blob: 462c8f5db2ba629c30ac8e29811d9f7e95d11eaf [file] [log] [blame]
// SGI's rope class -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ext/rope
* This file is a GNU extension to the Standard C++ Library (possibly
* containing extensions from the HP/SGI STL subset).
*/
#ifndef _ROPE
#define _ROPE 1
#include <algorithm>
#include <iosfwd>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_function.h>
#include <bits/stl_numeric.h>
#include <bits/allocator.h>
#include <bits/gthr.h>
#include <tr1/functional>
# ifdef __GC
# define __GC_CONST const
# else
# define __GC_CONST // constant except for deallocation
# endif
#include <ext/memory> // For uninitialized_copy_n
_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
namespace __detail
{
enum { _S_max_rope_depth = 45 };
enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
} // namespace __detail
using std::size_t;
using std::ptrdiff_t;
using std::allocator;
using std::_Destroy;
// See libstdc++/36832.
template<typename _ForwardIterator, typename _Allocator>
void
_Destroy_const(_ForwardIterator __first,
_ForwardIterator __last, _Allocator __alloc)
{
for (; __first != __last; ++__first)
__alloc.destroy(&*__first);
}
template<typename _ForwardIterator, typename _Tp>
inline void
_Destroy_const(_ForwardIterator __first,
_ForwardIterator __last, allocator<_Tp>)
{ _Destroy(__first, __last); }
// The _S_eos function is used for those functions that
// convert to/from C-like strings to detect the end of the string.
// The end-of-C-string character.
// This is what the draft standard says it should be.
template <class _CharT>
inline _CharT
_S_eos(_CharT*)
{ return _CharT(); }
// Test for basic character types.
// For basic character types leaves having a trailing eos.
template <class _CharT>
inline bool
_S_is_basic_char_type(_CharT*)
{ return false; }
template <class _CharT>
inline bool
_S_is_one_byte_char_type(_CharT*)
{ return false; }
inline bool
_S_is_basic_char_type(char*)
{ return true; }
inline bool
_S_is_one_byte_char_type(char*)
{ return true; }
inline bool
_S_is_basic_char_type(wchar_t*)
{ return true; }
// Store an eos iff _CharT is a basic character type.
// Do not reference _S_eos if it isn't.
template <class _CharT>
inline void
_S_cond_store_eos(_CharT&) { }
inline void
_S_cond_store_eos(char& __c)
{ __c = 0; }
inline void
_S_cond_store_eos(wchar_t& __c)
{ __c = 0; }
// char_producers are logically functions that generate a section of
// a string. These can be converted to ropes. The resulting rope
// invokes the char_producer on demand. This allows, for example,
// files to be viewed as ropes without reading the entire file.
template <class _CharT>
class char_producer
{
public:
virtual ~char_producer() { };
virtual void
operator()(size_t __start_pos, size_t __len,
_CharT* __buffer) = 0;
// Buffer should really be an arbitrary output iterator.
// That way we could flatten directly into an ostream, etc.
// This is thoroughly impossible, since iterator types don't
// have runtime descriptions.
};
// Sequence buffers:
//
// Sequence must provide an append operation that appends an
// array to the sequence. Sequence buffers are useful only if
// appending an entire array is cheaper than appending element by element.
// This is true for many string representations.
// This should perhaps inherit from ostream<sequence::value_type>
// and be implemented correspondingly, so that they can be used
// for formatted. For the sake of portability, we don't do this yet.
//
// For now, sequence buffers behave as output iterators. But they also
// behave a little like basic_ostringstream<sequence::value_type> and a
// little like containers.
template<class _Sequence, size_t _Buf_sz = 100>
class sequence_buffer
: public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
typedef typename _Sequence::value_type value_type;
protected:
_Sequence* _M_prefix;
value_type _M_buffer[_Buf_sz];
size_t _M_buf_count;
public:
void
flush()
{
_M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
_M_buf_count = 0;
}
~sequence_buffer()
{ flush(); }
sequence_buffer()
: _M_prefix(0), _M_buf_count(0) { }
sequence_buffer(const sequence_buffer& __x)
{
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
}
sequence_buffer(sequence_buffer& __x)
{
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
}
sequence_buffer(_Sequence& __s)
: _M_prefix(&__s), _M_buf_count(0) { }
sequence_buffer&
operator=(sequence_buffer& __x)
{
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
return *this;
}
sequence_buffer&
operator=(const sequence_buffer& __x)
{
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
return *this;
}
void
push_back(value_type __x)
{
if (_M_buf_count < _Buf_sz)
{
_M_buffer[_M_buf_count] = __x;
++_M_buf_count;
}
else
{
flush();
_M_buffer[0] = __x;
_M_buf_count = 1;
}
}
void
append(value_type* __s, size_t __len)
{
if (__len + _M_buf_count <= _Buf_sz)
{
size_t __i = _M_buf_count;
for (size_t __j = 0; __j < __len; __i++, __j++)
_M_buffer[__i] = __s[__j];
_M_buf_count += __len;
}
else if (0 == _M_buf_count)
_M_prefix->append(__s, __s + __len);
else
{
flush();
append(__s, __len);
}
}
sequence_buffer&
write(value_type* __s, size_t __len)
{
append(__s, __len);
return *this;
}
sequence_buffer&
put(value_type __x)
{
push_back(__x);
return *this;
}
sequence_buffer&
operator=(const value_type& __rhs)
{
push_back(__rhs);
return *this;
}
sequence_buffer&
operator*()
{ return *this; }
sequence_buffer&
operator++()
{ return *this; }
sequence_buffer
operator++(int)
{ return *this; }
};
// The following should be treated as private, at least for now.
template<class _CharT>
class _Rope_char_consumer
{
public:
// If we had member templates, these should not be virtual.
// For now we need to use run-time parametrization where
// compile-time would do. Hence this should all be private
// for now.
// The symmetry with char_producer is accidental and temporary.
virtual ~_Rope_char_consumer() { };
virtual bool
operator()(const _CharT* __buffer, size_t __len) = 0;
};
// First a lot of forward declarations. The standard seems to require
// much stricter "declaration before use" than many of the implementations
// that preceded it.
template<class _CharT, class _Alloc = allocator<_CharT> >
class rope;
template<class _CharT, class _Alloc>
struct _Rope_RopeConcatenation;
template<class _CharT, class _Alloc>
struct _Rope_RopeLeaf;
template<class _CharT, class _Alloc>
struct _Rope_RopeFunction;
template<class _CharT, class _Alloc>
struct _Rope_RopeSubstring;
template<class _CharT, class _Alloc>
class _Rope_iterator;
template<class _CharT, class _Alloc>
class _Rope_const_iterator;
template<class _CharT, class _Alloc>
class _Rope_char_ref_proxy;
template<class _CharT, class _Alloc>
class _Rope_char_ptr_proxy;
template<class _CharT, class _Alloc>
bool
operator==(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT, _Alloc>
operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT, _Alloc>
operator+(const _Rope_const_iterator<_CharT, _Alloc>& __x,
ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT, _Alloc>
operator+(ptrdiff_t __n,
const _Rope_const_iterator<_CharT, _Alloc>& __x);
template<class _CharT, class _Alloc>
bool
operator==(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
bool
operator<(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
ptrdiff_t
operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT, _Alloc>
operator-(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT, _Alloc>
operator+(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n);
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT, _Alloc>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT, _Alloc>& __x);
template<class _CharT, class _Alloc>
bool
operator==(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
bool
operator<(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
ptrdiff_t
operator-(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y);
template<class _CharT, class _Alloc>
rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left,
const rope<_CharT, _Alloc>& __right);
template<class _CharT, class _Alloc>
rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left, const _CharT* __right);
template<class _CharT, class _Alloc>
rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left, _CharT __right);
// Some helpers, so we can use power on ropes.
// See below for why this isn't local to the implementation.
// This uses a nonstandard refcount convention.
// The result has refcount 0.
template<class _CharT, class _Alloc>
struct _Rope_Concat_fn
: public std::binary_function<rope<_CharT, _Alloc>, rope<_CharT, _Alloc>,
rope<_CharT, _Alloc> >
{
rope<_CharT, _Alloc>
operator()(const rope<_CharT, _Alloc>& __x,
const rope<_CharT, _Alloc>& __y)
{ return __x + __y; }
};
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>
identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
{ return rope<_CharT, _Alloc>(); }
// Class _Refcount_Base provides a type, _RC_t, a data member,
// _M_ref_count, and member functions _M_incr and _M_decr, which perform
// atomic preincrement/predecrement. The constructor initializes
// _M_ref_count.
struct _Refcount_Base
{
// The type _RC_t
typedef size_t _RC_t;
// The data member _M_ref_count
volatile _RC_t _M_ref_count;
// Constructor
__gthread_mutex_t _M_ref_count_lock;
_Refcount_Base(_RC_t __n) : _M_ref_count(__n), _M_ref_count_lock()
{
#ifdef __GTHREAD_MUTEX_INIT
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
_M_ref_count_lock = __tmp;
#elif defined(__GTHREAD_MUTEX_INIT_FUNCTION)
__GTHREAD_MUTEX_INIT_FUNCTION (&_M_ref_count_lock);
#else
#error __GTHREAD_MUTEX_INIT or __GTHREAD_MUTEX_INIT_FUNCTION should be defined by gthr.h abstraction layer, report problem to libstdc++@gcc.gnu.org.
