| /* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, write to the Free |
| Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307 USA. */ |
| |
| /* |
| * ISO C99 Standard: 7.22 Type-generic math <tgmath.h> |
| */ |
| |
| #ifndef _TGMATH_H |
| #define _TGMATH_H 1 |
| |
| /* Include the needed headers. */ |
| #include <math.h> |
| #include <complex.h> |
| |
| |
| /* Since `complex' is currently not really implemented in most C compilers |
| and if it is implemented, the implementations differ. This makes it |
| quite difficult to write a generic implementation of this header. We |
| do not try this for now and instead concentrate only on GNU CC. Once |
| we have more information support for other compilers might follow. */ |
| |
| #if __GNUC_PREREQ (2, 7) |
| |
| # ifdef __NO_LONG_DOUBLE_MATH |
| # define __tgml(fct) fct |
| # else |
| # define __tgml(fct) fct ## l |
| # endif |
| |
| /* This is ugly but unless gcc gets appropriate builtins we have to do |
| something like this. Don't ask how it works. */ |
| |
| /* 1 if 'type' is a floating type, 0 if 'type' is an integer type. |
| Allows for _Bool. Expands to an integer constant expression. */ |
| # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1)) |
| |
| /* The tgmath real type for T, where E is 0 if T is an integer type and |
| 1 for a floating type. */ |
| # define __tgmath_real_type_sub(T, E) \ |
| __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \ |
| : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) |
| |
| /* The tgmath real type of EXPR. */ |
| # define __tgmath_real_type(expr) \ |
| __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr))) |
| |
| |
| /* We have two kinds of generic macros: to support functions which are |
| only defined on real valued parameters and those which are defined |
| for complex functions as well. */ |
| # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ |
| (__extension__ ({ __tgmath_real_type (Val) __tgmres; \ |
| if (sizeof (Val) == sizeof (double) \ |
| || __builtin_classify_type (Val) != 8) \ |
| __tgmres = Fct (Val); \ |
| else if (sizeof (Val) == sizeof (float)) \ |
| __tgmres = Fct##f (Val); \ |
| else \ |
| __tgmres = __tgml(Fct) (Val); \ |
| __tgmres; })) |
| |
| # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ({ __tgmath_real_type (Val1) __tgmres; \ |
| if (sizeof (Val1) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8) \ |
| __tgmres = Fct (Val1, Val2); \ |
| else if (sizeof (Val1) == sizeof (float)) \ |
| __tgmres = Fct##f (Val1, Val2); \ |
| else \ |
| __tgmres = __tgml(Fct) (Val1, Val2); \ |
| __tgmres; })) |
| |
| # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ |
| (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \ |
| if ((sizeof (Val1) > sizeof (double) \ |
| || sizeof (Val2) > sizeof (double)) \ |
| && __builtin_classify_type ((Val1) + (Val2)) == 8) \ |
| __tgmres = __tgml(Fct) (Val1, Val2); \ |
| else if (sizeof (Val1) == sizeof (double) \ |
| || sizeof (Val2) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8) \ |
| __tgmres = Fct (Val1, Val2); \ |
| else \ |
| __tgmres = Fct##f (Val1, Val2); \ |
| __tgmres; })) |
| |
| # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \ |
| if ((sizeof (Val1) > sizeof (double) \ |
| || sizeof (Val2) > sizeof (double)) \ |
| && __builtin_classify_type ((Val1) + (Val2)) == 8) \ |
| __tgmres = __tgml(Fct) (Val1, Val2, Val3); \ |
| else if (sizeof (Val1) == sizeof (double) \ |
| || sizeof (Val2) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8) \ |
| __tgmres = Fct (Val1, Val2, Val3); \ |
| else \ |
| __tgmres = Fct##f (Val1, Val2, Val3); \ |
| __tgmres; })) |
| |
| # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ |
| (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\ |
| if ((sizeof (Val1) > sizeof (double) \ |
| || sizeof (Val2) > sizeof (double) \ |
| || sizeof (Val3) > sizeof (double)) \ |
| && __builtin_classify_type ((Val1) + (Val2) \ |
| + (Val3)) == 8) \ |
| __tgmres = __tgml(Fct) (Val1, Val2, Val3); \ |
| else if (sizeof (Val1) == sizeof (double) \ |
| || sizeof (Val2) == sizeof (double) \ |
| || sizeof (Val3) == sizeof (double) \ |
| || __builtin_classify_type (Val1) != 8 \ |
| || __builtin_classify_type (Val2) != 8 \ |
| || __builtin_classify_type (Val3) != 8) \ |
| __tgmres = Fct (Val1, Val2, Val3); \ |
| else \ |
| __tgmres = Fct##f (Val1, Val2, Val3); \ |
| __tgmres; })) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ |
| (__extension__ ({ __tgmath_real_type (Val) __tgmres; \ |
| if (sizeof (__real__ (Val)) > sizeof (double) \ |
| && __builtin_classify_type (__real__ (Val)) == 8) \ |
| { \ |
| if (sizeof (__real__ (Val)) == sizeof (Val)) \ |
| __tgmres = __tgml(Fct) (Val); \ |
| else \ |
| __tgmres = __tgml(Cfct) (Val); \ |
| } \ |
| else if (sizeof (__real__ (Val)) == sizeof (double) \ |
| || __builtin_classify_type (__real__ (Val)) \ |
