Shawn Ledbetter | e18f00d | 2011-08-31 15:14:24 -0700 | [diff] [blame] | 1 | /* Vector API for GNU compiler. |
| 2 | Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010 |
| 3 | Free Software Foundation, Inc. |
| 4 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
| 5 | |
| 6 | This file is part of GCC. |
| 7 | |
| 8 | GCC is free software; you can redistribute it and/or modify it under |
| 9 | the terms of the GNU General Public License as published by the Free |
| 10 | Software Foundation; either version 3, or (at your option) any later |
| 11 | version. |
| 12 | |
| 13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 16 | for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with GCC; see the file COPYING3. If not see |
| 20 | <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #ifndef GCC_VEC_H |
| 23 | #define GCC_VEC_H |
| 24 | |
| 25 | /* The macros here implement a set of templated vector types and |
| 26 | associated interfaces. These templates are implemented with |
| 27 | macros, as we're not in C++ land. The interface functions are |
| 28 | typesafe and use static inline functions, sometimes backed by |
| 29 | out-of-line generic functions. The vectors are designed to |
| 30 | interoperate with the GTY machinery. |
| 31 | |
| 32 | Because of the different behavior of structure objects, scalar |
| 33 | objects and of pointers, there are three flavors, one for each of |
| 34 | these variants. Both the structure object and pointer variants |
| 35 | pass pointers to objects around -- in the former case the pointers |
| 36 | are stored into the vector and in the latter case the pointers are |
| 37 | dereferenced and the objects copied into the vector. The scalar |
| 38 | object variant is suitable for int-like objects, and the vector |
| 39 | elements are returned by value. |
| 40 | |
| 41 | There are both 'index' and 'iterate' accessors. The iterator |
| 42 | returns a boolean iteration condition and updates the iteration |
| 43 | variable passed by reference. Because the iterator will be |
| 44 | inlined, the address-of can be optimized away. |
| 45 | |
| 46 | The vectors are implemented using the trailing array idiom, thus |
| 47 | they are not resizeable without changing the address of the vector |
| 48 | object itself. This means you cannot have variables or fields of |
| 49 | vector type -- always use a pointer to a vector. The one exception |
| 50 | is the final field of a structure, which could be a vector type. |
| 51 | You will have to use the embedded_size & embedded_init calls to |
| 52 | create such objects, and they will probably not be resizeable (so |
| 53 | don't use the 'safe' allocation variants). The trailing array |
| 54 | idiom is used (rather than a pointer to an array of data), because, |
| 55 | if we allow NULL to also represent an empty vector, empty vectors |
| 56 | occupy minimal space in the structure containing them. |
| 57 | |
| 58 | Each operation that increases the number of active elements is |
| 59 | available in 'quick' and 'safe' variants. The former presumes that |
| 60 | there is sufficient allocated space for the operation to succeed |
| 61 | (it dies if there is not). The latter will reallocate the |
| 62 | vector, if needed. Reallocation causes an exponential increase in |
| 63 | vector size. If you know you will be adding N elements, it would |
| 64 | be more efficient to use the reserve operation before adding the |
| 65 | elements with the 'quick' operation. This will ensure there are at |
| 66 | least as many elements as you ask for, it will exponentially |
| 67 | increase if there are too few spare slots. If you want reserve a |
| 68 | specific number of slots, but do not want the exponential increase |
| 69 | (for instance, you know this is the last allocation), use the |
| 70 | reserve_exact operation. You can also create a vector of a |
| 71 | specific size from the get go. |
| 72 | |
| 73 | You should prefer the push and pop operations, as they append and |
| 74 | remove from the end of the vector. If you need to remove several |
| 75 | items in one go, use the truncate operation. The insert and remove |
| 76 | operations allow you to change elements in the middle of the |
| 77 | vector. There are two remove operations, one which preserves the |
| 78 | element ordering 'ordered_remove', and one which does not |
| 79 | 'unordered_remove'. The latter function copies the end element |
| 80 | into the removed slot, rather than invoke a memmove operation. The |
| 81 | 'lower_bound' function will determine where to place an item in the |
| 82 | array using insert that will maintain sorted order. |
| 83 | |
| 84 | When a vector type is defined, first a non-memory managed version |
| 85 | is created. You can then define either or both garbage collected |
| 86 | and heap allocated versions. The allocation mechanism is specified |
| 87 | when the type is defined, and is therefore part of the type. If |
| 88 | you need both gc'd and heap allocated versions, you still must have |
| 89 | *exactly* one definition of the common non-memory managed base vector. |
| 90 | |
| 91 | If you need to directly manipulate a vector, then the 'address' |
| 92 | accessor will return the address of the start of the vector. Also |
| 93 | the 'space' predicate will tell you whether there is spare capacity |
| 94 | in the vector. You will not normally need to use these two functions. |
