blob: 608d678d8fc8c84bf7edceb1bbf9e08b439d203b [file] [log] [blame]
// <forward_list.h> -*- C++ -*-
// Copyright (C) 2008-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/forward_list.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{forward_list}
*/
#ifndef _FORWARD_LIST_H
#define _FORWARD_LIST_H 1
#pragma GCC system_header
#include <memory>
#if __cplusplus >= 201103L
#include <initializer_list>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
/**
* @brief A helper basic node class for %forward_list.
* This is just a linked list with nothing inside it.
* There are purely list shuffling utility methods here.
*/
struct _Fwd_list_node_base
{
_Fwd_list_node_base() = default;
_Fwd_list_node_base* _M_next = nullptr;
_Fwd_list_node_base*
_M_transfer_after(_Fwd_list_node_base* __begin,
_Fwd_list_node_base* __end)
{
_Fwd_list_node_base* __keep = __begin->_M_next;
if (__end)
{
__begin->_M_next = __end->_M_next;
__end->_M_next = _M_next;
}
else
__begin->_M_next = 0;
_M_next = __keep;
return __end;
}
void
_M_reverse_after() noexcept
{
_Fwd_list_node_base* __tail = _M_next;
if (!__tail)
return;
while (_Fwd_list_node_base* __temp = __tail->_M_next)
{
_Fwd_list_node_base* __keep = _M_next;
_M_next = __temp;
__tail->_M_next = __temp->_M_next;
_M_next->_M_next = __keep;
}
}
};
/**
* @brief A helper node class for %forward_list.
* This is just a linked list with uninitialized storage for a
* data value in each node.
* There is a sorting utility method.
*/
template<typename _Tp>
struct _Fwd_list_node
: public _Fwd_list_node_base
{
_Fwd_list_node() = default;
typename aligned_storage<sizeof(_Tp), alignment_of<_Tp>::value>::type
_M_storage;
_Tp*
_M_valptr() noexcept
{
return static_cast<_Tp*>(static_cast<void*>(&_M_storage));
}
const _Tp*
_M_valptr() const noexcept
{
return static_cast<const _Tp*>(static_cast<const void*>(&_M_storage));
}
};
/**
* @brief A forward_list::iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _Fwd_list_iterator
{
typedef _Fwd_list_iterator<_Tp> _Self;
typedef _Fwd_list_node<_Tp> _Node;
typedef _Tp value_type;
typedef _Tp* pointer;
typedef _Tp& reference;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Fwd_list_iterator()
: _M_node() { }
explicit
_Fwd_list_iterator(_Fwd_list_node_base* __n)
: _M_node(__n) { }
reference
operator*() const
{ return *static_cast<_Node*>(this->_M_node)->_M_valptr(); }
pointer
operator->() const
{ return static_cast<_Node*>(this->_M_node)->_M_valptr(); }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp(*this);
_M_node = _M_node->_M_next;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Self
_M_next() const
{
if (_M_node)
return _Fwd_list_iterator(_M_node->_M_next);
else
return _Fwd_list_iterator(0);
}
_Fwd_list_node_base* _M_node;
};
/**
* @brief A forward_list::const_iterator.
*
* All the functions are op overloads.
*/
template<typename _Tp>
struct _Fwd_list_const_iterator
{
typedef _Fwd_list_const_iterator<_Tp> _Self;
typedef const _Fwd_list_node<_Tp> _Node;
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Tp value_type;
typedef const _Tp* pointer;
typedef const _Tp& reference;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
_Fwd_list_const_iterator()
: _M_node() { }
explicit
_Fwd_list_const_iterator(const _Fwd_list_node_base* __n)
: _M_node(__n) { }
_Fwd_list_const_iterator(const iterator& __iter)
: _M_node(__iter._M_node) { }
reference
operator*() const
{ return *static_cast<_Node*>(this->_M_node)->_M_valptr(); }
pointer
operator->() const
{ return static_cast<_Node*>(this->_M_node)->_M_valptr(); }
_Self&
operator++()
{
_M_node = _M_node->_M_next;
return *this;
}
_Self
operator++(int)
{
_Self __tmp(*this);
_M_node = _M_node->_M_next;
return __tmp;
}
bool
operator==(const _Self& __x) const
{ return _M_node == __x._M_node; }
bool
operator!=(const _Self& __x) const
{ return _M_node != __x._M_node; }
_Self
_M_next() const
{
if (this->_M_node)
return _Fwd_list_const_iterator(_M_node->_M_next);
else
return _Fwd_list_const_iterator(0);
}
const _Fwd_list_node_base* _M_node;
};
/**
* @brief Forward list iterator equality comparison.
