port, IStatus));
pPrt->PLipaAutoNeg = SK_LIPA_AUTO;
}
} /* SkXmAutoNegLipaXmac */
#endif /* GENESIS */
/******************************************************************************
*
* SkMacAutoNegLipaPhy() - Decides whether Link Partner could do auto-neg
*
* This function analyses the PHY status word.
* If any of the Auto-negotiating bits are set, the PLipaAutoNeg variable
* is set true.
*/
void SkMacAutoNegLipaPhy(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_U16 PhyStat) /* PHY Status word to analyse */
{
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PLipaAutoNeg != SK_LIPA_AUTO &&
(PhyStat & PHY_ST_AN_OVER) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("AutoNegLipa: AutoNeg detected on Port %d, PhyStat = 0x%04X\n",
Port, PhyStat));
pPrt->PLipaAutoNeg = SK_LIPA_AUTO;
}
} /* SkMacAutoNegLipaPhy */
#ifdef GENESIS
/******************************************************************************
*
* SkXmIrq() - Interrupt Service Routine
*
* Description: services an Interrupt Request of the XMAC
*
* Note:
* With an external PHY, some interrupt bits are not meaningfull any more:
* - LinkAsyncEvent (bit #14) XM_IS_LNK_AE
* - LinkPartnerReqConfig (bit #10) XM_IS_LIPA_RC
* - Page Received (bit #9) XM_IS_RX_PAGE
* - NextPageLoadedForXmt (bit #8) XM_IS_TX_PAGE
* - AutoNegDone (bit #7) XM_IS_AND
* Also probably not valid any more is the GP0 input bit:
* - GPRegisterBit0set XM_IS_INP_ASS
*
* Returns:
* nothing
*/
static void SkXmIrq(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 IStatus; /* Interrupt status read from the XMAC */
SK_U16 IStatus2;
#ifdef SK_SLIM
SK_U64 OverflowStatus;
#else
SK_EVPARA Para;
#endif /* SK_SLIM */
pPrt = &pAC->GIni.GP[Port];
XM_IN16(IoC, Port, XM_ISRC, &IStatus);
/* LinkPartner Auto-negable? */
if (pPrt->PhyType == SK_PHY_XMAC) {
SkXmAutoNegLipaXmac(pAC, IoC, Port, IStatus);
}
else {
/* mask bits that are not used with ext. PHY */
IStatus &= ~(XM_IS_LNK_AE | XM_IS_LIPA_RC |
XM_IS_RX_PAGE | XM_IS_TX_PAGE |
XM_IS_AND | XM_IS_INP_ASS);
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_IRQ,
("XmacIrq Port %d Isr 0x%04X\n", Port, IStatus));
if (!pPrt->PHWLinkUp) {
/* Spurious XMAC interrupt */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_IRQ,
("SkXmIrq: spurious interrupt on Port %d\n", Port));
return;
}
if ((IStatus & XM_IS_INP_ASS) != 0) {
/* Reread ISR Register if link is not in sync */
XM_IN16(IoC, Port, XM_ISRC, &IStatus2);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_IRQ,
("SkXmIrq: Link async. Double check Port %d 0x%04X 0x%04X\n",
Port, IStatus, IStatus2));
IStatus &= ~XM_IS_INP_ASS;
IStatus |= IStatus2;
}
if ((IStatus & XM_IS_LNK_AE) != 0) {
/* not used, GP0 is used instead */
}
if ((IStatus & XM_IS_TX_ABORT) != 0) {
/* not used */
}
if ((IStatus & XM_IS_FRC_INT) != 0) {
/* not used, use ASIC IRQ instead if needed */
}
if ((IStatus & (XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE)) != 0) {
SkHWLinkDown(pAC, IoC, Port);
/* Signal to RLMT */
Para.Para32[0] = (SK_U32)Port;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_LINK_DOWN, Para);
/* Start workaround Errata #2 timer */
SkTimerStart(pAC, IoC, &pPrt->PWaTimer, SK_WA_INA_TIME,
SKGE_HWAC, SK_HWEV_WATIM, Para);
}
if ((IStatus & XM_IS_RX_PAGE) != 0) {
/* not used */
}
if ((IStatus & XM_IS_TX_PAGE) != 0) {
/* not used */
}
if ((IStatus & XM_IS_AND) != 0) {
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_IRQ,
("SkXmIrq: AND on link that is up Port %d\n", Port));
}
if ((IStatus & XM_IS_TSC_OV) != 0) {
/* not used */
}
/* Combined Tx & Rx Counter Overflow SIRQ Event */
if ((IStatus & (XM_IS_RXC_OV | XM_IS_TXC_OV)) != 0) {
#ifdef SK_SLIM
SkXmOverflowStatus(pAC, IoC, Port, IStatus, &OverflowStatus);
#else
# ifdef SK_PNMI_SUPPORT
Para.Para32[0] = (SK_U32)Port;