| 95 | |
| 96 | Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to |
| 97 | get the non-memory allocation version, and then a |
| 98 | DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed |
| 99 | vectors. Variables of vector type are declared using a |
| 100 | VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the |
| 101 | allocation strategy, and can be either 'gc' or 'heap' for garbage |
| 102 | collected and heap allocated respectively. It can be 'none' to get |
| 103 | a vector that must be explicitly allocated (for instance as a |
| 104 | trailing array of another structure). The characters O, P and I |
| 105 | indicate whether TYPEDEF is a pointer (P), object (O) or integral |
| 106 | (I) type. Be careful to pick the correct one, as you'll get an |
| 107 | awkward and inefficient API if you use the wrong one. There is a |
| 108 | check, which results in a compile-time warning, for the P and I |
| 109 | versions, but there is no check for the O versions, as that is not |
| 110 | possible in plain C. Due to the way GTY works, you must annotate |
| 111 | any structures you wish to insert or reference from a vector with a |
| 112 | GTY(()) tag. You need to do this even if you never declare the GC |
| 113 | allocated variants. |
| 114 | |
| 115 | An example of their use would be, |
| 116 | |
| 117 | DEF_VEC_P(tree); // non-managed tree vector. |
| 118 | DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must |
| 119 | // appear at file scope. |
| 120 | |
| 121 | struct my_struct { |
| 122 | VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. |
| 123 | }; |
| 124 | |
| 125 | struct my_struct *s; |
| 126 | |
| 127 | if (VEC_length(tree,s->v)) { we have some contents } |
| 128 | VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end |
| 129 | for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) |
| 130 | { do something with elt } |
| 131 | |
| 132 | */ |
| 133 | |
| 134 | /* Macros to invoke API calls. A single macro works for both pointer |
| 135 | and object vectors, but the argument and return types might well be |
| 136 | different. In each macro, T is the typedef of the vector elements, |
| 137 | and A is the allocation strategy. The allocation strategy is only |
| 138 | present when it is required. Some of these macros pass the vector, |
| 139 | V, by reference (by taking its address), this is noted in the |
| 140 | descriptions. */ |
| 141 | |
| 142 | /* Length of vector |
| 143 | unsigned VEC_T_length(const VEC(T) *v); |
| 144 | |
| 145 | Return the number of active elements in V. V can be NULL, in which |
| 146 | case zero is returned. */ |
| 147 | |
| 148 | #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V))) |
| 149 | |
| 150 | |
| 151 | /* Check if vector is empty |
| 152 | int VEC_T_empty(const VEC(T) *v); |
| 153 | |
| 154 | Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ |
| 155 | |
| 156 | #define VEC_empty(T,V) (VEC_length (T,V) == 0) |
| 157 | |
| 158 | |
| 159 | /* Get the final element of the vector. |
| 160 | T VEC_T_last(VEC(T) *v); // Integer |
| 161 | T VEC_T_last(VEC(T) *v); // Pointer |
| 162 | T *VEC_T_last(VEC(T) *v); // Object |
| 163 | |
| 164 | Return the final element. V must not be empty. */ |
| 165 | |
| 166 | #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO)) |
| 167 | |
| 168 | /* Index into vector |
| 169 | T VEC_T_index(VEC(T) *v, unsigned ix); // Integer |
| 170 | T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer |
| 171 | T *VEC_T_index(VEC(T) *v, unsigned ix); // Object |
| 172 | |
| 173 | Return the IX'th element. If IX must be in the domain of V. */ |
| 174 | |
| 175 | #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| 176 | |
| 177 | /* Iterate over vector |
| 178 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer |
| 179 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer |
| 180 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object |
| 181 | |
| 182 | Return iteration condition and update PTR to point to the IX'th |
| 183 | element. At the end of iteration, sets PTR to NULL. Use this to |
| 184 | iterate over the elements of a vector as follows, |
| 185 | |
| 186 | for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) |
| 187 | continue; */ |
| 188 | |
| 189 | #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P))) |
| 190 | |
| 191 | /* Allocate new vector. |
| 192 | VEC(T,A) *VEC_T_A_alloc(int reserve); |
| 193 | |
| 194 | Allocate a new vector with space for RESERVE objects. If RESERVE |
| 195 | is zero, NO vector is created. */ |
| 196 | |
| 197 | #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO)) |
| 198 | |
| 199 | /* Free a vector. |
| 200 | void VEC_T_A_free(VEC(T,A) *&); |
| 201 | |
| 202 | Free a vector and set it to NULL. */ |
| 203 | |
| 204 | #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V)) |
| 205 | |
| 206 | /* Use these to determine the required size and initialization of a |
| 207 | vector embedded within another structure (as the final member). |
| 208 | |
| 209 | size_t VEC_T_embedded_size(int reserve); |
| 210 | void VEC_T_embedded_init(VEC(T) *v, int reserve); |
| 211 | |
| 212 | These allow the caller to perform the memory allocation. */ |
| 213 | |
| 214 | #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N)) |
| 215 | #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N)) |
| 216 | |
| 217 | /* Copy a vector. |
| 218 | VEC(T,A) *VEC_T_A_copy(VEC(T) *); |
| 219 | |