*/
template<typename _Tp>
inline bool
operator==(const _Fwd_list_iterator<_Tp>& __x,
const _Fwd_list_const_iterator<_Tp>& __y)
{ return __x._M_node == __y._M_node; }
/**
* @brief Forward list iterator inequality comparison.
*/
template<typename _Tp>
inline bool
operator!=(const _Fwd_list_iterator<_Tp>& __x,
const _Fwd_list_const_iterator<_Tp>& __y)
{ return __x._M_node != __y._M_node; }
/**
* @brief Base class for %forward_list.
*/
template<typename _Tp, typename _Alloc>
struct _Fwd_list_base
{
protected:
typedef typename __gnu_cxx::__alloc_traits<_Alloc> _Alloc_traits;
typedef typename _Alloc_traits::template rebind<_Tp>::other
_Tp_alloc_type;
typedef typename _Alloc_traits::template
rebind<_Fwd_list_node<_Tp>>::other _Node_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Node_alloc_type> _Node_alloc_traits;
struct _Fwd_list_impl
: public _Node_alloc_type
{
_Fwd_list_node_base _M_head;
_Fwd_list_impl()
: _Node_alloc_type(), _M_head()
{ }
_Fwd_list_impl(const _Node_alloc_type& __a)
: _Node_alloc_type(__a), _M_head()
{ }
_Fwd_list_impl(_Node_alloc_type&& __a)
: _Node_alloc_type(std::move(__a)), _M_head()
{ }
};
_Fwd_list_impl _M_impl;
public:
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Fwd_list_const_iterator<_Tp> const_iterator;
typedef _Fwd_list_node<_Tp> _Node;
_Node_alloc_type&
_M_get_Node_allocator() noexcept
{ return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
const _Node_alloc_type&
_M_get_Node_allocator() const noexcept
{ return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
_Fwd_list_base()
: _M_impl() { }
_Fwd_list_base(const _Node_alloc_type& __a)
: _M_impl(__a) { }
_Fwd_list_base(_Fwd_list_base&& __lst, const _Node_alloc_type& __a);
_Fwd_list_base(_Fwd_list_base&& __lst)
: _M_impl(std::move(__lst._M_get_Node_allocator()))
{
this->_M_impl._M_head._M_next = __lst._M_impl._M_head._M_next;
__lst._M_impl._M_head._M_next = 0;
}
~_Fwd_list_base()
{ _M_erase_after(&_M_impl._M_head, 0); }
protected:
_Node*
_M_get_node()
{ return _Node_alloc_traits::allocate(_M_get_Node_allocator(), 1); }
template<typename... _Args>
_Node*
_M_create_node(_Args&&... __args)
{
_Node* __node = this->_M_get_node();
__try
{
_Tp_alloc_type __a(_M_get_Node_allocator());
typedef allocator_traits<_Tp_alloc_type> _Alloc_traits;
::new ((void*)__node) _Node();
_Alloc_traits::construct(__a, __node->_M_valptr(),
std::forward<_Args>(__args)...);
}
__catch(...)
{
this->_M_put_node(__node);
__throw_exception_again;
}
return __node;
}
template<typename... _Args>
_Fwd_list_node_base*
_M_insert_after(const_iterator __pos, _Args&&... __args);
void
_M_put_node(_Node* __p)
{ _Node_alloc_traits::deallocate(_M_get_Node_allocator(), __p, 1); }
_Fwd_list_node_base*
_M_erase_after(_Fwd_list_node_base* __pos);
_Fwd_list_node_base*
_M_erase_after(_Fwd_list_node_base* __pos,
_Fwd_list_node_base* __last);
};
/**
* @brief A standard container with linear time access to elements,
* and fixed time insertion/deletion at any point in the sequence.
*
* @ingroup sequences
*
* @tparam _Tp Type of element.
* @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c at and @c operator[].