Para.Para32[1] = (SK_U32)IStatus;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_SIRQ_OVERFLOW, Para);
# endif
#endif /* SK_SLIM */
}
if ((IStatus & XM_IS_RXF_OV) != 0) {
/* normal situation -> no effect */
#ifdef DEBUG
pPrt->PRxOverCnt++;
#endif /* DEBUG */
}
if ((IStatus & XM_IS_TXF_UR) != 0) {
/* may NOT happen -> error log */
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_SIRQ_E020, SKERR_SIRQ_E020MSG);
}
if ((IStatus & XM_IS_TX_COMP) != 0) {
/* not served here */
}
if ((IStatus & XM_IS_RX_COMP) != 0) {
/* not served here */
}
} /* SkXmIrq */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmIrq() - Interrupt Service Routine
*
* Description: services an Interrupt Request of the GMAC
*
* Note:
*
* Returns:
* nothing
*/
static void SkGmIrq(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U8 IStatus; /* Interrupt status */
#ifdef SK_SLIM
SK_U64 OverflowStatus;
#else
SK_EVPARA Para;
#endif /* SK_SLIM */
pPrt = &pAC->GIni.GP[Port];
SK_IN8(IoC, MR_ADDR(Port, GMAC_IRQ_SRC), &IStatus);
#ifdef XXX
/* LinkPartner Auto-negable? */
SkMacAutoNegLipaPhy(pAC, IoC, Port, IStatus);
#endif /* XXX */
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_IRQ,
("GmacIrq Port %d Isr 0x%02X\n", Port, IStatus));
/* Combined Tx & Rx Counter Overflow SIRQ Event */
if (IStatus & (GM_IS_RX_CO_OV | GM_IS_TX_CO_OV)) {
/* these IRQs will be cleared by reading GMACs register */
#ifdef SK_SLIM
SkGmOverflowStatus(pAC, IoC, Port, (SK_U16)IStatus, &OverflowStatus);
#else
# ifdef SK_PNMI_SUPPORT
Para.Para32[0] = (SK_U32)Port;
Para.Para32[1] = (SK_U32)IStatus;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_SIRQ_OVERFLOW, Para);
# endif
#endif /* SK_SLIM */
}
#ifndef SK_SLIM
if (IStatus & GM_IS_RX_FF_OR) {
/* clear GMAC Rx FIFO Overrun IRQ */
SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_CLI_RX_FO);
Para.Para64 = Port;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_RX_OVERFLOW, Para);
#ifdef DEBUG
pPrt->PRxOverCnt++;
#endif /* DEBUG */
}
#endif /* !SK_SLIM */
if (IStatus & GM_IS_TX_FF_UR) {
/* clear GMAC Tx FIFO Underrun IRQ */
SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_CLI_TX_FU);
/* may NOT happen -> error log */
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_SIRQ_E020, SKERR_SIRQ_E020MSG);
}
if (IStatus & GM_IS_TX_COMPL) {
/* not served here */
}
if (IStatus & GM_IS_RX_COMPL) {
/* not served here */
}
} /* SkGmIrq */
#endif /* YUKON */
/******************************************************************************
*
* SkMacIrq() - Interrupt Service Routine for MAC
*
* Description: calls the Interrupt Service Routine dep. on board type
*
* Returns:
* nothing
*/
void SkMacIrq(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port) /* Port Index (MAC_1 + n) */
{
#ifdef GENESIS
if (pAC->GIni.GIGenesis) {
/* IRQ from XMAC */
SkXmIrq(pAC, IoC, Port);
}
#endif /* GENESIS */
#ifdef YUKON
if (pAC->GIni.GIYukon) {
/* IRQ from GMAC */
SkGmIrq(pAC, IoC, Port);
}
#endif /* YUKON */
} /* SkMacIrq */
#endif /* !SK_DIAG */
#ifdef GENESIS
/******************************************************************************
*
* SkXmUpdateStats() - Force the XMAC to output the current statistic
*
* Description:
* The XMAC holds its statistic internally. To obtain the current
* values a command must be sent so that the statistic data will
* be written to a predefined memory area on the adapter.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkXmUpdateStats(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port) /* Port Index (MAC_1 + n) */
{
SK_GEPORT *pPrt;
SK_U16 StatReg;
int WaitIndex;
pPrt = &pAC->GIni.GP[Port];
WaitIndex = 0;
/* Send an update command to XMAC specified */
XM_OUT16(IoC, Port, XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
/*
* It is an auto-clearing register. If the command bits
* went to zero again, the statistics are transferred.