#endif
}
void
_M_incr()
{
__gthread_mutex_lock(&_M_ref_count_lock);
++_M_ref_count;
__gthread_mutex_unlock(&_M_ref_count_lock);
}
_RC_t
_M_decr()
{
__gthread_mutex_lock(&_M_ref_count_lock);
volatile _RC_t __tmp = --_M_ref_count;
__gthread_mutex_unlock(&_M_ref_count_lock);
return __tmp;
}
};
//
// What follows should really be local to rope. Unfortunately,
// that doesn't work, since it makes it impossible to define generic
// equality on rope iterators. According to the draft standard, the
// template parameters for such an equality operator cannot be inferred
// from the occurrence of a member class as a parameter.
// (SGI compilers in fact allow this, but the __result wouldn't be
// portable.)
// Similarly, some of the static member functions are member functions
// only to avoid polluting the global namespace, and to circumvent
// restrictions on type inference for template functions.
//
//
// The internal data structure for representing a rope. This is
// private to the implementation. A rope is really just a pointer
// to one of these.
//
// A few basic functions for manipulating this data structure
// are members of _RopeRep. Most of the more complex algorithms
// are implemented as rope members.
//
// Some of the static member functions of _RopeRep have identically
// named functions in rope that simply invoke the _RopeRep versions.
#define __ROPE_DEFINE_ALLOCS(__a) \
__ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
__ROPE_DEFINE_ALLOC(__C,_C) \
typedef _Rope_RopeLeaf<_CharT,__a> __L; \
__ROPE_DEFINE_ALLOC(__L,_L) \
typedef _Rope_RopeFunction<_CharT,__a> __F; \
__ROPE_DEFINE_ALLOC(__F,_F) \
typedef _Rope_RopeSubstring<_CharT,__a> __S; \
__ROPE_DEFINE_ALLOC(__S,_S)
// Internal rope nodes potentially store a copy of the allocator
// instance used to allocate them. This is mostly redundant.
// But the alternative would be to pass allocator instances around
// in some form to nearly all internal functions, since any pointer
// assignment may result in a zero reference count and thus require
// deallocation.
#define __STATIC_IF_SGI_ALLOC /* not static */
template <class _CharT, class _Alloc>
struct _Rope_rep_base
: public _Alloc
{
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return *static_cast<const _Alloc*>(this); }
allocator_type&
_M_get_allocator()
{ return *static_cast<_Alloc*>(this); }
const allocator_type&
_M_get_allocator() const
{ return *static_cast<const _Alloc*>(this); }
_Rope_rep_base(size_t __size, const allocator_type&)
: _M_size(__size) { }
size_t _M_size;
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc::template rebind<_Tp>::other __name##Alloc; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc().allocate(__n); } \
static void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc().deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Alloc)
# undef __ROPE_DEFINE_ALLOC
};
template<class _CharT, class _Alloc>
struct _Rope_RopeRep
: public _Rope_rep_base<_CharT, _Alloc>
# ifndef __GC
, _Refcount_Base
# endif
{
public:
__detail::_Tag _M_tag:8;
bool _M_is_balanced:8;
unsigned char _M_depth;
__GC_CONST _CharT* _M_c_string;
__gthread_mutex_t _M_c_string_lock;
/* Flattened version of string, if needed. */
/* typically 0. */
/* If it's not 0, then the memory is owned */
/* by this node. */
/* In the case of a leaf, this may point to */
/* the same memory as the data field. */
typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type
allocator_type;
using _Rope_rep_base<_CharT, _Alloc>::get_allocator;
using _Rope_rep_base<_CharT, _Alloc>::_M_get_allocator;
_Rope_RopeRep(__detail::_Tag __t, int __d, bool __b, size_t __size,
const allocator_type& __a)
: _Rope_rep_base<_CharT, _Alloc>(__size, __a),
#ifndef __GC
_Refcount_Base(1),
#endif
_M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0)
#ifdef __GTHREAD_MUTEX_INIT
{
// Do not copy a POSIX/gthr mutex once in use. However, bits are bits.
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
_M_c_string_lock = __tmp;
}
#else
{ __GTHREAD_MUTEX_INIT_FUNCTION (&_M_c_string_lock); }
#endif
#ifdef __GC
void
_M_incr () { }
#endif
static void
_S_free_string(__GC_CONST _CharT*, size_t __len,
allocator_type& __a);
#define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
// Deallocate data section of a leaf.
// This shouldn't be a member function.
// But its hard to do anything else at the
// moment, because it's templatized w.r.t.
// an allocator.
// Does nothing if __GC is defined.
#ifndef __GC
void _M_free_c_string();
void _M_free_tree();
// Deallocate t. Assumes t is not 0.
void
_M_unref_nonnil()
{
if (0 == _M_decr())
_M_free_tree();
}
void
_M_ref_nonnil()
{ _M_incr(); }
static void
_S_unref(_Rope_RopeRep* __t)
{
if (0 != __t)
__t->_M_unref_nonnil();
}
static void
_S_ref(_Rope_RopeRep* __t)
{
if (0 != __t)
__t->_M_incr();
}
static void
_S_free_if_unref(_Rope_RopeRep* __t)
{
if (0 != __t && 0 == __t->_M_ref_count)
__t->_M_free_tree();
}
# else /* __GC */
void _M_unref_nonnil() { }
void _M_ref_nonnil() { }
static void _S_unref(_Rope_RopeRep*) { }
static void _S_ref(_Rope_RopeRep*) { }
static void _S_free_if_unref(_Rope_RopeRep*) { }
# endif
protected:
_Rope_RopeRep&
operator=(const _Rope_RopeRep&);
_Rope_RopeRep(const _Rope_RopeRep&);
};
template<class _CharT, class _Alloc>
struct _Rope_RopeLeaf
: public _Rope_RopeRep<_CharT, _Alloc>
{
public:
// Apparently needed by VC++
// The data fields of leaves are allocated with some
// extra space, to accommodate future growth and for basic
// character types, to hold a trailing eos character.
enum { _S_alloc_granularity = 8 };
static size_t
_S_rounded_up_size(size_t __n)
{
size_t __size_with_eos;
if (_S_is_basic_char_type((_CharT*)0))
__size_with_eos = __n + 1;
else
__size_with_eos = __n;
#ifdef __GC
return __size_with_eos;
#else
// Allow slop for in-place expansion.
return ((__size_with_eos + size_t(_S_alloc_granularity) - 1)
&~ (size_t(_S_alloc_granularity) - 1));
#endif
}
__GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
/* The allocated size is */
/* _S_rounded_up_size(size), except */
/* in the GC case, in which it */
/* doesn't matter. */
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size,
const allocator_type& __a)
: _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_leaf, 0, true,
__size, __a), _M_data(__d)
{
if (_S_is_basic_char_type((_CharT *)0))
{
// already eos terminated.
this->_M_c_string = __d;
}
}
// The constructor assumes that d has been allocated with
// the proper allocator and the properly padded size.
// In contrast, the destructor deallocates the data:
#ifndef __GC
~_Rope_RopeLeaf() throw()
{
if (_M_data != this->_M_c_string)
this->_M_free_c_string();
__STL_FREE_STRING(_M_data, this->_M_size, this->_M_get_allocator());
}
#endif
protected:
_Rope_RopeLeaf&
operator=(const _Rope_RopeLeaf&);
_Rope_RopeLeaf(const _Rope_RopeLeaf&);
};
template<class _CharT, class _Alloc>
struct _Rope_RopeConcatenation
: public _Rope_RopeRep<_CharT, _Alloc>
{
public:
_Rope_RopeRep<_CharT, _Alloc>* _M_left;
_Rope_RopeRep<_CharT, _Alloc>* _M_right;
typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type
allocator_type;
_Rope_RopeConcatenation(_Rope_RopeRep<_CharT, _Alloc>* __l,
_Rope_RopeRep<_CharT, _Alloc>* __r,
const allocator_type& __a)
: _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_concat,
std::max(__l->_M_depth,
__r->_M_depth) + 1,
false,
__l->_M_size + __r->_M_size, __a),
_M_left(__l), _M_right(__r)
{ }
#ifndef __GC
~_Rope_RopeConcatenation() throw()
{
this->_M_free_c_string();
_M_left->_M_unref_nonnil();
_M_right->_M_unref_nonnil();
}
#endif
protected:
_Rope_RopeConcatenation&
operator=(const _Rope_RopeConcatenation&);
_Rope_RopeConcatenation(const _Rope_RopeConcatenation&);
};
template<class _CharT, class _Alloc>
struct _Rope_RopeFunction
: public _Rope_RopeRep<_CharT, _Alloc>
{
public:
char_producer<_CharT>* _M_fn;
#ifndef __GC
bool _M_delete_when_done; // Char_producer is owned by the
// rope and should be explicitly
// deleted when the rope becomes
// inaccessible.