| 220 | Copy the live elements of a vector into a new vector. The new and |
| 221 | old vectors need not be allocated by the same mechanism. */ |
| 222 | |
| 223 | #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO)) |
| 224 | |
| 225 | /* Determine if a vector has additional capacity. |
| 226 | |
| 227 | int VEC_T_space (VEC(T) *v,int reserve) |
| 228 | |
| 229 | If V has space for RESERVE additional entries, return nonzero. You |
| 230 | usually only need to use this if you are doing your own vector |
| 231 | reallocation, for instance on an embedded vector. This returns |
| 232 | nonzero in exactly the same circumstances that VEC_T_reserve |
| 233 | will. */ |
| 234 | |
| 235 | #define VEC_space(T,V,R) \ |
| 236 | (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO)) |
| 237 | |
| 238 | /* Reserve space. |
| 239 | int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); |
| 240 | |
| 241 | Ensure that V has at least RESERVE slots available. This will |
| 242 | create additional headroom. Note this can cause V to be |
| 243 | reallocated. Returns nonzero iff reallocation actually |
| 244 | occurred. */ |
| 245 | |
| 246 | #define VEC_reserve(T,A,V,R) \ |
| 247 | (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) |
| 248 | |
| 249 | /* Reserve space exactly. |
| 250 | int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); |
| 251 | |
| 252 | Ensure that V has at least RESERVE slots available. This will not |
| 253 | create additional headroom. Note this can cause V to be |
| 254 | reallocated. Returns nonzero iff reallocation actually |
| 255 | occurred. */ |
| 256 | |
| 257 | #define VEC_reserve_exact(T,A,V,R) \ |
| 258 | (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) |
| 259 | |
| 260 | /* Push object with no reallocation |
| 261 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer |
| 262 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer |
| 263 | T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object |
| 264 | |
| 265 | Push a new element onto the end, returns a pointer to the slot |
| 266 | filled in. For object vectors, the new value can be NULL, in which |
| 267 | case NO initialization is performed. There must |
| 268 | be sufficient space in the vector. */ |
| 269 | |
| 270 | #define VEC_quick_push(T,V,O) \ |
| 271 | (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO)) |
| 272 | |
| 273 | /* Push object with reallocation |
| 274 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer |
| 275 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer |
| 276 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object |
| 277 | |
| 278 | Push a new element onto the end, returns a pointer to the slot |
| 279 | filled in. For object vectors, the new value can be NULL, in which |
| 280 | case NO initialization is performed. Reallocates V, if needed. */ |
| 281 | |
| 282 | #define VEC_safe_push(T,A,V,O) \ |
| 283 | (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) |
| 284 | |
| 285 | /* Pop element off end |
| 286 | T VEC_T_pop (VEC(T) *v); // Integer |
| 287 | T VEC_T_pop (VEC(T) *v); // Pointer |
| 288 | void VEC_T_pop (VEC(T) *v); // Object |
| 289 | |
| 290 | Pop the last element off the end. Returns the element popped, for |
| 291 | pointer vectors. */ |
| 292 | |
| 293 | #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO)) |
| 294 | |
| 295 | /* Truncate to specific length |
| 296 | void VEC_T_truncate (VEC(T) *v, unsigned len); |
| 297 | |
| 298 | Set the length as specified. The new length must be less than or |
| 299 | equal to the current length. This is an O(1) operation. */ |
| 300 | |
| 301 | #define VEC_truncate(T,V,I) \ |
| 302 | (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| 303 | |
| 304 | /* Grow to a specific length. |
| 305 | void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); |
| 306 | |
| 307 | Grow the vector to a specific length. The LEN must be as |
| 308 | long or longer than the current length. The new elements are |
| 309 | uninitialized. */ |
| 310 | |
| 311 | #define VEC_safe_grow(T,A,V,I) \ |
| 312 | (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) |
| 313 | |
| 314 | /* Grow to a specific length. |
| 315 | void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); |
| 316 | |
| 317 | Grow the vector to a specific length. The LEN must be as |
| 318 | long or longer than the current length. The new elements are |
| 319 | initialized to zero. */ |
| 320 | |
| 321 | #define VEC_safe_grow_cleared(T,A,V,I) \ |
| 322 | (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) |
| 323 | |
| 324 | /* Replace element |
| 325 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer |
| 326 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer |
| 327 | T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object |
| 328 | |
| 329 | Replace the IXth element of V with a new value, VAL. For pointer |
| 330 | vectors returns the original value. For object vectors returns a |
| 331 | pointer to the new value. For object vectors the new value can be |
| 332 | NULL, in which case no overwriting of the slot is actually |
| 333 | performed. */ |
| 334 | |
| 335 | #define VEC_replace(T,V,I,O) \ |
| 336 | (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO)) |
| 337 | |
| 338 | /* Insert object with no reallocation |
| 339 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer |
| 340 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer |
| 341 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object |
| 342 | |
| 343 | Insert an element, VAL, at the IXth position of V. Return a pointer |
| 344 | to the slot created. For vectors of object, the new value can be |
| 345 | NULL, in which case no initialization of the inserted slot takes |
| 346 | place. There must be sufficient space. */ |
| 347 | |
| 348 | #define VEC_quick_insert(T,V,I,O) \ |
| 349 | (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO)) |
| 350 | |
| 351 | /* Insert object with reallocation |
| 352 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer |
| 353 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer |
| 354 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object |
| 355 | |
| 356 | Insert an element, VAL, at the IXth position of V. Return a pointer |
| 357 | to the slot created. For vectors of object, the new value can be |
| 358 | NULL, in which case no initialization of the inserted slot takes |
| 359 | place. Reallocate V, if necessary. */ |
| 360 | |
| 361 | #define VEC_safe_insert(T,A,V,I,O) \ |
| 362 | (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) |
| 363 | |
| 364 | /* Remove element retaining order |
| 365 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer |
| 366 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| 367 | void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object |
| 368 | |
| 369 | Remove an element from the IXth position of V. Ordering of |
| 370 | remaining elements is preserved. For pointer vectors returns the |
| 371 | removed object. This is an O(N) operation due to a memmove. */ |
| 372 | |
| 373 | #define VEC_ordered_remove(T,V,I) \ |
| 374 | (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| 375 | |
| 376 | /* Remove element destroying order |
| 377 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer |
| 378 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| 379 | void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object |
| 380 | |
| 381 | Remove an element from the IXth position of V. Ordering of |
| 382 | remaining elements is destroyed. For pointer vectors returns the |
| 383 | removed object. This is an O(1) operation. */ |
| 384 | |
| 385 | #define VEC_unordered_remove(T,V,I) \ |
| 386 | (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| 387 | |
| 388 | /* Remove a block of elements |
| 389 | void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); |
| 390 | |
| 391 | Remove LEN elements starting at the IXth. Ordering is retained. |
| 392 | This is an O(1) operation. */ |
| 393 | |
| 394 | #define VEC_block_remove(T,V,I,L) \ |
| 395 | (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO)) |
| 396 | |
| 397 | /* Get the address of the array of elements |
| 398 | T *VEC_T_address (VEC(T) v) |
| 399 | |
| 400 | If you need to directly manipulate the array (for instance, you |
| 401 | want to feed it to qsort), use this accessor. */ |
| 402 | |
| 403 | #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V))) |
| 404 | |
| 405 | /* Find the first index in the vector not less than the object. |
| 406 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| 407 | bool (*lessthan) (const T, const T)); // Integer |
| 408 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| 409 | bool (*lessthan) (const T, const T)); // Pointer |
| 410 | unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, |
| 411 | bool (*lessthan) (const T*, const T*)); // Object |
| 412 | |
| 413 | Find the first position in which VAL could be inserted without |
| 414 | changing the ordering of V. LESSTHAN is a function that returns |
| 415 | true if the first argument is strictly less than the second. */ |
| 416 | |
| 417 | #define VEC_lower_bound(T,V,O,LT) \ |
| 418 | (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO)) |
| 419 | |
| 420 | /* Reallocate an array of elements with prefix. */ |
| 421 | extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); |
| 422 | extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL); |
| 423 | extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| 424 | extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t |
| 425 | MEM_STAT_DECL); |
| 426 | extern void ggc_free (void *); |
| 427 | #define vec_gc_free(V) ggc_free (V) |
| 428 | extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); |
| 429 | extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL); |
| 430 | extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| 431 | extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t |
| 432 | MEM_STAT_DECL); |
| 433 | extern void dump_vec_loc_statistics (void); |
| 434 | #ifdef GATHER_STATISTICS |
| 435 | void vec_heap_free (void *); |
| 436 | #else |
| 437 | #define vec_heap_free(V) free (V) |
| 438 | #endif |
| 439 | |
| 440 | #if ENABLE_CHECKING |
| 441 | #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ |
| 442 | #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ |
| 443 | #define VEC_CHECK_PASS ,file_,line_,function_ |
| 444 | |
| 445 | #define VEC_ASSERT(EXPR,OP,T,A) \ |
| 446 | (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) |
| 447 | |
| 448 | extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) |
| 449 | ATTRIBUTE_NORETURN; |
| 450 | #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) |
| 451 | #else |
| 452 | #define VEC_CHECK_INFO |
| 453 | #define VEC_CHECK_DECL |
| 454 | #define VEC_CHECK_PASS |