| != 8) \ |
| { \ |
| if (sizeof (__real__ (Val)) == sizeof (Val)) \ |
| __tgmres = Fct (Val); \ |
| else \ |
| __tgmres = Cfct (Val); \ |
| } \ |
| else \ |
| { \ |
| if (sizeof (__real__ (Val)) == sizeof (Val)) \ |
| __tgmres = Fct##f (Val); \ |
| else \ |
| __tgmres = Cfct##f (Val); \ |
| } \ |
| __tgmres; })) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \ |
| (__extension__ ({ __tgmath_real_type (Val) __tgmres; \ |
| if (sizeof (Val) == sizeof (__complex__ double) \ |
| || __builtin_classify_type (__real__ (Val)) != 8) \ |
| __tgmres = Fct (Val); \ |
| else if (sizeof (Val) == sizeof (__complex__ float)) \ |
| __tgmres = Fct##f (Val); \ |
| else \ |
| __tgmres = __tgml(Fct) (Val); \ |
| __tgmres; })) |
| |
| /* XXX This definition has to be changed as soon as the compiler understands |
| the imaginary keyword. */ |
| # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ |
| (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \ |
| if ((sizeof (__real__ (Val1)) > sizeof (double) \ |
| || sizeof (__real__ (Val2)) > sizeof (double)) \ |
| && __builtin_classify_type (__real__ (Val1) \ |
| + __real__ (Val2)) \ |
| == 8) \ |
| { \ |
| if (sizeof (__real__ (Val1)) == sizeof (Val1) \ |
| && sizeof (__real__ (Val2)) == sizeof (Val2)) \ |
| __tgmres = __tgml(Fct) (Val1, Val2); \ |
| else \ |
| __tgmres = __tgml(Cfct) (Val1, Val2); \ |
| } \ |
| else if (sizeof (__real__ (Val1)) == sizeof (double) \ |
| || sizeof (__real__ (Val2)) == sizeof(double) \ |
| || (__builtin_classify_type (__real__ (Val1)) \ |
| != 8) \ |
| || (__builtin_classify_type (__real__ (Val2)) \ |
| != 8)) \ |
| { \ |
| if (sizeof (__real__ (Val1)) == sizeof (Val1) \ |
| && sizeof (__real__ (Val2)) == sizeof (Val2)) \ |
| __tgmres = Fct (Val1, Val2); \ |
| else \ |
| __tgmres = Cfct (Val1, Val2); \ |
| } \ |
| else \ |
| { \ |
| if (sizeof (__real__ (Val1)) == sizeof (Val1) \ |
| && sizeof (__real__ (Val2)) == sizeof (Val2)) \ |
| __tgmres = Fct##f (Val1, Val2); \ |
| else \ |
| __tgmres = Cfct##f (Val1, Val2); \ |
| } \ |
| __tgmres; })) |
| #else |
| # error "Unsupported compiler; you cannot use <tgmath.h>" |
| #endif |
| |
| |
| /* Unary functions defined for real and complex values. */ |
| |
| |
| /* Trigonometric functions. */ |
| |
| /* Arc cosine of X. */ |
| #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) |
| /* Arc sine of X. */ |
| #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) |
| /* Arc tangent of X. */ |
| #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) |
| /* Arc tangent of Y/X. */ |
| #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) |
| |
| /* Cosine of X. */ |
| #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) |
| /* Sine of X. */ |
| #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) |
| /* Tangent of X. */ |
| #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) |
| |
| |
| /* Hyperbolic functions. */ |
| |
| /* Hyperbolic arc cosine of X. */ |
| #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) |
| /* Hyperbolic arc sine of X. */ |
| #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) |
| /* Hyperbolic arc tangent of X. */ |
| #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) |
| |
| /* Hyperbolic cosine of X. */ |
| #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) |
| /* Hyperbolic sine of X. */ |
| #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) |
| /* Hyperbolic tangent of X. */ |
| #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) |
| |
| |
| /* Exponential and logarithmic functions. */ |
| |
| /* Exponential function of X. */ |
| #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) |
| |
| /* Break VALUE into a normalized fraction and an integral power of 2. */ |
| #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) |
| |
| /* X times (two to the EXP power). */ |
| #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) |
| |
| /* Natural logarithm of X. */ |
| #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) |
| |
| /* Base-ten logarithm of X. */ |
| #ifdef __USE_GNU |
| # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) |
| #else |
| # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) |
| #endif |
| |
| /* Return exp(X) - 1. */ |
| #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) |
| |
| /* Return log(1 + X). */ |
| #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) |
| |
| /* Return the base 2 signed integral exponent of X. */ |
| #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) |
| |
| /* Compute base-2 exponential of X. */ |
| #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) |
| |
| /* Compute base-2 logarithm of X. */ |
| #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) |
| |
| |
| /* Power functions. */ |
| |
| /* Return X to the Y power. */ |
| #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) |