#else
// In the GC case, we either register the rope for
// finalization, or not. Thus the field is unnecessary;
// the information is stored in the collector data structures.
// We do need a finalization procedure to be invoked by the
// collector.
static void
_S_fn_finalization_proc(void * __tree, void *)
{ delete ((_Rope_RopeFunction *)__tree) -> _M_fn; }
#endif
typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type
allocator_type;
_Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
bool __d, const allocator_type& __a)
: _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_function, 0, true, __size, __a)
, _M_fn(__f)
#ifndef __GC
, _M_delete_when_done(__d)
#endif
{
#ifdef __GC
if (__d)
{
GC_REGISTER_FINALIZER(this, _Rope_RopeFunction::
_S_fn_finalization_proc, 0, 0, 0);
}
#endif
}
#ifndef __GC
~_Rope_RopeFunction() throw()
{
this->_M_free_c_string();
if (_M_delete_when_done)
delete _M_fn;
}
# endif
protected:
_Rope_RopeFunction&
operator=(const _Rope_RopeFunction&);
_Rope_RopeFunction(const _Rope_RopeFunction&);
};
// Substring results are usually represented using just
// concatenation nodes. But in the case of very long flat ropes
// or ropes with a functional representation that isn't practical.
// In that case, we represent the __result as a special case of
// RopeFunction, whose char_producer points back to the rope itself.
// In all cases except repeated substring operations and
// deallocation, we treat the __result as a RopeFunction.
template<class _CharT, class _Alloc>
struct _Rope_RopeSubstring
: public _Rope_RopeFunction<_CharT, _Alloc>,
public char_producer<_CharT>
{
public:
// XXX this whole class should be rewritten.
_Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0
size_t _M_start;
virtual void
operator()(size_t __start_pos, size_t __req_len,
_CharT* __buffer)
{
switch(_M_base->_M_tag)
{
case __detail::_S_function:
case __detail::_S_substringfn:
{
char_producer<_CharT>* __fn =
((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
(*__fn)(__start_pos + _M_start, __req_len, __buffer);
}
break;
case __detail::_S_leaf:
{
__GC_CONST _CharT* __s =
((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
__buffer);
}
break;
default:
break;
}
}
typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type
allocator_type;
_Rope_RopeSubstring(_Rope_RopeRep<_CharT, _Alloc>* __b, size_t __s,
size_t __l, const allocator_type& __a)
: _Rope_RopeFunction<_CharT, _Alloc>(this, __l, false, __a),
char_producer<_CharT>(), _M_base(__b), _M_start(__s)
{
#ifndef __GC
_M_base->_M_ref_nonnil();
#endif
this->_M_tag = __detail::_S_substringfn;
}
virtual ~_Rope_RopeSubstring() throw()
{
#ifndef __GC
_M_base->_M_unref_nonnil();
// _M_free_c_string(); -- done by parent class
#endif
}
};
// Self-destructing pointers to Rope_rep.
// These are not conventional smart pointers. Their
// only purpose in life is to ensure that unref is called
// on the pointer either at normal exit or if an exception
// is raised. It is the caller's responsibility to
// adjust reference counts when these pointers are initialized
// or assigned to. (This convention significantly reduces
// the number of potentially expensive reference count
// updates.)
#ifndef __GC
template<class _CharT, class _Alloc>
struct _Rope_self_destruct_ptr
{
_Rope_RopeRep<_CharT, _Alloc>* _M_ptr;
~_Rope_self_destruct_ptr()
{ _Rope_RopeRep<_CharT, _Alloc>::_S_unref(_M_ptr); }
#ifdef __EXCEPTIONS
_Rope_self_destruct_ptr() : _M_ptr(0) { };
#else
_Rope_self_destruct_ptr() { };
#endif
_Rope_self_destruct_ptr(_Rope_RopeRep<_CharT, _Alloc>* __p)
: _M_ptr(__p) { }
_Rope_RopeRep<_CharT, _Alloc>&
operator*()
{ return *_M_ptr; }
_Rope_RopeRep<_CharT, _Alloc>*
operator->()
{ return _M_ptr; }
operator _Rope_RopeRep<_CharT, _Alloc>*()
{ return _M_ptr; }
_Rope_self_destruct_ptr&
operator=(_Rope_RopeRep<_CharT, _Alloc>* __x)
{ _M_ptr = __x; return *this; }
};
#endif
// Dereferencing a nonconst iterator has to return something
// that behaves almost like a reference. It's not possible to
// return an actual reference since assignment requires extra
// work. And we would get into the same problems as with the
// CD2 version of basic_string.
template<class _CharT, class _Alloc>
class _Rope_char_ref_proxy
{
friend class rope<_CharT, _Alloc>;
friend class _Rope_iterator<_CharT, _Alloc>;
friend class _Rope_char_ptr_proxy<_CharT, _Alloc>;
#ifdef __GC
typedef _Rope_RopeRep<_CharT, _Alloc>* _Self_destruct_ptr;
#else
typedef _Rope_self_destruct_ptr<_CharT, _Alloc> _Self_destruct_ptr;
#endif
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
typedef rope<_CharT, _Alloc> _My_rope;
size_t _M_pos;
_CharT _M_current;
bool _M_current_valid;
_My_rope* _M_root; // The whole rope.
public:
_Rope_char_ref_proxy(_My_rope* __r, size_t __p)
: _M_pos(__p), _M_current(), _M_current_valid(false), _M_root(__r) { }
_Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x)
: _M_pos(__x._M_pos), _M_current(__x._M_current),
_M_current_valid(false), _M_root(__x._M_root) { }
// Don't preserve cache if the reference can outlive the
// expression. We claim that's not possible without calling
// a copy constructor or generating reference to a proxy
// reference. We declare the latter to have undefined semantics.
_Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
: _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) { }
inline operator _CharT () const;
_Rope_char_ref_proxy&
operator=(_CharT __c);
_Rope_char_ptr_proxy<_CharT, _Alloc> operator&() const;
_Rope_char_ref_proxy&
operator=(const _Rope_char_ref_proxy& __c)
{ return operator=((_CharT)__c); }
};
template<class _CharT, class __Alloc>
inline void
swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
_Rope_char_ref_proxy <_CharT, __Alloc > __b)
{
_CharT __tmp = __a;
__a = __b;
__b = __tmp;
}
template<class _CharT, class _Alloc>
class _Rope_char_ptr_proxy
{
// XXX this class should be rewritten.
friend class _Rope_char_ref_proxy<_CharT, _Alloc>;
size_t _M_pos;
rope<_CharT,_Alloc>* _M_root; // The whole rope.
public:
_Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) { }
_Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) { }
_Rope_char_ptr_proxy() { }
_Rope_char_ptr_proxy(_CharT* __x)
: _M_root(0), _M_pos(0) { }
_Rope_char_ptr_proxy&
operator=(const _Rope_char_ptr_proxy& __x)
{
_M_pos = __x._M_pos;
_M_root = __x._M_root;
return *this;
}
template<class _CharT2, class _Alloc2>
friend bool
operator==(const _Rope_char_ptr_proxy<_CharT2, _Alloc2>& __x,
const _Rope_char_ptr_proxy<_CharT2, _Alloc2>& __y);
_Rope_char_ref_proxy<_CharT, _Alloc> operator*() const
{ return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root, _M_pos); }
};
// Rope iterators:
// Unlike in the C version, we cache only part of the stack
// for rope iterators, since they must be efficiently copyable.
// When we run out of cache, we have to reconstruct the iterator
// value.
// Pointers from iterators are not included in reference counts.
// Iterators are assumed to be thread private. Ropes can
// be shared.
template<class _CharT, class _Alloc>
class _Rope_iterator_base
: public std::iterator<std::random_access_iterator_tag, _CharT>
{
friend class rope<_CharT, _Alloc>;
public:
typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
// Borland doesn't want this to be protected.
protected:
enum { _S_path_cache_len = 4 }; // Must be <= 9.
enum { _S_iterator_buf_len = 15 };
size_t _M_current_pos;
_RopeRep* _M_root; // The whole rope.
size_t _M_leaf_pos; // Starting position for current leaf
__GC_CONST _CharT* _M_buf_start;
// Buffer possibly
// containing current char.
__GC_CONST _CharT* _M_buf_ptr;
// Pointer to current char in buffer.
// != 0 ==> buffer valid.