| 455 | #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) |
| 456 | #endif |
| 457 | |
| 458 | /* Note: gengtype has hardwired knowledge of the expansions of the |
| 459 | VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the |
| 460 | expansions of these macros you may need to change gengtype too. */ |
| 461 | |
| 462 | #define VEC(T,A) VEC_##T##_##A |
| 463 | #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP |
| 464 | |
| 465 | /* Base of vector type, not user visible. */ |
| 466 | #define VEC_T(T,B) \ |
| 467 | typedef struct VEC(T,B) \ |
| 468 | { \ |
| 469 | unsigned num; \ |
| 470 | unsigned alloc; \ |
| 471 | T vec[1]; \ |
| 472 | } VEC(T,B) |
| 473 | |
| 474 | #define VEC_T_GTY(T,B) \ |
| 475 | typedef struct GTY(()) VEC(T,B) \ |
| 476 | { \ |
| 477 | unsigned num; \ |
| 478 | unsigned alloc; \ |
| 479 | T GTY ((length ("%h.num"))) vec[1]; \ |
| 480 | } VEC(T,B) |
| 481 | |
| 482 | /* Derived vector type, user visible. */ |
| 483 | #define VEC_TA_GTY(T,B,A,GTY) \ |
| 484 | typedef struct GTY VEC(T,A) \ |
| 485 | { \ |
| 486 | VEC(T,B) base; \ |
| 487 | } VEC(T,A) |
| 488 | |
| 489 | #define VEC_TA(T,B,A) \ |
| 490 | typedef struct VEC(T,A) \ |
| 491 | { \ |
| 492 | VEC(T,B) base; \ |
| 493 | } VEC(T,A) |
| 494 | |
| 495 | /* Convert to base type. */ |
| 496 | #define VEC_BASE(P) ((P) ? &(P)->base : 0) |
| 497 | |
| 498 | /* Vector of integer-like object. */ |
| 499 | #define DEF_VEC_I(T) \ |
| 500 | static inline void VEC_OP (T,must_be,integral_type) (void) \ |
| 501 | { \ |
| 502 | (void)~(T)0; \ |
| 503 | } \ |
| 504 | \ |
| 505 | VEC_T(T,base); \ |
| 506 | VEC_TA(T,base,none); \ |
| 507 | DEF_VEC_FUNC_P(T) \ |
| 508 | struct vec_swallow_trailing_semi |
| 509 | #define DEF_VEC_ALLOC_I(T,A) \ |
| 510 | VEC_TA(T,base,A); \ |
| 511 | DEF_VEC_ALLOC_FUNC_I(T,A) \ |
| 512 | DEF_VEC_NONALLOC_FUNCS_I(T,A) \ |
| 513 | struct vec_swallow_trailing_semi |
| 514 | |
| 515 | /* Vector of pointer to object. */ |
| 516 | #define DEF_VEC_P(T) \ |
| 517 | static inline void VEC_OP (T,must_be,pointer_type) (void) \ |
| 518 | { \ |
| 519 | (void)((T)1 == (void *)1); \ |
| 520 | } \ |
| 521 | \ |
| 522 | VEC_T_GTY(T,base); \ |
| 523 | VEC_TA(T,base,none); \ |
| 524 | DEF_VEC_FUNC_P(T) \ |
| 525 | struct vec_swallow_trailing_semi |
| 526 | #define DEF_VEC_ALLOC_P(T,A) \ |
| 527 | VEC_TA(T,base,A); \ |
| 528 | DEF_VEC_ALLOC_FUNC_P(T,A) \ |
| 529 | DEF_VEC_NONALLOC_FUNCS_P(T,A) \ |
| 530 | struct vec_swallow_trailing_semi |
| 531 | |
| 532 | #define DEF_VEC_FUNC_P(T) \ |
| 533 | static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
| 534 | { \ |
| 535 | return vec_ ? vec_->num : 0; \ |
| 536 | } \ |
| 537 | \ |
| 538 | static inline T VEC_OP (T,base,last) \ |
| 539 | (const VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| 540 | { \ |
| 541 | VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
| 542 | \ |
| 543 | return vec_->vec[vec_->num - 1]; \ |
| 544 | } \ |
| 545 | \ |
| 546 | static inline T VEC_OP (T,base,index) \ |
| 547 | (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 548 | { \ |
| 549 | VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
| 550 | \ |
| 551 | return vec_->vec[ix_]; \ |
| 552 | } \ |
| 553 | \ |
| 554 | static inline int VEC_OP (T,base,iterate) \ |
| 555 | (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \ |
| 556 | { \ |
| 557 | if (vec_ && ix_ < vec_->num) \ |
| 558 | { \ |
| 559 | *ptr = vec_->vec[ix_]; \ |
| 560 | return 1; \ |
| 561 | } \ |
| 562 | else \ |
| 563 | { \ |
| 564 | *ptr = (T) 0; \ |
| 565 | return 0; \ |
| 566 | } \ |
| 567 | } \ |
| 568 | \ |
| 569 | static inline size_t VEC_OP (T,base,embedded_size) \ |
| 570 | (int alloc_) \ |
| 571 | { \ |
| 572 | return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
| 573 | } \ |
| 574 | \ |
| 575 | static inline void VEC_OP (T,base,embedded_init) \ |
| 576 | (VEC(T,base) *vec_, int alloc_) \ |
| 577 | { \ |
| 578 | vec_->num = 0; \ |
| 579 | vec_->alloc = alloc_; \ |
| 580 | } \ |
| 581 | \ |
| 582 | static inline int VEC_OP (T,base,space) \ |
| 583 | (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ |
| 584 | { \ |
| 585 | VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
| 586 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| 587 | } \ |
| 588 | \ |
| 589 | static inline T *VEC_OP (T,base,quick_push) \ |
| 590 | (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \ |
| 591 | { \ |
| 592 | T *slot_; \ |
| 593 | \ |
| 594 | VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
| 595 | slot_ = &vec_->vec[vec_->num++]; \ |
| 596 | *slot_ = obj_; \ |
| 597 | \ |
| 598 | return slot_; \ |
| 599 | } \ |
| 600 | \ |
| 601 | static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| 602 | { \ |
| 603 | T obj_; \ |
| 604 | \ |
| 605 | VEC_ASSERT (vec_->num, "pop", T, base); \ |
| 606 | obj_ = vec_->vec[--vec_->num]; \ |
| 607 | \ |
| 608 | return obj_; \ |
| 609 | } \ |
| 610 | \ |
| 611 | static inline void VEC_OP (T,base,truncate) \ |
| 612 | (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ |
| 613 | { \ |
| 614 | VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
| 615 | if (vec_) \ |
| 616 | vec_->num = size_; \ |
| 617 | } \ |
| 618 | \ |
| 619 | static inline T VEC_OP (T,base,replace) \ |
| 620 | (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ |
| 621 | { \ |
| 622 | T old_obj_; \ |
| 623 | \ |
| 624 | VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
| 625 | old_obj_ = vec_->vec[ix_]; \ |