*
* This is a @e singly @e linked %list. Traversal up the
* %list requires linear time, but adding and removing elements (or
* @e nodes) is done in constant time, regardless of where the
* change takes place. Unlike std::vector and std::deque,
* random-access iterators are not provided, so subscripting ( @c
* [] ) access is not allowed. For algorithms which only need
* sequential access, this lack makes no difference.
*
* Also unlike the other standard containers, std::forward_list provides
* specialized algorithms %unique to linked lists, such as
* splicing, sorting, and in-place reversal.
*/
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class forward_list : private _Fwd_list_base<_Tp, _Alloc>
{
private:
typedef _Fwd_list_base<_Tp, _Alloc> _Base;
typedef _Fwd_list_node<_Tp> _Node;
typedef _Fwd_list_node_base _Node_base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
typedef typename _Base::_Node_alloc_type _Node_alloc_type;
typedef typename _Base::_Node_alloc_traits _Node_alloc_traits;
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits;
public:
// types:
typedef _Tp value_type;
typedef typename _Alloc_traits::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
typedef _Fwd_list_iterator<_Tp> iterator;
typedef _Fwd_list_const_iterator<_Tp> const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef _Alloc allocator_type;
// 23.3.4.2 construct/copy/destroy:
/**
* @brief Creates a %forward_list with no elements.
* @param __al An allocator object.
*/
explicit
forward_list(const _Alloc& __al = _Alloc())
: _Base(_Node_alloc_type(__al))
{ }
/**
* @brief Copy constructor with allocator argument.
* @param __list Input list to copy.
* @param __al An allocator object.
*/
forward_list(const forward_list& __list, const _Alloc& __al)
: _Base(_Node_alloc_type(__al))
{ _M_range_initialize(__list.begin(), __list.end()); }
/**
* @brief Move constructor with allocator argument.
* @param __list Input list to move.
* @param __al An allocator object.
*/
forward_list(forward_list&& __list, const _Alloc& __al)
noexcept(_Node_alloc_traits::_S_always_equal())
: _Base(std::move(__list), _Node_alloc_type(__al))
{ }
/**
* @brief Creates a %forward_list with default constructed elements.
* @param __n The number of elements to initially create.
*
* This constructor creates the %forward_list with @a __n default
* constructed elements.
*/
explicit
forward_list(size_type __n, const _Alloc& __al = _Alloc())
: _Base(_Node_alloc_type(__al))
{ _M_default_initialize(__n); }
/**
* @brief Creates a %forward_list with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __al An allocator object.
*
* This constructor fills the %forward_list with @a __n copies of
* @a __value.
*/
forward_list(size_type __n, const _Tp& __value,
const _Alloc& __al = _Alloc())
: _Base(_Node_alloc_type(__al))
{ _M_fill_initialize(__n, __value); }
/**
* @brief Builds a %forward_list from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __al An allocator object.
*
* Create a %forward_list consisting of copies of the elements from
* [@a __first,@a __last). This is linear in N (where N is
* distance(@a __first,@a __last)).
*/
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
forward_list(_InputIterator __first, _InputIterator __last,
const _Alloc& __al = _Alloc())
: _Base(_Node_alloc_type(__al))
{ _M_range_initialize(__first, __last); }
/**
* @brief The %forward_list copy constructor.
* @param __list A %forward_list of identical element and allocator
* types.
*/
forward_list(const forward_list& __list)
: _Base(_Node_alloc_traits::_S_select_on_copy(
__list._M_get_Node_allocator()))
{ _M_range_initialize(__list.begin(), __list.end()); }
/**
* @brief The %forward_list move constructor.
* @param __list A %forward_list of identical element and allocator
* types.
*
* The newly-created %forward_list contains the exact contents of @a
* __list. The contents of @a __list are a valid, but unspecified
* %forward_list.
*/
forward_list(forward_list&& __list) noexcept
: _Base(std::move(__list)) { }
/**
* @brief Builds a %forward_list from an initializer_list
* @param __il An initializer_list of value_type.
* @param __al An allocator object.
*
* Create a %forward_list consisting of copies of the elements
* in the initializer_list @a __il. This is linear in __il.size().