__GC_CONST _CharT* _M_buf_end;
// One past __last valid char in buffer.
// What follows is the path cache. We go out of our
// way to make this compact.
// Path_end contains the bottom section of the path from
// the root to the current leaf.
const _RopeRep* _M_path_end[_S_path_cache_len];
int _M_leaf_index; // Last valid __pos in path_end;
// _M_path_end[0] ... _M_path_end[leaf_index-1]
// point to concatenation nodes.
unsigned char _M_path_directions;
// (path_directions >> __i) & 1 is 1
// iff we got from _M_path_end[leaf_index - __i - 1]
// to _M_path_end[leaf_index - __i] by going to the
// __right. Assumes path_cache_len <= 9.
_CharT _M_tmp_buf[_S_iterator_buf_len];
// Short buffer for surrounding chars.
// This is useful primarily for
// RopeFunctions. We put the buffer
// here to avoid locking in the
// multithreaded case.
// The cached path is generally assumed to be valid
// only if the buffer is valid.
static void _S_setbuf(_Rope_iterator_base& __x);
// Set buffer contents given
// path cache.
static void _S_setcache(_Rope_iterator_base& __x);
// Set buffer contents and
// path cache.
static void _S_setcache_for_incr(_Rope_iterator_base& __x);
// As above, but assumes path
// cache is valid for previous posn.
_Rope_iterator_base() { }
_Rope_iterator_base(_RopeRep* __root, size_t __pos)
: _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) { }
void _M_incr(size_t __n);
void _M_decr(size_t __n);
public:
size_t
index() const
{ return _M_current_pos; }
_Rope_iterator_base(const _Rope_iterator_base& __x)
{
if (0 != __x._M_buf_ptr)
*this = __x;
else
{
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_ptr = 0;
}
}
};
template<class _CharT, class _Alloc>
class _Rope_iterator;
template<class _CharT, class _Alloc>
class _Rope_const_iterator
: public _Rope_iterator_base<_CharT, _Alloc>
{
friend class rope<_CharT, _Alloc>;
protected:
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
// The one from the base class may not be directly visible.
_Rope_const_iterator(const _RopeRep* __root, size_t __pos)
: _Rope_iterator_base<_CharT, _Alloc>(const_cast<_RopeRep*>(__root),
__pos)
// Only nonconst iterators modify root ref count
{ }
public:
typedef _CharT reference; // Really a value. Returning a reference
// Would be a mess, since it would have
// to be included in refcount.
typedef const _CharT* pointer;
public:
_Rope_const_iterator() { };
_Rope_const_iterator(const _Rope_const_iterator& __x)
: _Rope_iterator_base<_CharT,_Alloc>(__x) { }
_Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
_Rope_const_iterator(const rope<_CharT, _Alloc>& __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) { }
_Rope_const_iterator&
operator=(const _Rope_const_iterator& __x)
{
if (0 != __x._M_buf_ptr)
*(static_cast<_Rope_iterator_base<_CharT, _Alloc>*>(this)) = __x;
else
{
this->_M_current_pos = __x._M_current_pos;
this->_M_root = __x._M_root;
this->_M_buf_ptr = 0;
}
return(*this);
}
reference
operator*()
{
if (0 == this->_M_buf_ptr)
_S_setcache(*this);
return *this->_M_buf_ptr;
}
// Without this const version, Rope iterators do not meet the
// requirements of an Input Iterator.
reference
operator*() const
{
return *const_cast<_Rope_const_iterator&>(*this);
}
_Rope_const_iterator&
operator++()
{
__GC_CONST _CharT* __next;
if (0 != this->_M_buf_ptr
&& (__next = this->_M_buf_ptr + 1) < this->_M_buf_end)
{
this->_M_buf_ptr = __next;
++this->_M_current_pos;
}
else
this->_M_incr(1);
return *this;
}
_Rope_const_iterator&
operator+=(ptrdiff_t __n)
{
if (__n >= 0)
this->_M_incr(__n);
else
this->_M_decr(-__n);
return *this;
}
_Rope_const_iterator&
operator--()
{
this->_M_decr(1);
return *this;
}
_Rope_const_iterator&
operator-=(ptrdiff_t __n)
{
if (__n >= 0)
this->_M_decr(__n);
else
this->_M_incr(-__n);
return *this;
}
_Rope_const_iterator
operator++(int)
{
size_t __old_pos = this->_M_current_pos;
this->_M_incr(1);
return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
// This makes a subsequent dereference expensive.
// Perhaps we should instead copy the iterator
// if it has a valid cache?
}
_Rope_const_iterator
operator--(int)
{
size_t __old_pos = this->_M_current_pos;
this->_M_decr(1);
return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
}
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2, _Alloc2>
operator-(const _Rope_const_iterator<_CharT2, _Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2, _Alloc2>
operator+(const _Rope_const_iterator<_CharT2, _Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2, _Alloc2>
operator+(ptrdiff_t __n,
const _Rope_const_iterator<_CharT2, _Alloc2>& __x);
reference
operator[](size_t __n)
{ return rope<_CharT, _Alloc>::_S_fetch(this->_M_root,
this->_M_current_pos + __n); }
template<class _CharT2, class _Alloc2>
friend bool
operator==(const _Rope_const_iterator<_CharT2, _Alloc2>& __x,
const _Rope_const_iterator<_CharT2, _Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool
operator<(const _Rope_const_iterator<_CharT2, _Alloc2>& __x,
const _Rope_const_iterator<_CharT2, _Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t
operator-(const _Rope_const_iterator<_CharT2, _Alloc2>& __x,
const _Rope_const_iterator<_CharT2, _Alloc2>& __y);
};
template<class _CharT, class _Alloc>
class _Rope_iterator
: public _Rope_iterator_base<_CharT, _Alloc>
{
friend class rope<_CharT, _Alloc>;
protected:
typedef typename _Rope_iterator_base<_CharT, _Alloc>::_RopeRep _RopeRep;
rope<_CharT, _Alloc>* _M_root_rope;
// root is treated as a cached version of this, and is used to
// detect changes to the underlying rope.
// Root is included in the reference count. This is necessary
// so that we can detect changes reliably. Unfortunately, it
// requires careful bookkeeping for the nonGC case.
_Rope_iterator(rope<_CharT, _Alloc>* __r, size_t __pos)
: _Rope_iterator_base<_CharT, _Alloc>(__r->_M_tree_ptr, __pos),
_M_root_rope(__r)
{ _RopeRep::_S_ref(this->_M_root);
if (!(__r -> empty()))
_S_setcache(*this);
}
void _M_check();
public:
typedef _Rope_char_ref_proxy<_CharT, _Alloc> reference;
typedef _Rope_char_ref_proxy<_CharT, _Alloc>* pointer;
rope<_CharT, _Alloc>&
container()
{ return *_M_root_rope; }
_Rope_iterator()
{
this->_M_root = 0; // Needed for reference counting.
};
_Rope_iterator(const _Rope_iterator& __x)
: _Rope_iterator_base<_CharT, _Alloc>(__x)
{
_M_root_rope = __x._M_root_rope;
_RopeRep::_S_ref(this->_M_root);
}
_Rope_iterator(rope<_CharT, _Alloc>& __r, size_t __pos);
~_Rope_iterator()
{ _RopeRep::_S_unref(this->_M_root); }
_Rope_iterator&
operator=(const _Rope_iterator& __x)
{
_RopeRep* __old = this->_M_root;
_RopeRep::_S_ref(__x._M_root);
if (0 != __x._M_buf_ptr)
{
_M_root_rope = __x._M_root_rope;
*(static_cast<_Rope_iterator_base<_CharT, _Alloc>*>(this)) = __x;
}
else
{
this->_M_current_pos = __x._M_current_pos;
this->_M_root = __x._M_root;
_M_root_rope = __x._M_root_rope;
this->_M_buf_ptr = 0;
}
_RopeRep::_S_unref(__old);
return(*this);
}
reference
operator*()
{
_M_check();
if (0 == this->_M_buf_ptr)
return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope,
this->_M_current_pos);
else
return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope,
this->_M_current_pos,
*this->_M_buf_ptr);
}
// See above comment.
reference
operator*() const
{
return *const_cast<_Rope_iterator&>(*this);
}
_Rope_iterator&
operator++()
{
this->_M_incr(1);
return *this;
}
_Rope_iterator&
operator+=(ptrdiff_t __n)
{
if (__n >= 0)
this->_M_incr(__n);
else
this->_M_decr(-__n);
return *this;
}
_Rope_iterator&
operator--()
{
this->_M_decr(1);
return *this;
}
_Rope_iterator&
operator-=(ptrdiff_t __n)
{
if (__n >= 0)
this->_M_decr(__n);
else
this->_M_incr(-__n);
return *this;
}
_Rope_iterator
operator++(int)
{
size_t __old_pos = this->_M_current_pos;
this->_M_incr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
_Rope_iterator
operator--(int)
{
size_t __old_pos = this->_M_current_pos;
this->_M_decr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
reference
operator[](ptrdiff_t __n)
{ return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope,
this->_M_current_pos
+ __n); }
template<class _CharT2, class _Alloc2>
friend bool
operator==(const _Rope_iterator<_CharT2, _Alloc2>& __x,
const _Rope_iterator<_CharT2, _Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool
operator<(const _Rope_iterator<_CharT2, _Alloc2>& __x,
const _Rope_iterator<_CharT2, _Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t
operator-(const _Rope_iterator<_CharT2, _Alloc2>& __x,
const _Rope_iterator<_CharT2, _Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2, _Alloc2>
operator-(const _Rope_iterator<_CharT2, _Alloc2>& __x, ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2, _Alloc2>
operator+(const _Rope_iterator<_CharT2, _Alloc2>& __x, ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2, _Alloc2>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT2, _Alloc2>& __x);
};
template <class _CharT, class _Alloc>
struct _Rope_base
: public _Alloc
{
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return *static_cast<const _Alloc*>(this); }
allocator_type&
_M_get_allocator()
{ return *static_cast<_Alloc*>(this); }
const allocator_type&
_M_get_allocator() const
{ return *static_cast<const _Alloc*>(this); }
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
// The one in _Base may not be visible due to template rules.