* Normally the command should be executed immediately.
* But just to be sure we execute a loop.
*/
do {
XM_IN16(IoC, Port, XM_STAT_CMD, &StatReg);
if (++WaitIndex > 10) {
SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E021, SKERR_HWI_E021MSG);
return(1);
}
} while ((StatReg & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) != 0);
return(0);
} /* SkXmUpdateStats */
/******************************************************************************
*
* SkXmMacStatistic() - Get XMAC counter value
*
* Description:
* Gets the 32bit counter value. Except for the octet counters
* the lower 32bit are counted in hardware and the upper 32bit
* must be counted in software by monitoring counter overflow interrupts.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkXmMacStatistic(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port, /* Port Index (MAC_1 + n) */
SK_U16 StatAddr, /* MIB counter base address */
SK_U32 SK_FAR *pVal) /* Pointer to return statistic value */
{
if ((StatAddr < XM_TXF_OK) || (StatAddr > XM_RXF_MAX_SZ)) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E022, SKERR_HWI_E022MSG);
return(1);
}
XM_IN32(IoC, Port, StatAddr, pVal);
return(0);
} /* SkXmMacStatistic */
/******************************************************************************
*
* SkXmResetCounter() - Clear MAC statistic counter
*
* Description:
* Force the XMAC to clear its statistic counter.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkXmResetCounter(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port) /* Port Index (MAC_1 + n) */
{
XM_OUT16(IoC, Port, XM_STAT_CMD, XM_SC_CLR_RXC | XM_SC_CLR_TXC);
/* Clear two times according to XMAC Errata #3 */
XM_OUT16(IoC, Port, XM_STAT_CMD, XM_SC_CLR_RXC | XM_SC_CLR_TXC);
return(0);
} /* SkXmResetCounter */
/******************************************************************************
*
* SkXmOverflowStatus() - Gets the status of counter overflow interrupt
*
* Description:
* Checks the source causing an counter overflow interrupt. On success the
* resulting counter overflow status is written to <pStatus>, whereas the
* upper dword stores the XMAC ReceiveCounterEvent register and the lower
* dword the XMAC TransmitCounterEvent register.
*
* Note:
* For XMAC the interrupt source is a self-clearing register, so the source
* must be checked only once. SIRQ module does another check to be sure
* that no interrupt get lost during process time.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkXmOverflowStatus(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port, /* Port Index (MAC_1 + n) */
SK_U16 IStatus, /* Interrupt Status from MAC */
SK_U64 SK_FAR *pStatus) /* Pointer for return overflow status value */
{
SK_U64 Status; /* Overflow status */
SK_U32 RegVal;
Status = 0;
if ((IStatus & XM_IS_RXC_OV) != 0) {
XM_IN32(IoC, Port, XM_RX_CNT_EV, &RegVal);
Status |= (SK_U64)RegVal << 32;
}
if ((IStatus & XM_IS_TXC_OV) != 0) {
XM_IN32(IoC, Port, XM_TX_CNT_EV, &RegVal);
Status |= (SK_U64)RegVal;
}
*pStatus = Status;
return(0);
} /* SkXmOverflowStatus */
#endif /* GENESIS */
#ifdef YUKON
/******************************************************************************
*
* SkGmUpdateStats() - Force the GMAC to output the current statistic
*
* Description:
* Empty function for GMAC. Statistic data is accessible in direct way.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkGmUpdateStats(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port) /* Port Index (MAC_1 + n) */
{
return(0);
}
/******************************************************************************
*
* SkGmMacStatistic() - Get GMAC counter value
*
* Description:
* Gets the 32bit counter value. Except for the octet counters
* the lower 32bit are counted in hardware and the upper 32bit
* must be counted in software by monitoring counter overflow interrupts.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkGmMacStatistic(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port, /* Port Index (MAC_1 + n) */
SK_U16 StatAddr, /* MIB counter base address */
SK_U32 SK_FAR *pVal) /* Pointer to return statistic value */
{
if ((StatAddr < GM_RXF_UC_OK) || (StatAddr > GM_TXE_FIFO_UR)) {
SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E022, SKERR_HWI_E022MSG);
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR,
("SkGmMacStat: wrong MIB counter 0x%04X\n", StatAddr));
return(1);
}
GM_IN32(IoC, Port, StatAddr, pVal);
/* dummy read after GM_IN32() */
SK_IN16(IoC, B0_RAP, &StatAddr);
return(0);
} /* SkGmMacStatistic */
/******************************************************************************
*
* SkGmResetCounter() - Clear MAC statistic counter
*
* Description:
* Force GMAC to clear its statistic counter.