*/
forward_list(std::initializer_list<_Tp> __il,
const _Alloc& __al = _Alloc())
: _Base(_Node_alloc_type(__al))
{ _M_range_initialize(__il.begin(), __il.end()); }
/**
* @brief The forward_list dtor.
*/
~forward_list() noexcept
{ }
/**
* @brief The %forward_list assignment operator.
* @param __list A %forward_list of identical element and allocator
* types.
*
* All the elements of @a __list are copied, but unlike the copy
* constructor, the allocator object is not copied.
*/
forward_list&
operator=(const forward_list& __list);
/**
* @brief The %forward_list move assignment operator.
* @param __list A %forward_list of identical element and allocator
* types.
*
* The contents of @a __list are moved into this %forward_list
* (without copying, if the allocators permit it).
* @a __list is a valid, but unspecified %forward_list
*/
forward_list&
operator=(forward_list&& __list)
noexcept(_Node_alloc_traits::_S_nothrow_move())
{
constexpr bool __move_storage =
_Node_alloc_traits::_S_propagate_on_move_assign()
|| _Node_alloc_traits::_S_always_equal();
_M_move_assign(std::move(__list),
integral_constant<bool, __move_storage>());
return *this;
}
/**
* @brief The %forward_list initializer list assignment operator.
* @param __il An initializer_list of value_type.
*
* Replace the contents of the %forward_list with copies of the
* elements in the initializer_list @a __il. This is linear in
* __il.size().
*/
forward_list&
operator=(std::initializer_list<_Tp> __il)
{
assign(__il);
return *this;
}
/**
* @brief Assigns a range to a %forward_list.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function fills a %forward_list with copies of the elements
* in the range [@a __first,@a __last).
*
* Note that the assignment completely changes the %forward_list and
* that the number of elements of the resulting %forward_list is the
* same as the number of elements assigned. Old data is lost.
*/
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
void
assign(_InputIterator __first, _InputIterator __last)
{
typedef is_assignable<_Tp, decltype(*__first)> __assignable;
_M_assign(__first, __last, __assignable());
}
/**
* @brief Assigns a given value to a %forward_list.
* @param __n Number of elements to be assigned.
* @param __val Value to be assigned.
*
* This function fills a %forward_list with @a __n copies of the
* given value. Note that the assignment completely changes the
* %forward_list, and that the resulting %forward_list has __n
* elements. Old data is lost.
*/
void
assign(size_type __n, const _Tp& __val)
{ _M_assign_n(__n, __val, is_copy_assignable<_Tp>()); }
/**
* @brief Assigns an initializer_list to a %forward_list.
* @param __il An initializer_list of value_type.
*
* Replace the contents of the %forward_list with copies of the
* elements in the initializer_list @a __il. This is linear in
* il.size().
*/
void
assign(std::initializer_list<_Tp> __il)
{ assign(__il.begin(), __il.end()); }
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const noexcept
{ return allocator_type(this->_M_get_Node_allocator()); }
// 23.3.4.3 iterators:
/**
* Returns a read/write iterator that points before the first element
* in the %forward_list. Iteration is done in ordinary element order.
*/
iterator
before_begin() noexcept
{ return iterator(&this->_M_impl._M_head); }
/**
* Returns a read-only (constant) iterator that points before the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
before_begin() const noexcept
{ return const_iterator(&this->_M_impl._M_head); }
/**
* Returns a read/write iterator that points to the first element
* in the %forward_list. Iteration is done in ordinary element order.
*/
iterator
begin() noexcept
{ return iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const noexcept
{ return const_iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read/write iterator that points one past the last
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
iterator
end() noexcept
{ return iterator(0); }
/**
* Returns a read-only iterator that points one past the last
* element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
end() const noexcept
{ return const_iterator(0); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
cbegin() const noexcept
{ return const_iterator(this->_M_impl._M_head._M_next); }
/**
* Returns a read-only (constant) iterator that points before the
* first element in the %forward_list. Iteration is done in ordinary
* element order.
*/
const_iterator
cbefore_begin() const noexcept
{ return const_iterator(&this->_M_impl._M_head); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %forward_list. Iteration is done in
* ordinary element order.
*/
const_iterator
cend() const noexcept
{ return const_iterator(0); }
/**
* Returns true if the %forward_list is empty. (Thus begin() would
* equal end().)