_Rope_base(_RopeRep* __t, const allocator_type&)
: _M_tree_ptr(__t) { }
_Rope_base(const allocator_type&) { }
// The only data member of a rope:
_RopeRep *_M_tree_ptr;
#define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc::template rebind<_Tp>::other __name##Alloc; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc().allocate(__n); } \
static void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc().deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Alloc)
#undef __ROPE_DEFINE_ALLOC
protected:
_Rope_base&
operator=(const _Rope_base&);
_Rope_base(const _Rope_base&);
};
/**
* This is an SGI extension.
* @ingroup SGIextensions
* @doctodo
*/
template <class _CharT, class _Alloc>
class rope : public _Rope_base<_CharT, _Alloc>
{
public:
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _CharT const_reference;
typedef const _CharT* const_pointer;
typedef _Rope_iterator<_CharT, _Alloc> iterator;
typedef _Rope_const_iterator<_CharT, _Alloc> const_iterator;
typedef _Rope_char_ref_proxy<_CharT, _Alloc> reference;
typedef _Rope_char_ptr_proxy<_CharT, _Alloc> pointer;
friend class _Rope_iterator<_CharT, _Alloc>;
friend class _Rope_const_iterator<_CharT, _Alloc>;
friend struct _Rope_RopeRep<_CharT, _Alloc>;
friend class _Rope_iterator_base<_CharT, _Alloc>;
friend class _Rope_char_ptr_proxy<_CharT, _Alloc>;
friend class _Rope_char_ref_proxy<_CharT, _Alloc>;
friend struct _Rope_RopeSubstring<_CharT, _Alloc>;
protected:
typedef _Rope_base<_CharT, _Alloc> _Base;
typedef typename _Base::allocator_type allocator_type;
using _Base::_M_tree_ptr;
using _Base::get_allocator;
using _Base::_M_get_allocator;
typedef __GC_CONST _CharT* _Cstrptr;
static _CharT _S_empty_c_str[1];
static bool
_S_is0(_CharT __c)
{ return __c == _S_eos((_CharT*)0); }
enum { _S_copy_max = 23 };
// For strings shorter than _S_copy_max, we copy to
// concatenate.
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
typedef _Rope_RopeConcatenation<_CharT, _Alloc> _RopeConcatenation;
typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf;
typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction;
typedef _Rope_RopeSubstring<_CharT, _Alloc> _RopeSubstring;
// Retrieve a character at the indicated position.
static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
#ifndef __GC
// Obtain a pointer to the character at the indicated position.
// The pointer can be used to change the character.
// If such a pointer cannot be produced, as is frequently the
// case, 0 is returned instead.
// (Returns nonzero only if all nodes in the path have a refcount
// of 1.)
static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
#endif
static bool
_S_apply_to_pieces(// should be template parameter
_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r,
size_t __begin, size_t __end);
// begin and end are assumed to be in range.
#ifndef __GC
static void
_S_unref(_RopeRep* __t)
{ _RopeRep::_S_unref(__t); }
static void
_S_ref(_RopeRep* __t)
{ _RopeRep::_S_ref(__t); }
#else /* __GC */
static void _S_unref(_RopeRep*) { }
static void _S_ref(_RopeRep*) { }
#endif
#ifdef __GC
typedef _Rope_RopeRep<_CharT, _Alloc>* _Self_destruct_ptr;
#else
typedef _Rope_self_destruct_ptr<_CharT, _Alloc> _Self_destruct_ptr;
#endif
// _Result is counted in refcount.
static _RopeRep* _S_substring(_RopeRep* __base,
size_t __start, size_t __endp1);
static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen);
// Concatenate rope and char ptr, copying __s.
// Should really take an arbitrary iterator.
// Result is counted in refcount.
static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
const _CharT* __iter,
size_t __slen)
// As above, but one reference to __r is about to be
// destroyed. Thus the pieces may be recycled if all
// relevant reference counts are 1.
#ifdef __GC
// We can't really do anything since refcounts are unavailable.
{ return _S_concat_char_iter(__r, __iter, __slen); }
#else
;
#endif
static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
// General concatenation on _RopeRep. _Result
// has refcount of 1. Adjusts argument refcounts.
public:
void
apply_to_pieces(size_t __begin, size_t __end,
_Rope_char_consumer<_CharT>& __c) const
{ _S_apply_to_pieces(__c, this->_M_tree_ptr, __begin, __end); }
protected:
static size_t
_S_rounded_up_size(size_t __n)
{ return _RopeLeaf::_S_rounded_up_size(__n); }
static size_t
_S_allocated_capacity(size_t __n)
{
if (_S_is_basic_char_type((_CharT*)0))
return _S_rounded_up_size(__n) - 1;
else
return _S_rounded_up_size(__n);
}
// Allocate and construct a RopeLeaf using the supplied allocator
// Takes ownership of s instead of copying.
static _RopeLeaf*
_S_new_RopeLeaf(__GC_CONST _CharT *__s,
size_t __size, allocator_type& __a)
{
_RopeLeaf* __space = typename _Base::_LAlloc(__a).allocate(1);
return new(__space) _RopeLeaf(__s, __size, __a);
}
static _RopeConcatenation*
_S_new_RopeConcatenation(_RopeRep* __left, _RopeRep* __right,
allocator_type& __a)
{
_RopeConcatenation* __space = typename _Base::_CAlloc(__a).allocate(1);
return new(__space) _RopeConcatenation(__left, __right, __a);
}
static _RopeFunction*
_S_new_RopeFunction(char_producer<_CharT>* __f,
size_t __size, bool __d, allocator_type& __a)
{
_RopeFunction* __space = typename _Base::_FAlloc(__a).allocate(1);
return new(__space) _RopeFunction(__f, __size, __d, __a);
}
static _RopeSubstring*
_S_new_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type& __a)
{
_RopeSubstring* __space = typename _Base::_SAlloc(__a).allocate(1);
return new(__space) _RopeSubstring(__b, __s, __l, __a);
}
static _RopeLeaf*
_S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
size_t __size, allocator_type& __a)
#define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
_S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
{
if (0 == __size)
return 0;
_CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
__uninitialized_copy_n_a(__s, __size, __buf, __a);
_S_cond_store_eos(__buf[__size]);
__try
{ return _S_new_RopeLeaf(__buf, __size, __a); }
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__buf, __size, __a);
__throw_exception_again;
}
}
// Concatenation of nonempty strings.
// Always builds a concatenation node.
// Rebalances if the result is too deep.
// Result has refcount 1.
// Does not increment left and right ref counts even though
// they are referenced.
static _RopeRep*
_S_tree_concat(_RopeRep* __left, _RopeRep* __right);
// Concatenation helper functions
static _RopeLeaf*
_S_leaf_concat_char_iter(_RopeLeaf* __r,
const _CharT* __iter, size_t __slen);
// Concatenate by copying leaf.
// should take an arbitrary iterator
// result has refcount 1.
#ifndef __GC
static _RopeLeaf*
_S_destr_leaf_concat_char_iter(_RopeLeaf* __r,
const _CharT* __iter, size_t __slen);
// A version that potentially clobbers __r if __r->_M_ref_count == 1.
#endif
private:
static size_t _S_char_ptr_len(const _CharT* __s);
// slightly generalized strlen
rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
: _Base(__t, __a) { }
// Copy __r to the _CharT buffer.