| 626 | vec_->vec[ix_] = obj_; \ |
| 627 | \ |
| 628 | return old_obj_; \ |
| 629 | } \ |
| 630 | \ |
| 631 | static inline T *VEC_OP (T,base,quick_insert) \ |
| 632 | (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ |
| 633 | { \ |
| 634 | T *slot_; \ |
| 635 | \ |
| 636 | VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ |
| 637 | VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ |
| 638 | slot_ = &vec_->vec[ix_]; \ |
| 639 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| 640 | *slot_ = obj_; \ |
| 641 | \ |
| 642 | return slot_; \ |
| 643 | } \ |
| 644 | \ |
| 645 | static inline T VEC_OP (T,base,ordered_remove) \ |
| 646 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 647 | { \ |
| 648 | T *slot_; \ |
| 649 | T obj_; \ |
| 650 | \ |
| 651 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| 652 | slot_ = &vec_->vec[ix_]; \ |
| 653 | obj_ = *slot_; \ |
| 654 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| 655 | \ |
| 656 | return obj_; \ |
| 657 | } \ |
| 658 | \ |
| 659 | static inline T VEC_OP (T,base,unordered_remove) \ |
| 660 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 661 | { \ |
| 662 | T *slot_; \ |
| 663 | T obj_; \ |
| 664 | \ |
| 665 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| 666 | slot_ = &vec_->vec[ix_]; \ |
| 667 | obj_ = *slot_; \ |
| 668 | *slot_ = vec_->vec[--vec_->num]; \ |
| 669 | \ |
| 670 | return obj_; \ |
| 671 | } \ |
| 672 | \ |
| 673 | static inline void VEC_OP (T,base,block_remove) \ |
| 674 | (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ |
| 675 | { \ |
| 676 | T *slot_; \ |
| 677 | \ |
| 678 | VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ |
| 679 | slot_ = &vec_->vec[ix_]; \ |
| 680 | vec_->num -= len_; \ |
| 681 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| 682 | } \ |
| 683 | \ |
| 684 | static inline T *VEC_OP (T,base,address) \ |
| 685 | (VEC(T,base) *vec_) \ |
| 686 | { \ |
| 687 | return vec_ ? vec_->vec : 0; \ |
| 688 | } \ |
| 689 | \ |
| 690 | static inline unsigned VEC_OP (T,base,lower_bound) \ |
| 691 | (VEC(T,base) *vec_, const T obj_, \ |
| 692 | bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \ |
| 693 | { \ |
| 694 | unsigned int len_ = VEC_OP (T,base, length) (vec_); \ |
| 695 | unsigned int half_, middle_; \ |
| 696 | unsigned int first_ = 0; \ |
| 697 | while (len_ > 0) \ |
| 698 | { \ |
| 699 | T middle_elem_; \ |
| 700 | half_ = len_ >> 1; \ |
| 701 | middle_ = first_; \ |
| 702 | middle_ += half_; \ |
| 703 | middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ |
| 704 | if (lessthan_ (middle_elem_, obj_)) \ |
| 705 | { \ |
| 706 | first_ = middle_; \ |
| 707 | ++first_; \ |
| 708 | len_ = len_ - half_ - 1; \ |
| 709 | } \ |
| 710 | else \ |
| 711 | len_ = half_; \ |
| 712 | } \ |
| 713 | return first_; \ |
| 714 | } |
| 715 | |
| 716 | #define DEF_VEC_ALLOC_FUNC_P(T,A) \ |
| 717 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| 718 | (int alloc_ MEM_STAT_DECL) \ |
| 719 | { \ |
| 720 | return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \ |
| 721 | PASS_MEM_STAT); \ |
| 722 | } |
| 723 | |
| 724 | |
| 725 | #define DEF_VEC_NONALLOC_FUNCS_P(T,A) \ |
| 726 | static inline void VEC_OP (T,A,free) \ |
| 727 | (VEC(T,A) **vec_) \ |
| 728 | { \ |
| 729 | if (*vec_) \ |
| 730 | vec_##A##_free (*vec_); \ |
| 731 | *vec_ = NULL; \ |
| 732 | } \ |
| 733 | \ |
| 734 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| 735 | { \ |
| 736 | size_t len_ = vec_ ? vec_->num : 0; \ |
| 737 | VEC (T,A) *new_vec_ = NULL; \ |
| 738 | \ |
| 739 | if (len_) \ |
| 740 | { \ |
| 741 | new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \ |
| 742 | (NULL, len_ PASS_MEM_STAT)); \ |
| 743 | \ |
| 744 | new_vec_->base.num = len_; \ |
| 745 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| 746 | } \ |
| 747 | return new_vec_; \ |
| 748 | } \ |
| 749 | \ |
| 750 | static inline int VEC_OP (T,A,reserve) \ |
| 751 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 752 | { \ |
| 753 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 754 | VEC_CHECK_PASS); \ |
| 755 | \ |
| 756 | if (extend) \ |
| 757 | *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ |
| 758 | \ |
| 759 | return extend; \ |
| 760 | } \ |
| 761 | \ |
| 762 | static inline int VEC_OP (T,A,reserve_exact) \ |
| 763 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 764 | { \ |
| 765 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 766 | VEC_CHECK_PASS); \ |
| 767 | \ |
| 768 | if (extend) \ |
| 769 | *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \ |
| 770 | PASS_MEM_STAT); \ |
| 771 | \ |
| 772 | return extend; \ |
| 773 | } \ |
| 774 | \ |
| 775 | static inline void VEC_OP (T,A,safe_grow) \ |
| 776 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 777 | { \ |
| 778 | VEC_ASSERT (size_ >= 0 \ |
| 779 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| 780 | "grow", T, A); \ |
| 781 | VEC_OP (T,A,reserve_exact) (vec_, \ |
| 782 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| 783 | VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 784 | VEC_BASE (*vec_)->num = size_; \ |
| 785 | } \ |
| 786 | \ |
| 787 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| 788 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 789 | { \ |
| 790 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| 791 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 792 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| 793 | sizeof (T) * (size_ - oldsize)); \ |