*/
bool
empty() const noexcept
{ return this->_M_impl._M_head._M_next == 0; }
/**
* Returns the largest possible number of elements of %forward_list.
*/
size_type
max_size() const noexcept
{ return _Node_alloc_traits::max_size(this->_M_get_Node_allocator()); }
// 23.3.4.4 element access:
/**
* Returns a read/write reference to the data at the first
* element of the %forward_list.
*/
reference
front()
{
_Node* __front = static_cast<_Node*>(this->_M_impl._M_head._M_next);
return *__front->_M_valptr();
}
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %forward_list.
*/
const_reference
front() const
{
_Node* __front = static_cast<_Node*>(this->_M_impl._M_head._M_next);
return *__front->_M_valptr();
}
// 23.3.4.5 modiļ¬ers:
/**
* @brief Constructs object in %forward_list at the front of the
* list.
* @param __args Arguments.
*
* This function will insert an object of type Tp constructed
* with Tp(std::forward<Args>(args)...) at the front of the list
* Due to the nature of a %forward_list this operation can
* be done in constant time, and does not invalidate iterators
* and references.
*/
template<typename... _Args>
void
emplace_front(_Args&&... __args)
{ this->_M_insert_after(cbefore_begin(),
std::forward<_Args>(__args)...); }
/**
* @brief Add data to the front of the %forward_list.
* @param __val Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the front of the %forward_list and assigns the given
* data to it. Due to the nature of a %forward_list this operation
* can be done in constant time, and does not invalidate iterators
* and references.
*/
void
push_front(const _Tp& __val)
{ this->_M_insert_after(cbefore_begin(), __val); }
/**
*
*/
void
push_front(_Tp&& __val)
{ this->_M_insert_after(cbefore_begin(), std::move(__val)); }
/**
* @brief Removes first element.
*
* This is a typical stack operation. It shrinks the %forward_list
* by one. Due to the nature of a %forward_list this operation can
* be done in constant time, and only invalidates iterators/references
* to the element being removed.
*
* Note that no data is returned, and if the first element's data
* is needed, it should be retrieved before pop_front() is
* called.
*/
void
pop_front()
{ this->_M_erase_after(&this->_M_impl._M_head); }
/**
* @brief Constructs object in %forward_list after the specified
* iterator.
* @param __pos A const_iterator into the %forward_list.
* @param __args Arguments.
* @return An iterator that points to the inserted data.
*
* This function will insert an object of type T constructed
* with T(std::forward<Args>(args)...) after the specified
* location. Due to the nature of a %forward_list this operation can
* be done in constant time, and does not invalidate iterators
* and references.
*/
template<typename... _Args>
iterator
emplace_after(const_iterator __pos, _Args&&... __args)
{ return iterator(this->_M_insert_after(__pos,
std::forward<_Args>(__args)...)); }
/**
* @brief Inserts given value into %forward_list after specified
* iterator.
* @param __pos An iterator into the %forward_list.
* @param __val Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value after
* the specified location. Due to the nature of a %forward_list this
* operation can be done in constant time, and does not
* invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, const _Tp& __val)
{ return iterator(this->_M_insert_after(__pos, __val)); }
/**
*
*/
iterator
insert_after(const_iterator __pos, _Tp&& __val)
{ return iterator(this->_M_insert_after(__pos, std::move(__val))); }
/**
* @brief Inserts a number of copies of given data into the
* %forward_list.
* @param __pos An iterator into the %forward_list.
* @param __n Number of elements to be inserted.
* @param __val Data to be inserted.
* @return An iterator pointing to the last inserted copy of
* @a val or @a pos if @a n == 0.
*
* This function will insert a specified number of copies of the
* given data after the location specified by @a pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, size_type __n, const _Tp& __val);
/**
* @brief Inserts a range into the %forward_list.
* @param __pos An iterator into the %forward_list.
* @param __first An input iterator.
* @param __last An input iterator.
* @return An iterator pointing to the last inserted element or
* @a __pos if @a __first == @a __last.
*
* This function will insert copies of the data in the range
* [@a __first,@a __last) into the %forward_list after the
* location specified by @a __pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
template<typename _InputIterator,
typename = std::_RequireInputIter<_InputIterator>>
iterator
insert_after(const_iterator __pos,
_InputIterator __first, _InputIterator __last);
/**
* @brief Inserts the contents of an initializer_list into
* %forward_list after the specified iterator.