| |
| /* Return the square root of X. */ |
| #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) |
| |
| /* Return `sqrt(X*X + Y*Y)'. */ |
| #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) |
| |
| /* Return the cube root of X. */ |
| #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) |
| |
| |
| /* Nearest integer, absolute value, and remainder functions. */ |
| |
| /* Smallest integral value not less than X. */ |
| #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) |
| |
| /* Absolute value of X. */ |
| #define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs) |
| |
| /* Largest integer not greater than X. */ |
| #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) |
| |
| /* Floating-point modulo remainder of X/Y. */ |
| #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) |
| |
| /* Round X to integral valuein floating-point format using current |
| rounding direction, but do not raise inexact exception. */ |
| #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) |
| |
| /* Round X to nearest integral value, rounding halfway cases away from |
| zero. */ |
| #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) |
| |
| /* Round X to the integral value in floating-point format nearest but |
| not larger in magnitude. */ |
| #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) |
| |
| /* Compute remainder of X and Y and put in *QUO a value with sign of x/y |
| and magnitude congruent `mod 2^n' to the magnitude of the integral |
| quotient x/y, with n >= 3. */ |
| #define remquo(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) |
| |
| /* Round X to nearest integral value according to current rounding |
| direction. */ |
| #define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint) |
| #define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint) |
| |
| /* Round X to nearest integral value, rounding halfway cases away from |
| zero. */ |
| #define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround) |
| #define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround) |
| |
| |
| /* Return X with its signed changed to Y's. */ |
| #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) |
| |
| /* Error and gamma functions. */ |
| #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) |
| #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) |
| #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) |
| #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) |
| |
| |
| /* Return the integer nearest X in the direction of the |
| prevailing rounding mode. */ |
| #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) |
| |
| /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ |
| #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) |
| #define nexttoward(Val1, Val2) \ |
| __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward) |
| |
| /* Return the remainder of integer divison X / Y with infinite precision. */ |
| #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) |
| |
| #if defined __UCLIBC_SUSV3_LEGACY__ |
| /* Return X times (2 to the Nth power). */ |
| #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED |
| # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) |
| #endif |
| |
| /* Return X times (2 to the Nth power). */ |
| #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) |
| |
| /* Return X times (2 to the Nth power). */ |
| #define scalbln(Val1, Val2) \ |
| __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) |
| #endif /* UCLIBC_SUSV3_LEGACY */ |
| |
| /* Return the binary exponent of X, which must be nonzero. */ |
| #define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb) |
| |
| |
| /* Return positive difference between X and Y. */ |
| #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) |
| |
| /* Return maximum numeric value from X and Y. */ |
| #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) |
| |
| /* Return minimum numeric value from X and Y. */ |
| #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) |
| |
| |
| /* Multiply-add function computed as a ternary operation. */ |
| #define fma(Val1, Val2, Val3) \ |
| __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) |
| |
| |
| /* Absolute value, conjugates, and projection. */ |
| |
| /* Argument value of Z. */ |
| #define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg) |
| |
| /* Complex conjugate of Z. */ |
| #define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj) |
| |
| /* Projection of Z onto the Riemann sphere. */ |
| #define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj) |
| |
| |
| /* Decomposing complex values. */ |
| |
| /* Imaginary part of Z. */ |
| #define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag) |
| |
| /* Real part of Z. */ |
| #define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal) |
| |
| #endif /* tgmath.h */ |