// Returns __buffer + __r->_M_size.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
// Again, with explicit starting position and length.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer);
static const unsigned long
_S_min_len[__detail::_S_max_rope_depth + 1];
static bool
_S_is_balanced(_RopeRep* __r)
{ return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
static bool
_S_is_almost_balanced(_RopeRep* __r)
{ return (__r->_M_depth == 0
|| __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
static bool
_S_is_roughly_balanced(_RopeRep* __r)
{ return (__r->_M_depth <= 1
|| __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
// Assumes the result is not empty.
static _RopeRep*
_S_concat_and_set_balanced(_RopeRep* __left, _RopeRep* __right)
{
_RopeRep* __result = _S_concat(__left, __right);
if (_S_is_balanced(__result))
__result->_M_is_balanced = true;
return __result;
}
// The basic rebalancing operation. Logically copies the
// rope. The result has refcount of 1. The client will
// usually decrement the reference count of __r.
// The result is within height 2 of balanced by the above
// definition.
static _RopeRep* _S_balance(_RopeRep* __r);
// Add all unbalanced subtrees to the forest of balanced trees.
// Used only by balance.
static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
// Add __r to forest, assuming __r is already balanced.
static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
// Print to stdout, exposing structure
static void _S_dump(_RopeRep* __r, int __indent = 0);
// Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
public:
bool
empty() const
{ return 0 == this->_M_tree_ptr; }
// Comparison member function. This is public only for those
// clients that need a ternary comparison. Others
// should use the comparison operators below.
int
compare(const rope& __y) const
{ return _S_compare(this->_M_tree_ptr, __y._M_tree_ptr); }
rope(const _CharT* __s, const allocator_type& __a = allocator_type())
: _Base(__a)
{
this->_M_tree_ptr =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
_M_get_allocator());
}
rope(const _CharT* __s, size_t __len,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
this->_M_tree_ptr =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, _M_get_allocator());
}
// Should perhaps be templatized with respect to the iterator type
// and use Sequence_buffer. (It should perhaps use sequence_buffer
// even now.)
rope(const _CharT* __s, const _CharT* __e,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
this->_M_tree_ptr =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, _M_get_allocator());
}
rope(const const_iterator& __s, const const_iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
rope(const iterator& __s, const iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
rope(_CharT __c, const allocator_type& __a = allocator_type())
: _Base(__a)
{
_CharT* __buf = this->_Data_allocate(_S_rounded_up_size(1));
_M_get_allocator().construct(__buf, __c);
__try
{
this->_M_tree_ptr = _S_new_RopeLeaf(__buf, 1,
_M_get_allocator());
}
__catch(...)
{
_RopeRep::__STL_FREE_STRING(__buf, 1, _M_get_allocator());
__throw_exception_again;
}
}
rope(size_t __n, _CharT __c,
const allocator_type& __a = allocator_type());
rope(const allocator_type& __a = allocator_type())
: _Base(0, __a) { }
// Construct a rope from a function that can compute its members
rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
this->_M_tree_ptr = (0 == __len) ?
0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
}
rope(const rope& __x, const allocator_type& __a = allocator_type())
: _Base(__x._M_tree_ptr, __a)
{ _S_ref(this->_M_tree_ptr); }
~rope() throw()
{ _S_unref(this->_M_tree_ptr); }
rope&
operator=(const rope& __x)
{
_RopeRep* __old = this->_M_tree_ptr;
this->_M_tree_ptr = __x._M_tree_ptr;
_S_ref(this->_M_tree_ptr);
_S_unref(__old);
return *this;
}
void
clear()
{
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = 0;
}
void
push_back(_CharT __x)
{
_RopeRep* __old = this->_M_tree_ptr;
this->_M_tree_ptr
= _S_destr_concat_char_iter(this->_M_tree_ptr, &__x, 1);
_S_unref(__old);
}
void
pop_back()
{
_RopeRep* __old = this->_M_tree_ptr;
this->_M_tree_ptr = _S_substring(this->_M_tree_ptr,
0, this->_M_tree_ptr->_M_size - 1);
_S_unref(__old);
}
_CharT
back() const
{ return _S_fetch(this->_M_tree_ptr, this->_M_tree_ptr->_M_size - 1); }
void
push_front(_CharT __x)
{
_RopeRep* __old = this->_M_tree_ptr;
_RopeRep* __left =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, _M_get_allocator());
__try
{
this->_M_tree_ptr = _S_concat(__left, this->_M_tree_ptr);
_S_unref(__old);
_S_unref(__left);
}
__catch(...)
{
_S_unref(__left);
__throw_exception_again;
}
}
void
pop_front()
{
_RopeRep* __old = this->_M_tree_ptr;
this->_M_tree_ptr
= _S_substring(this->_M_tree_ptr, 1, this->_M_tree_ptr->_M_size);
_S_unref(__old);
}
_CharT
front() const
{ return _S_fetch(this->_M_tree_ptr, 0); }
void
balance()
{
_RopeRep* __old = this->_M_tree_ptr;
this->_M_tree_ptr = _S_balance(this->_M_tree_ptr);
_S_unref(__old);
}
void
copy(_CharT* __buffer) const
{
_Destroy_const(__buffer, __buffer + size(), _M_get_allocator());
_S_flatten(this->_M_tree_ptr, __buffer);
}
// This is the copy function from the standard, but
// with the arguments reordered to make it consistent with the
// rest of the interface.
// Note that this guaranteed not to compile if the draft standard
// order is assumed.
size_type
copy(size_type __pos, size_type __n, _CharT* __buffer) const
{
size_t __size = size();
size_t __len = (__pos + __n > __size? __size - __pos : __n);
_Destroy_const(__buffer, __buffer + __len, _M_get_allocator());
_S_flatten(this->_M_tree_ptr, __pos, __len, __buffer);
return __len;
}
// Print to stdout, exposing structure. May be useful for
// performance debugging.
void
dump()
{ _S_dump(this->_M_tree_ptr); }
// Convert to 0 terminated string in new allocated memory.
// Embedded 0s in the input do not terminate the copy.
const _CharT* c_str() const;
// As above, but also use the flattened representation as
// the new rope representation.
const _CharT* replace_with_c_str();
// Reclaim memory for the c_str generated flattened string.
// Intentionally undocumented, since it's hard to say when this
// is safe for multiple threads.
void
delete_c_str ()
{
if (0 == this->_M_tree_ptr)
return;
if (__detail::_S_leaf == this->_M_tree_ptr->_M_tag &&
((_RopeLeaf*)this->_M_tree_ptr)->_M_data ==
this->_M_tree_ptr->_M_c_string)
{
// Representation shared
return;
}
#ifndef __GC
this->_M_tree_ptr->_M_free_c_string();
#endif
this->_M_tree_ptr->_M_c_string = 0;
}
_CharT
operator[] (size_type __pos) const
{ return _S_fetch(this->_M_tree_ptr, __pos); }
_CharT
at(size_type __pos) const
{
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
const_iterator
begin() const
{ return(const_iterator(this->_M_tree_ptr, 0)); }
// An easy way to get a const iterator from a non-const container.
const_iterator
const_begin() const
{ return(const_iterator(this->_M_tree_ptr, 0)); }
const_iterator
end() const
{ return(const_iterator(this->_M_tree_ptr, size())); }
const_iterator
const_end() const
{ return(const_iterator(this->_M_tree_ptr, size())); }
size_type
size() const
{ return(0 == this->_M_tree_ptr? 0 : this->_M_tree_ptr->_M_size); }
size_type
length() const
{ return size(); }
size_type
max_size() const
{
return _S_min_len[int(__detail::_S_max_rope_depth) - 1] - 1;
// Guarantees that the result can be sufficiently
// balanced. Longer ropes will probably still work,
// but it's harder to make guarantees.
}
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
const_reverse_iterator
const_rbegin() const
{ return const_reverse_iterator(end()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
const_reverse_iterator
const_rend() const
{ return const_reverse_iterator(begin()); }
template<class _CharT2, class _Alloc2>
friend rope<_CharT2, _Alloc2>
operator+(const rope<_CharT2, _Alloc2>& __left,
const rope<_CharT2, _Alloc2>& __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2, _Alloc2>
operator+(const rope<_CharT2, _Alloc2>& __left, const _CharT2* __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2, _Alloc2>
operator+(const rope<_CharT2, _Alloc2>& __left, _CharT2 __right);
// The symmetric cases are intentionally omitted, since they're
// presumed to be less common, and we don't handle them as well.