* @param __pos An iterator into the %forward_list.
* @param __il An initializer_list of value_type.
* @return An iterator pointing to the last inserted element
* or @a __pos if @a __il is empty.
*
* This function will insert copies of the data in the
* initializer_list @a __il into the %forward_list before the location
* specified by @a __pos.
*
* This operation is linear in the number of elements inserted and
* does not invalidate iterators and references.
*/
iterator
insert_after(const_iterator __pos, std::initializer_list<_Tp> __il)
{ return insert_after(__pos, __il.begin(), __il.end()); }
/**
* @brief Removes the element pointed to by the iterator following
* @c pos.
* @param __pos Iterator pointing before element to be erased.
* @return An iterator pointing to the element following the one
* that was erased, or end() if no such element exists.
*
* This function will erase the element at the given position and
* thus shorten the %forward_list by one.
*
* Due to the nature of a %forward_list this operation can be done
* in constant time, and only invalidates iterators/references to
* the element being removed. The user is also cautioned that
* this function only erases the element, and that if the element
* is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibility.
*/
iterator
erase_after(const_iterator __pos)
{ return iterator(this->_M_erase_after(const_cast<_Node_base*>
(__pos._M_node))); }
/**
* @brief Remove a range of elements.
* @param __pos Iterator pointing before the first element to be
* erased.
* @param __last Iterator pointing to one past the last element to be
* erased.
* @return @ __last.
*
* This function will erase the elements in the range
* @a (__pos,__last) and shorten the %forward_list accordingly.
*
* This operation is linear time in the size of the range and only
* invalidates iterators/references to the element being removed.
* The user is also cautioned that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibility.
*/
iterator
erase_after(const_iterator __pos, const_iterator __last)
{ return iterator(this->_M_erase_after(const_cast<_Node_base*>
(__pos._M_node),
const_cast<_Node_base*>
(__last._M_node))); }
/**
* @brief Swaps data with another %forward_list.
* @param __list A %forward_list of the same element and allocator
* types.
*
* This exchanges the elements between two lists in constant
* time. Note that the global std::swap() function is
* specialized such that std::swap(l1,l2) will feed to this
* function.
*/
void
swap(forward_list& __list)
noexcept(_Node_alloc_traits::_S_nothrow_swap())
{
std::swap(this->_M_impl._M_head._M_next,
__list._M_impl._M_head._M_next);
_Node_alloc_traits::_S_on_swap(this->_M_get_Node_allocator(),
__list._M_get_Node_allocator());
}
/**
* @brief Resizes the %forward_list to the specified number of
* elements.
* @param __sz Number of elements the %forward_list should contain.
*
* This function will %resize the %forward_list to the specified
* number of elements. If the number is smaller than the
* %forward_list's current number of elements the %forward_list
* is truncated, otherwise the %forward_list is extended and the
* new elements are default constructed.
*/
void
resize(size_type __sz);
/**
* @brief Resizes the %forward_list to the specified number of
* elements.
* @param __sz Number of elements the %forward_list should contain.
* @param __val Data with which new elements should be populated.
*
* This function will %resize the %forward_list to the specified
* number of elements. If the number is smaller than the
* %forward_list's current number of elements the %forward_list
* is truncated, otherwise the %forward_list is extended and new
* elements are populated with given data.
*/
void
resize(size_type __sz, const value_type& __val);
/**
* @brief Erases all the elements.
*
* Note that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
void
clear() noexcept
{ this->_M_erase_after(&this->_M_impl._M_head, 0); }
// 23.3.4.6 forward_list operations:
/**
* @brief Insert contents of another %forward_list.
* @param __pos Iterator referencing the element to insert after.
* @param __list Source list.
*
* The elements of @a list are inserted in constant time after
* the element referenced by @a pos. @a list becomes an empty
* list.
*
* Requires this != @a x.
*/
void
splice_after(const_iterator __pos, forward_list&& __list)
{
if (!__list.empty())
_M_splice_after(__pos, __list.before_begin(), __list.end());
}
void
splice_after(const_iterator __pos, forward_list& __list)
{ splice_after(__pos, std::move(__list)); }
/**
* @brief Insert element from another %forward_list.