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkGmResetCounter(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port) /* Port Index (MAC_1 + n) */
{
SK_U16 Reg; /* PHY Address Register */
SK_U16 Word;
int i;
GM_IN16(IoC, Port, GM_PHY_ADDR, &Reg);
/* set MIB Clear Counter Mode */
GM_OUT16(IoC, Port, GM_PHY_ADDR, Reg | GM_PAR_MIB_CLR);
/* read all MIB Counters with Clear Mode set */
for (i = 0; i < GM_MIB_CNT_SIZE; i++) {
/* the reset is performed only when the lower 16 bits are read */
GM_IN16(IoC, Port, GM_MIB_CNT_BASE + 8*i, &Word);
}
/* clear MIB Clear Counter Mode */
GM_OUT16(IoC, Port, GM_PHY_ADDR, Reg);
return(0);
} /* SkGmResetCounter */
/******************************************************************************
*
* SkGmOverflowStatus() - Gets the status of counter overflow interrupt
*
* Description:
* Checks the source causing an counter overflow interrupt. On success the
* resulting counter overflow status is written to <pStatus>, whereas the
* the following bit coding is used:
* 63:56 - unused
* 55:48 - TxRx interrupt register bit 7:0
* 47:32 - Rx interrupt register
* 31:24 - unused
* 23:16 - TxRx interrupt register bit 15:8
* 15: 0 - Tx interrupt register
*
* Returns:
* 0: success
* 1: something went wrong
*/
int SkGmOverflowStatus(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
unsigned int Port, /* Port Index (MAC_1 + n) */
SK_U16 IStatus, /* Interrupt Status from MAC */
SK_U64 SK_FAR *pStatus) /* Pointer for return overflow status value */
{
SK_U16 RegVal;
#ifndef SK_SLIM
SK_U64 Status; /* Overflow status */
Status = 0;
#endif /* !SK_SLIM */
if ((IStatus & GM_IS_RX_CO_OV) != 0) {
/* this register is self-clearing after read */
GM_IN16(IoC, Port, GM_RX_IRQ_SRC, &RegVal);
#ifndef SK_SLIM
Status |= (SK_U64)RegVal << 32;
#endif /* !SK_SLIM */
}
if ((IStatus & GM_IS_TX_CO_OV) != 0) {
/* this register is self-clearing after read */
GM_IN16(IoC, Port, GM_TX_IRQ_SRC, &RegVal);
#ifndef SK_SLIM
Status |= (SK_U64)RegVal;
#endif /* !SK_SLIM */
}
/* this register is self-clearing after read */
GM_IN16(IoC, Port, GM_TR_IRQ_SRC, &RegVal);
#ifndef SK_SLIM
/* Rx overflow interrupt register bits (LoByte)*/
Status |= (SK_U64)((SK_U8)RegVal) << 48;
/* Tx overflow interrupt register bits (HiByte)*/
Status |= (SK_U64)(RegVal >> 8) << 16;
*pStatus = Status;
#endif /* !SK_SLIM */
/* dummy read after GM_IN16() */
SK_IN16(IoC, B0_RAP, &RegVal);
return(0);
} /* SkGmOverflowStatus */
#ifndef SK_SLIM
/******************************************************************************
*
* SkGmCableDiagStatus() - Starts / Gets status of cable diagnostic test
*
* Description:
* starts the cable diagnostic test if 'StartTest' is true
* gets the results if 'StartTest' is true
*
* NOTE: this test is meaningful only when link is down
*
* Returns:
* 0: success
* 1: no YUKON copper
* 2: test in progress
*/
int SkGmCableDiagStatus(
SK_AC *pAC, /* Adapter Context */
SK_IOC IoC, /* I/O Context */
int Port, /* Port Index (MAC_1 + n) */
SK_BOOL StartTest) /* flag for start / get result */
{
int i;
int CableDiagOffs;
int MdiPairs;
int Rtv;
SK_BOOL FastEthernet;