// The following should really be templatized. The first
// argument should be an input iterator or forward iterator with
// value_type _CharT.
rope&
append(const _CharT* __iter, size_t __n)
{
_RopeRep* __result =
_S_destr_concat_char_iter(this->_M_tree_ptr, __iter, __n);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
return *this;
}
rope&
append(const _CharT* __c_string)
{
size_t __len = _S_char_ptr_len(__c_string);
append(__c_string, __len);
return(*this);
}
rope&
append(const _CharT* __s, const _CharT* __e)
{
_RopeRep* __result =
_S_destr_concat_char_iter(this->_M_tree_ptr, __s, __e - __s);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
return *this;
}
rope&
append(const_iterator __s, const_iterator __e)
{
_Self_destruct_ptr __appendee(_S_substring(__s._M_root,
__s._M_current_pos,
__e._M_current_pos));
_RopeRep* __result = _S_concat(this->_M_tree_ptr,
(_RopeRep*)__appendee);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
return *this;
}
rope&
append(_CharT __c)
{
_RopeRep* __result =
_S_destr_concat_char_iter(this->_M_tree_ptr, &__c, 1);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
return *this;
}
rope&
append()
{ return append(_CharT()); } // XXX why?
rope&
append(const rope& __y)
{
_RopeRep* __result = _S_concat(this->_M_tree_ptr, __y._M_tree_ptr);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
return *this;
}
rope&
append(size_t __n, _CharT __c)
{
rope<_CharT,_Alloc> __last(__n, __c);
return append(__last);
}
void
swap(rope& __b)
{
_RopeRep* __tmp = this->_M_tree_ptr;
this->_M_tree_ptr = __b._M_tree_ptr;
__b._M_tree_ptr = __tmp;
}
protected:
// Result is included in refcount.
static _RopeRep*
replace(_RopeRep* __old, size_t __pos1,
size_t __pos2, _RopeRep* __r)
{
if (0 == __old)
{
_S_ref(__r);
return __r;
}
_Self_destruct_ptr __left(_S_substring(__old, 0, __pos1));
_Self_destruct_ptr __right(_S_substring(__old, __pos2, __old->_M_size));
_RopeRep* __result;
if (0 == __r)
__result = _S_concat(__left, __right);
else
{
_Self_destruct_ptr __left_result(_S_concat(__left, __r));
__result = _S_concat(__left_result, __right);
}
return __result;
}
public:
void
insert(size_t __p, const rope& __r)
{
_RopeRep* __result =
replace(this->_M_tree_ptr, __p, __p, __r._M_tree_ptr);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
}
void
insert(size_t __p, size_t __n, _CharT __c)
{
rope<_CharT,_Alloc> __r(__n,__c);
insert(__p, __r);
}
void
insert(size_t __p, const _CharT* __i, size_t __n)
{
_Self_destruct_ptr __left(_S_substring(this->_M_tree_ptr, 0, __p));
_Self_destruct_ptr __right(_S_substring(this->_M_tree_ptr,
__p, size()));
_Self_destruct_ptr __left_result(_S_concat_char_iter(__left, __i, __n));
// _S_ destr_concat_char_iter should be safe here.
// But as it stands it's probably not a win, since __left
// is likely to have additional references.
_RopeRep* __result = _S_concat(__left_result, __right);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
}
void
insert(size_t __p, const _CharT* __c_string)
{ insert(__p, __c_string, _S_char_ptr_len(__c_string)); }
void
insert(size_t __p, _CharT __c)
{ insert(__p, &__c, 1); }
void
insert(size_t __p)
{
_CharT __c = _CharT();
insert(__p, &__c, 1);
}
void
insert(size_t __p, const _CharT* __i, const _CharT* __j)
{
rope __r(__i, __j);
insert(__p, __r);
}
void
insert(size_t __p, const const_iterator& __i,
const const_iterator& __j)
{
rope __r(__i, __j);
insert(__p, __r);
}
void
insert(size_t __p, const iterator& __i,
const iterator& __j)
{
rope __r(__i, __j);
insert(__p, __r);
}
// (position, length) versions of replace operations:
void
replace(size_t __p, size_t __n, const rope& __r)
{
_RopeRep* __result =
replace(this->_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
}
void
replace(size_t __p, size_t __n,
const _CharT* __i, size_t __i_len)
{
rope __r(__i, __i_len);
replace(__p, __n, __r);
}
void
replace(size_t __p, size_t __n, _CharT __c)
{
rope __r(__c);
replace(__p, __n, __r);
}
void
replace(size_t __p, size_t __n, const _CharT* __c_string)
{
rope __r(__c_string);
replace(__p, __n, __r);
}
void
replace(size_t __p, size_t __n,
const _CharT* __i, const _CharT* __j)
{
rope __r(__i, __j);
replace(__p, __n, __r);
}
void
replace(size_t __p, size_t __n,
const const_iterator& __i, const const_iterator& __j)
{
rope __r(__i, __j);
replace(__p, __n, __r);
}
void
replace(size_t __p, size_t __n,
const iterator& __i, const iterator& __j)
{
rope __r(__i, __j);
replace(__p, __n, __r);
}
// Single character variants:
void
replace(size_t __p, _CharT __c)
{
iterator __i(this, __p);
*__i = __c;
}
void
replace(size_t __p, const rope& __r)
{ replace(__p, 1, __r); }
void
replace(size_t __p, const _CharT* __i, size_t __i_len)
{ replace(__p, 1, __i, __i_len); }
void
replace(size_t __p, const _CharT* __c_string)
{ replace(__p, 1, __c_string); }
void
replace(size_t __p, const _CharT* __i, const _CharT* __j)
{ replace(__p, 1, __i, __j); }
void
replace(size_t __p, const const_iterator& __i,
const const_iterator& __j)
{ replace(__p, 1, __i, __j); }
void
replace(size_t __p, const iterator& __i,
const iterator& __j)
{ replace(__p, 1, __i, __j); }
// Erase, (position, size) variant.
void
erase(size_t __p, size_t __n)
{
_RopeRep* __result = replace(this->_M_tree_ptr, __p,
__p + __n, 0);
_S_unref(this->_M_tree_ptr);
this->_M_tree_ptr = __result;
}
// Erase, single character
void
erase(size_t __p)
{ erase(__p, __p + 1); }
// Insert, iterator variants.
iterator
insert(const iterator& __p, const rope& __r)
{
insert(__p.index(), __r);
return __p;
}
iterator
insert(const iterator& __p, size_t __n, _CharT __c)
{
insert(__p.index(), __n, __c);
return __p;
}
iterator insert(const iterator& __p, _CharT __c)
{
insert(__p.index(), __c);
return __p;
}
iterator
insert(const iterator& __p )
{
insert(__p.index());
return __p;
}
iterator
insert(const iterator& __p, const _CharT* c_string)
{
insert(__p.index(), c_string);
return __p;
}
iterator
insert(const iterator& __p, const _CharT* __i, size_t __n)
{
insert(__p.index(), __i, __n);
return __p;
}
iterator
insert(const iterator& __p, const _CharT* __i,
const _CharT* __j)
{
insert(__p.index(), __i, __j);
return __p;
}
iterator
insert(const iterator& __p,
const const_iterator& __i, const const_iterator& __j)
{
insert(__p.index(), __i, __j);
return __p;
}
iterator
insert(const iterator& __p,
const iterator& __i, const iterator& __j)
{
insert(__p.index(), __i, __j);
return __p;
}
// Replace, range variants.
void
replace(const iterator& __p, const iterator& __q, const rope& __r)
{ replace(__p.index(), __q.index() - __p.index(), __r); }
void
replace(const iterator& __p, const iterator& __q, _CharT __c)
{ replace(__p.index(), __q.index() - __p.index(), __c); }
void
replace(const iterator& __p, const iterator& __q,
const _CharT* __c_string)
{ replace(__p.index(), __q.index() - __p.index(), __c_string); }
void
replace(const iterator& __p, const iterator& __q,
const _CharT* __i, size_t __n)
{ replace(__p.index(), __q.index() - __p.index(), __i, __n); }
void
replace(const iterator& __p, const iterator& __q,
const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void
replace(const iterator& __p, const iterator& __q,
const const_iterator& __i, const const_iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void
replace(const iterator& __p, const iterator& __q,
const iterator& __i, const iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
// Replace, iterator variants.
void
replace(const iterator& __p, const rope& __r)
{ replace(__p.index(), __r); }
void
replace(const iterator& __p, _CharT __c)
{ replace(__p.index(), __c); }
void
replace(const iterator& __p, const _CharT* __c_string)
{ replace(__p.index(), __c_string); }
void
replace(const iterator& __p, const _CharT* __i, size_t __n)
{ replace(__p.index(), __i, __n); }
void
replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __i, __j); }
void
replace(const iterator& __p, const_iterator __i, const_iterator __j)
{ replace(__p.index(), __i, __j); }
void
replace(const iterator& __p, iterator __i, iterator __j)
{ replace(__p.index(), __i, __j); }
// Iterator and range variants of erase
iterator
erase(const iterator& __p, const iterator& __q)
{
size_t __p_index = __p.index();
erase(__p_index, __q.index() - __p_index);
return iterator(this, __p_index);
}
iterator
erase(const iterator& __p)
{
size_t __p_index = __p.index();
erase(__p_index, 1);
return iterator(this, __p_index);
}
rope
substr(size_t __start, size_t __len = 1) const
{
return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr,
__start,
__start + __len));
}
rope
substr(iterator __start, iterator __end) const
{
return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr,
__start.index(),
__end.index()));
}
rope
substr(iterator __start) const
{
size_t __pos = __start.index();
return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr,
__pos, __pos + 1));
}
rope
substr(const_iterator __start, const_iterator __end) const
{
// This might eventually take advantage of the cache in the
// iterator.