* @param __pos Iterator referencing the element to insert after.
* @param __list Source list.
* @param __i Iterator referencing the element before the element
* to move.
*
* Removes the element in list @a list referenced by @a i and
* inserts it into the current list after @a pos.
*/
void
splice_after(const_iterator __pos, forward_list&& __list,
const_iterator __i);
void
splice_after(const_iterator __pos, forward_list& __list,
const_iterator __i)
{ splice_after(__pos, std::move(__list), __i); }
/**
* @brief Insert range from another %forward_list.
* @param __pos Iterator referencing the element to insert after.
* @param __list Source list.
* @param __before Iterator referencing before the start of range
* in list.
* @param __last Iterator referencing the end of range in list.
*
* Removes elements in the range (__before,__last) and inserts them
* after @a __pos in constant time.
*
* Undefined if @a __pos is in (__before,__last).
*/
void
splice_after(const_iterator __pos, forward_list&&,
const_iterator __before, const_iterator __last)
{ _M_splice_after(__pos, __before, __last); }
void
splice_after(const_iterator __pos, forward_list&,
const_iterator __before, const_iterator __last)
{ _M_splice_after(__pos, __before, __last); }
/**
* @brief Remove all elements equal to value.
* @param __val The value to remove.
*
* Removes every element in the list equal to @a __val.
* Remaining elements stay in list order. Note that this
* function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's
* responsibility.
*/
void
remove(const _Tp& __val);
/**
* @brief Remove all elements satisfying a predicate.
* @param __pred Unary predicate function or object.
*
* Removes every element in the list for which the predicate
* returns true. Remaining elements stay in list order. Note
* that this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibility.
*/
template<typename _Pred>
void
remove_if(_Pred __pred);
/**
* @brief Remove consecutive duplicate elements.
*
* For each consecutive set of elements with the same value,
* remove all but the first one. Remaining elements stay in
* list order. Note that this function only erases the
* elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
void
unique()
{ unique(std::equal_to<_Tp>()); }
/**
* @brief Remove consecutive elements satisfying a predicate.
* @param __binary_pred Binary predicate function or object.
*
* For each consecutive set of elements [first,last) that
* satisfy predicate(first,i) where i is an iterator in
* [first,last), remove all but the first one. Remaining
* elements stay in list order. Note that this function only
* erases the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
template<typename _BinPred>
void
unique(_BinPred __binary_pred);
/**
* @brief Merge sorted lists.
* @param __list Sorted list to merge.
*
* Assumes that both @a list and this list are sorted according to
* operator<(). Merges elements of @a __list into this list in
* sorted order, leaving @a __list empty when complete. Elements in
* this list precede elements in @a __list that are equal.
*/
void
merge(forward_list&& __list)
{ merge(std::move(__list), std::less<_Tp>()); }
void
merge(forward_list& __list)
{ merge(std::move(__list)); }
/**
* @brief Merge sorted lists according to comparison function.
* @param __list Sorted list to merge.
* @param __comp Comparison function defining sort order.
*
* Assumes that both @a __list and this list are sorted according to
* comp. Merges elements of @a __list into this list
* in sorted order, leaving @a __list empty when complete. Elements
* in this list precede elements in @a __list that are equivalent
* according to comp().
*/
template<typename _Comp>
void
merge(forward_list&& __list, _Comp __comp);
template<typename _Comp>
void
merge(forward_list& __list, _Comp __comp)
{ merge(std::move(__list), __comp); }
/**
* @brief Sort the elements of the list.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
void
sort()
{ sort(std::less<_Tp>()); }
/**
* @brief Sort the forward_list using a comparison function.
*
* Sorts the elements of this list in NlogN time. Equivalent
* elements remain in list order.
*/
template<typename _Comp>
void
sort(_Comp __comp);
/**
* @brief Reverse the elements in list.
*
* Reverse the order of elements in the list in linear time.