SK_BOOL Yukon2;
SK_U16 RegVal;
SK_GEPORT *pPrt;
pPrt = &pAC->GIni.GP[Port];
if (pPrt->PhyType != SK_PHY_MARV_COPPER) {
return(1);
}
Yukon2 = pAC->GIni.GIChipId == CHIP_ID_YUKON_XL ||
pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U;
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_FE) {
CableDiagOffs = PHY_MARV_FE_VCT_TX;
FastEthernet = SK_TRUE;
MdiPairs = 2;
}
else {
CableDiagOffs = Yukon2 ? PHY_MARV_PHY_CTRL : PHY_MARV_CABLE_DIAG;
FastEthernet = SK_FALSE;
MdiPairs = 4;
}
if (StartTest) {
/* set to RESET to avoid PortCheckUp */
pPrt->PState = SK_PRT_RESET;
/* only start the cable test */
if (!FastEthernet) {
if ((((pPrt->PhyId1 & PHY_I1_MOD_NUM) >> 4) == 2) &&
((pPrt->PhyId1 & PHY_I1_REV_MSK) < 4)) {
/* apply TDR workaround for model 2, rev. < 4 */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_ADDR, 0x001e);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xcc00);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xc800);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xc400);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xc000);
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_PAGE_DATA, 0xc100);
}
#ifdef YUKON_DBG
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) {
/* set address to 1 for page 1 */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 1);
/* disable waiting period */
SkGmPhyWrite(pAC, IoC, Port, CableDiagOffs,
PHY_M_CABD_DIS_WAIT);
}
#endif
if (Yukon2) {
/* set address to 5 for page 5 */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 5);
#ifdef YUKON_DBG
/* disable waiting period */
SkGmPhyWrite(pAC, IoC, Port, CableDiagOffs + 1,
PHY_M_CABD_DIS_WAIT);
#endif
}
else {
/* set address to 0 for MDI[0] (Page 0) */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, 0);
}
}
else {
RegVal = PHY_CT_RESET | PHY_CT_SP100;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_CTRL, RegVal);
#ifdef xYUKON_DBG
SkGmPhyRead(pAC, IoC, Port, PHY_MARV_FE_SPEC_2, &RegVal);
/* disable waiting period */
RegVal |= PHY_M_FESC_DIS_WAIT;
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_FE_SPEC_2, RegVal);
#endif
}
/* start Cable Diagnostic Test */
SkGmPhyWrite(pAC, IoC, Port, CableDiagOffs, PHY_M_CABD_ENA_TEST);
return(0);
}
/* Read Cable Diagnostic Reg */
Rtv = SkGmPhyRead(pAC, IoC, Port, CableDiagOffs, &RegVal);
if (Rtv == 2) {
/* PHY read timeout */
return(3);
}
SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL,
("PHY Cable Diag. = 0x%04X\n", RegVal));
if ((RegVal & PHY_M_CABD_ENA_TEST) != 0) {
/* test is running */
return(2);
}
/* get the test results */
for (i = 0; i < MdiPairs; i++) {
if (!FastEthernet && !Yukon2) {
/* set address to i for MDI[i] */
SkGmPhyWrite(pAC, IoC, Port, PHY_MARV_EXT_ADR, (SK_U16)i);
}
/* get Cable Diagnostic values */
SkGmPhyRead(pAC, IoC, Port, CableDiagOffs, &RegVal);
pPrt->PMdiPairLen[i] = (SK_U8)(RegVal & PHY_M_CABD_DIST_MSK);
pPrt->PMdiPairSts[i] = (SK_U8)((RegVal & PHY_M_CABD_STAT_MSK) >> 13);
if (FastEthernet || Yukon2) {
/* get next register */
CableDiagOffs++;
}
}
return(0);
} /* SkGmCableDiagStatus */
#endif /* !SK_SLIM */
#endif /* YUKON */
/* End of file */
#endif