return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr,
__start.index(),
__end.index()));
}
rope<_CharT, _Alloc>
substr(const_iterator __start)
{
size_t __pos = __start.index();
return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr,
__pos, __pos + 1));
}
static const size_type npos;
size_type find(_CharT __c, size_type __pos = 0) const;
size_type
find(const _CharT* __s, size_type __pos = 0) const
{
size_type __result_pos;
const_iterator __result =
std::search(const_begin() + __pos, const_end(),
__s, __s + _S_char_ptr_len(__s));
__result_pos = __result.index();
#ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size())
__result_pos = npos;
#endif
return __result_pos;
}
iterator
mutable_begin()
{ return(iterator(this, 0)); }
iterator
mutable_end()
{ return(iterator(this, size())); }
typedef std::reverse_iterator<iterator> reverse_iterator;
reverse_iterator
mutable_rbegin()
{ return reverse_iterator(mutable_end()); }
reverse_iterator
mutable_rend()
{ return reverse_iterator(mutable_begin()); }
reference
mutable_reference_at(size_type __pos)
{ return reference(this, __pos); }
#ifdef __STD_STUFF
reference
operator[] (size_type __pos)
{ return _char_ref_proxy(this, __pos); }
reference
at(size_type __pos)
{
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
void resize(size_type __n, _CharT __c) { }
void resize(size_type __n) { }
void reserve(size_type __res_arg = 0) { }
size_type
capacity() const
{ return max_size(); }
// Stuff below this line is dangerous because it's error prone.
// I would really like to get rid of it.
// copy function with funny arg ordering.
size_type
copy(_CharT* __buffer, size_type __n,
size_type __pos = 0) const
{ return copy(__pos, __n, __buffer); }
iterator
end()
{ return mutable_end(); }
iterator
begin()
{ return mutable_begin(); }
reverse_iterator
rend()
{ return mutable_rend(); }
reverse_iterator
rbegin()
{ return mutable_rbegin(); }
#else
const_iterator
end()
{ return const_end(); }
const_iterator
begin()
{ return const_begin(); }
const_reverse_iterator
rend()
{ return const_rend(); }
const_reverse_iterator
rbegin()
{ return const_rbegin(); }
#endif
};
template <class _CharT, class _Alloc>
const typename rope<_CharT, _Alloc>::size_type
rope<_CharT, _Alloc>::npos = (size_type)(-1);
template <class _CharT, class _Alloc>
inline bool operator==(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return (__x._M_current_pos == __y._M_current_pos
&& __x._M_root == __y._M_root); }
template <class _CharT, class _Alloc>
inline bool operator<(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return (__x._M_current_pos < __y._M_current_pos); }
template <class _CharT, class _Alloc>
inline bool operator!=(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return !(__x == __y); }
template <class _CharT, class _Alloc>
inline bool operator>(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return __y < __x; }
template <class _CharT, class _Alloc>
inline bool
operator<=(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return !(__y < __x); }
template <class _CharT, class _Alloc>
inline bool
operator>=(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return !(__x < __y); }
template <class _CharT, class _Alloc>
inline ptrdiff_t
operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x,
const _Rope_const_iterator<_CharT, _Alloc>& __y)
{ return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; }
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT, _Alloc>
operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n)
{ return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root,
__x._M_current_pos - __n); }
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT, _Alloc>
operator+(const _Rope_const_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n)
{ return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root,
__x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT, _Alloc>
operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT, _Alloc>& __x)
{ return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root,
__x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline bool
operator==(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{return (__x._M_current_pos == __y._M_current_pos
&& __x._M_root_rope == __y._M_root_rope); }
template <class _CharT, class _Alloc>
inline bool
operator<(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return (__x._M_current_pos < __y._M_current_pos); }
template <class _CharT, class _Alloc>
inline bool
operator!=(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return !(__x == __y); }
template <class _CharT, class _Alloc>
inline bool
operator>(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return __y < __x; }
template <class _CharT, class _Alloc>
inline bool
operator<=(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return !(__y < __x); }
template <class _CharT, class _Alloc>
inline bool
operator>=(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return !(__x < __y); }
template <class _CharT, class _Alloc>
inline ptrdiff_t
operator-(const _Rope_iterator<_CharT, _Alloc>& __x,
const _Rope_iterator<_CharT, _Alloc>& __y)
{ return ((ptrdiff_t)__x._M_current_pos
- (ptrdiff_t)__y._M_current_pos); }
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT, _Alloc>
operator-(const _Rope_iterator<_CharT, _Alloc>& __x,
ptrdiff_t __n)
{ return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope,
__x._M_current_pos - __n); }
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT, _Alloc>
operator+(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n)
{ return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope,
__x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT, _Alloc>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT, _Alloc>& __x)
{ return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope,
__x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left,
const rope<_CharT, _Alloc>& __right)
{
// Inlining this should make it possible to keep __left and
// __right in registers.
typedef rope<_CharT, _Alloc> rope_type;
return rope_type(rope_type::_S_concat(__left._M_tree_ptr,
__right._M_tree_ptr));
}
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>&
operator+=(rope<_CharT, _Alloc>& __left,
const rope<_CharT, _Alloc>& __right)
{
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left,
const _CharT* __right)
{
typedef rope<_CharT, _Alloc> rope_type;
size_t __rlen = rope_type::_S_char_ptr_len(__right);
return rope_type(rope_type::_S_concat_char_iter(__left._M_tree_ptr,
__right, __rlen));
}
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>&
operator+=(rope<_CharT, _Alloc>& __left,
const _CharT* __right)
{
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>
operator+(const rope<_CharT, _Alloc>& __left, _CharT __right)
{
typedef rope<_CharT, _Alloc> rope_type;
return rope_type(rope_type::_S_concat_char_iter(__left._M_tree_ptr,
&__right, 1));
}
template <class _CharT, class _Alloc>
inline rope<_CharT, _Alloc>&
operator+=(rope<_CharT, _Alloc>& __left, _CharT __right)
{
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
bool
operator<(const rope<_CharT, _Alloc>& __left,
const rope<_CharT, _Alloc>& __right)
{ return __left.compare(__right) < 0; }
template <class _CharT, class _Alloc>
bool
operator==(const rope<_CharT, _Alloc>& __left,
const rope<_CharT, _Alloc>& __right)
{ return __left.compare(__right) == 0; }
template <class _CharT, class _Alloc>
inline bool
operator==(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y)
{ return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root); }
template <class _CharT, class _Alloc>
inline bool
operator!=(const rope<_CharT, _Alloc>& __x,
const rope<_CharT, _Alloc>& __y)
{ return !(__x == __y); }
template <class _CharT, class _Alloc>
inline bool
operator>(const rope<_CharT, _Alloc>& __x,
const rope<_CharT, _Alloc>& __y)
{ return __y < __x; }
template <class _CharT, class _Alloc>
inline bool
operator<=(const rope<_CharT, _Alloc>& __x,
const rope<_CharT, _Alloc>& __y)
{ return !(__y < __x); }
template <class _CharT, class _Alloc>
inline bool
operator>=(const rope<_CharT, _Alloc>& __x,
const rope<_CharT, _Alloc>& __y)
{ return !(__x < __y); }
template <class _CharT, class _Alloc>
inline bool
operator!=(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y)
{ return !(__x == __y); }
template<class _CharT, class _Traits, class _Alloc>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r);
typedef rope<char> crope;
typedef rope<wchar_t> wrope;
inline crope::reference
__mutable_reference_at(crope& __c, size_t __i)
{ return __c.mutable_reference_at(__i); }
inline wrope::reference
__mutable_reference_at(wrope& __c, size_t __i)
{ return __c.mutable_reference_at(__i); }
template <class _CharT, class _Alloc>
inline void
swap(rope<_CharT, _Alloc>& __x, rope<_CharT, _Alloc>& __y)
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE
namespace std
{
namespace tr1
{
template<>
struct hash<__gnu_cxx::crope>
{
size_t
operator()(const __gnu_cxx::crope& __str) const
{
size_t __size = __str.size();
if (0 == __size)
return 0;
return 13 * __str[0] + 5 * __str[__size - 1] + __size;
}
};
template<>
struct hash<__gnu_cxx::wrope>
{
size_t
operator()(const __gnu_cxx::wrope& __str) const
{
size_t __size = __str.size();
if (0 == __size)
return 0;
return 13 * __str[0] + 5 * __str[__size - 1] + __size;
}
};
} // namespace tr1
} // namespace std
# include <ext/ropeimpl.h>
#endif