*/
void
reverse() noexcept
{ this->_M_impl._M_head._M_reverse_after(); }
private:
// Called by the range constructor to implement [23.3.4.2]/9
template<typename _InputIterator>
void
_M_range_initialize(_InputIterator __first, _InputIterator __last);
// Called by forward_list(n,v,a), and the range constructor when it
// turns out to be the same thing.
void
_M_fill_initialize(size_type __n, const value_type& __value);
// Called by splice_after and insert_after.
iterator
_M_splice_after(const_iterator __pos, const_iterator __before,
const_iterator __last);
// Called by forward_list(n).
void
_M_default_initialize(size_type __n);
// Called by resize(sz).
void
_M_default_insert_after(const_iterator __pos, size_type __n);
// Called by operator=(forward_list&&)
void
_M_move_assign(forward_list&& __list, std::true_type) noexcept
{
clear();
std::swap(this->_M_impl._M_head._M_next,
__list._M_impl._M_head._M_next);
std::__alloc_on_move(this->_M_get_Node_allocator(),
__list._M_get_Node_allocator());
}
// Called by operator=(forward_list&&)
void
_M_move_assign(forward_list&& __list, std::false_type)
{
if (__list._M_get_Node_allocator() == this->_M_get_Node_allocator())
_M_move_assign(std::move(__list), std::true_type());
else
// The rvalue's allocator cannot be moved, or is not equal,
// so we need to individually move each element.
this->assign(std::__make_move_if_noexcept_iterator(__list.begin()),
std::__make_move_if_noexcept_iterator(__list.end()));
}
// Called by assign(_InputIterator, _InputIterator) if _Tp is
// CopyAssignable.
template<typename _InputIterator>
void
_M_assign(_InputIterator __first, _InputIterator __last, true_type)
{
auto __prev = before_begin();
auto __curr = begin();
auto __end = end();
while (__curr != __end && __first != __last)
{
*__curr = *__first;
++__prev;
++__curr;
++__first;
}
if (__first != __last)
insert_after(__prev, __first, __last);
else if (__curr != __end)
erase_after(__prev, __end);
}
// Called by assign(_InputIterator, _InputIterator) if _Tp is not
// CopyAssignable.
template<typename _InputIterator>
void
_M_assign(_InputIterator __first, _InputIterator __last, false_type)
{
clear();
insert_after(cbefore_begin(), __first, __last);
}
// Called by assign(size_type, const _Tp&) if Tp is CopyAssignable
void
_M_assign_n(size_type __n, const _Tp& __val, true_type)
{
auto __prev = before_begin();
auto __curr = begin();
auto __end = end();
while (__curr != __end && __n > 0)
{
*__curr = __val;
++__prev;
++__curr;
--__n;
}
if (__n > 0)
insert_after(__prev, __n, __val);
else if (__curr != __end)
erase_after(__prev, __end);
}
// Called by assign(size_type, const _Tp&) if Tp is non-CopyAssignable
void
_M_assign_n(size_type __n, const _Tp& __val, false_type)
{
clear();
insert_after(cbefore_begin(), __n, __val);
}
};
/**
* @brief Forward list equality comparison.
* @param __lx A %forward_list
* @param __ly A %forward_list of the same type as @a __lx.
* @return True iff the elements of the forward lists are equal.
*
* This is an equivalence relation. It is linear in the number of
* elements of the forward lists. Deques are considered equivalent
* if corresponding elements compare equal.
*/
template<typename _Tp, typename _Alloc>
bool
operator==(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly);
/**
* @brief Forward list ordering relation.
* @param __lx A %forward_list.
* @param __ly A %forward_list of the same type as @a __lx.
* @return True iff @a __lx is lexicographically less than @a __ly.
*
* This is a total ordering relation. It is linear in the number of
* elements of the forward lists. The elements must be comparable
* with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator<(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return std::lexicographical_compare(__lx.cbegin(), __lx.cend(),
__ly.cbegin(), __ly.cend()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__lx == __ly); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return (__ly < __lx); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__lx < __ly); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const forward_list<_Tp, _Alloc>& __lx,
const forward_list<_Tp, _Alloc>& __ly)
{ return !(__ly < __lx); }
/// See std::forward_list::swap().
template<typename _Tp, typename _Alloc>
inline void
swap(forward_list<_Tp, _Alloc>& __lx,
forward_list<_Tp, _Alloc>& __ly)
{ __lx.swap(__ly); }
_GLIBCXX_END_NAMESPACE_CONTAINER
} // namespace std
#endif // _FORWARD_LIST_H