| 794 | } \ |
| 795 | \ |
| 796 | static inline T *VEC_OP (T,A,safe_push) \ |
| 797 | (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 798 | { \ |
| 799 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 800 | \ |
| 801 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| 802 | } \ |
| 803 | \ |
| 804 | static inline T *VEC_OP (T,A,safe_insert) \ |
| 805 | (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 806 | { \ |
| 807 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 808 | \ |
| 809 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| 810 | VEC_CHECK_PASS); \ |
| 811 | } |
| 812 | |
| 813 | /* Vector of object. */ |
| 814 | #define DEF_VEC_O(T) \ |
| 815 | VEC_T_GTY(T,base); \ |
| 816 | VEC_TA(T,base,none); \ |
| 817 | DEF_VEC_FUNC_O(T) \ |
| 818 | struct vec_swallow_trailing_semi |
| 819 | #define DEF_VEC_ALLOC_O(T,A) \ |
| 820 | VEC_TA(T,base,A); \ |
| 821 | DEF_VEC_ALLOC_FUNC_O(T,A) \ |
| 822 | DEF_VEC_NONALLOC_FUNCS_O(T,A) \ |
| 823 | struct vec_swallow_trailing_semi |
| 824 | |
| 825 | #define DEF_VEC_FUNC_O(T) \ |
| 826 | static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
| 827 | { \ |
| 828 | return vec_ ? vec_->num : 0; \ |
| 829 | } \ |
| 830 | \ |
| 831 | static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| 832 | { \ |
| 833 | VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
| 834 | \ |
| 835 | return &vec_->vec[vec_->num - 1]; \ |
| 836 | } \ |
| 837 | \ |
| 838 | static inline T *VEC_OP (T,base,index) \ |
| 839 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 840 | { \ |
| 841 | VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
| 842 | \ |
| 843 | return &vec_->vec[ix_]; \ |
| 844 | } \ |
| 845 | \ |
| 846 | static inline int VEC_OP (T,base,iterate) \ |
| 847 | (VEC(T,base) *vec_, unsigned ix_, T **ptr) \ |
| 848 | { \ |
| 849 | if (vec_ && ix_ < vec_->num) \ |
| 850 | { \ |
| 851 | *ptr = &vec_->vec[ix_]; \ |
| 852 | return 1; \ |
| 853 | } \ |
| 854 | else \ |
| 855 | { \ |
| 856 | *ptr = 0; \ |
| 857 | return 0; \ |
| 858 | } \ |
| 859 | } \ |
| 860 | \ |
| 861 | static inline size_t VEC_OP (T,base,embedded_size) \ |
| 862 | (int alloc_) \ |
| 863 | { \ |
| 864 | return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
| 865 | } \ |
| 866 | \ |
| 867 | static inline void VEC_OP (T,base,embedded_init) \ |
| 868 | (VEC(T,base) *vec_, int alloc_) \ |
| 869 | { \ |
| 870 | vec_->num = 0; \ |
| 871 | vec_->alloc = alloc_; \ |
| 872 | } \ |
| 873 | \ |
| 874 | static inline int VEC_OP (T,base,space) \ |
| 875 | (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ |
| 876 | { \ |
| 877 | VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
| 878 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| 879 | } \ |
| 880 | \ |
| 881 | static inline T *VEC_OP (T,base,quick_push) \ |
| 882 | (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \ |
| 883 | { \ |
| 884 | T *slot_; \ |
| 885 | \ |
| 886 | VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
| 887 | slot_ = &vec_->vec[vec_->num++]; \ |
| 888 | if (obj_) \ |
| 889 | *slot_ = *obj_; \ |
| 890 | \ |
| 891 | return slot_; \ |
| 892 | } \ |
| 893 | \ |
| 894 | static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| 895 | { \ |
| 896 | VEC_ASSERT (vec_->num, "pop", T, base); \ |
| 897 | --vec_->num; \ |
| 898 | } \ |
| 899 | \ |
| 900 | static inline void VEC_OP (T,base,truncate) \ |
| 901 | (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ |
| 902 | { \ |
| 903 | VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
| 904 | if (vec_) \ |
| 905 | vec_->num = size_; \ |
| 906 | } \ |
| 907 | \ |
| 908 | static inline T *VEC_OP (T,base,replace) \ |
| 909 | (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ |
| 910 | { \ |
| 911 | T *slot_; \ |
| 912 | \ |
| 913 | VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
| 914 | slot_ = &vec_->vec[ix_]; \ |
| 915 | if (obj_) \ |
| 916 | *slot_ = *obj_; \ |
| 917 | \ |
| 918 | return slot_; \ |
| 919 | } \ |
| 920 | \ |
| 921 | static inline T *VEC_OP (T,base,quick_insert) \ |
| 922 | (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ |
| 923 | { \ |
| 924 | T *slot_; \ |
| 925 | \ |
| 926 | VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ |
| 927 | VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ |
| 928 | slot_ = &vec_->vec[ix_]; \ |
| 929 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| 930 | if (obj_) \ |
| 931 | *slot_ = *obj_; \ |
| 932 | \ |
| 933 | return slot_; \ |
| 934 | } \ |
| 935 | \ |
| 936 | static inline void VEC_OP (T,base,ordered_remove) \ |
| 937 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 938 | { \ |
| 939 | T *slot_; \ |
| 940 | \ |
| 941 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| 942 | slot_ = &vec_->vec[ix_]; \ |
| 943 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| 944 | } \ |
| 945 | \ |
| 946 | static inline void VEC_OP (T,base,unordered_remove) \ |
| 947 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| 948 | { \ |
| 949 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| 950 | vec_->vec[ix_] = vec_->vec[--vec_->num]; \ |
| 951 | } \ |
| 952 | \ |
| 953 | static inline void VEC_OP (T,base,block_remove) \ |
| 954 | (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ |
| 955 | { \ |
| 956 | T *slot_; \ |
| 957 | \ |
| 958 | VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ |
| 959 | slot_ = &vec_->vec[ix_]; \ |
| 960 | vec_->num -= len_; \ |
| 961 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| 962 | } \ |
| 963 | \ |
| 964 | static inline T *VEC_OP (T,base,address) \ |
| 965 | (VEC(T,base) *vec_) \ |
| 966 | { \ |
| 967 | return vec_ ? vec_->vec : 0; \ |
| 968 | } \ |
| 969 | \ |
| 970 | static inline unsigned VEC_OP (T,base,lower_bound) \ |
| 971 | (VEC(T,base) *vec_, const T *obj_, \ |
| 972 | bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \ |
| 973 | { \ |
| 974 | unsigned int len_ = VEC_OP (T, base, length) (vec_); \ |
| 975 | unsigned int half_, middle_; \ |
| 976 | unsigned int first_ = 0; \ |
| 977 | while (len_ > 0) \ |
| 978 | { \ |
| 979 | T *middle_elem_; \ |
| 980 | half_ = len_ >> 1; \ |
| 981 | middle_ = first_; \ |
| 982 | middle_ += half_; \ |
| 983 | middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ |
| 984 | if (lessthan_ (middle_elem_, obj_)) \ |
| 985 | { \ |
| 986 | first_ = middle_; \ |
| 987 | ++first_; \ |
| 988 | len_ = len_ - half_ - 1; \ |
| 989 | } \ |
| 990 | else \ |
| 991 | len_ = half_; \ |
| 992 | } \ |
| 993 | return first_; \ |
| 994 | } |
| 995 | |
| 996 | #define DEF_VEC_ALLOC_FUNC_O(T,A) \ |
| 997 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| 998 | (int alloc_ MEM_STAT_DECL) \ |
| 999 | { \ |
| 1000 | return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \ |
| 1001 | offsetof (VEC(T,A),base.vec), \ |
| 1002 | sizeof (T) \ |
| 1003 | PASS_MEM_STAT); \ |
| 1004 | } |
| 1005 | |
| 1006 | #define DEF_VEC_NONALLOC_FUNCS_O(T,A) \ |
| 1007 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| 1008 | { \ |
| 1009 | size_t len_ = vec_ ? vec_->num : 0; \ |
| 1010 | VEC (T,A) *new_vec_ = NULL; \ |
| 1011 | \ |
| 1012 | if (len_) \ |
| 1013 | { \ |
| 1014 | new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
| 1015 | (NULL, len_, \ |
| 1016 | offsetof (VEC(T,A),base.vec), sizeof (T) \ |
| 1017 | PASS_MEM_STAT)); \ |
| 1018 | \ |
| 1019 | new_vec_->base.num = len_; \ |
| 1020 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| 1021 | } \ |
| 1022 | return new_vec_; \ |
| 1023 | } \ |
| 1024 | \ |
| 1025 | static inline void VEC_OP (T,A,free) \ |
| 1026 | (VEC(T,A) **vec_) \ |
| 1027 | { \ |
| 1028 | if (*vec_) \ |
| 1029 | vec_##A##_free (*vec_); \ |
| 1030 | *vec_ = NULL; \ |
| 1031 | } \ |
| 1032 | \ |
| 1033 | static inline int VEC_OP (T,A,reserve) \ |
| 1034 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1035 | { \ |
| 1036 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 1037 | VEC_CHECK_PASS); \ |
| 1038 | \ |
| 1039 | if (extend) \ |
| 1040 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ |
| 1041 | offsetof (VEC(T,A),base.vec),\ |
| 1042 | sizeof (T) \ |
| 1043 | PASS_MEM_STAT); \ |
| 1044 | \ |
| 1045 | return extend; \ |
| 1046 | } \ |
| 1047 | \ |
| 1048 | static inline int VEC_OP (T,A,reserve_exact) \ |
| 1049 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1050 | { \ |
| 1051 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 1052 | VEC_CHECK_PASS); \ |
| 1053 | \ |
| 1054 | if (extend) \ |
| 1055 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| 1056 | (*vec_, alloc_, \ |
| 1057 | offsetof (VEC(T,A),base.vec), \ |
| 1058 | sizeof (T) PASS_MEM_STAT); \ |
| 1059 | \ |
| 1060 | return extend; \ |
| 1061 | } \ |
| 1062 | \ |
| 1063 | static inline void VEC_OP (T,A,safe_grow) \ |
| 1064 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1065 | { \ |
| 1066 | VEC_ASSERT (size_ >= 0 \ |
| 1067 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| 1068 | "grow", T, A); \ |
| 1069 | VEC_OP (T,A,reserve_exact) (vec_, \ |
| 1070 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| 1071 | VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1072 | VEC_BASE (*vec_)->num = size_; \ |
| 1073 | } \ |
| 1074 | \ |
| 1075 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| 1076 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1077 | { \ |
| 1078 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| 1079 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1080 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| 1081 | sizeof (T) * (size_ - oldsize)); \ |
| 1082 | } \ |
| 1083 | \ |
| 1084 | static inline T *VEC_OP (T,A,safe_push) \ |
| 1085 | (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1086 | { \ |
| 1087 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1088 | \ |
| 1089 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| 1090 | } \ |
| 1091 | \ |
| 1092 | static inline T *VEC_OP (T,A,safe_insert) \ |
| 1093 | (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \ |
| 1094 | VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1095 | { \ |
| 1096 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1097 | \ |
| 1098 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| 1099 | VEC_CHECK_PASS); \ |
| 1100 | } |
| 1101 | |
| 1102 | #define DEF_VEC_ALLOC_FUNC_I(T,A) \ |
| 1103 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| 1104 | (int alloc_ MEM_STAT_DECL) \ |
| 1105 | { \ |
| 1106 | return (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| 1107 | (NULL, alloc_, offsetof (VEC(T,A),base.vec), \ |
| 1108 | sizeof (T) PASS_MEM_STAT); \ |
| 1109 | } |
| 1110 | |
| 1111 | #define DEF_VEC_NONALLOC_FUNCS_I(T,A) \ |
| 1112 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| 1113 | { \ |
| 1114 | size_t len_ = vec_ ? vec_->num : 0; \ |
| 1115 | VEC (T,A) *new_vec_ = NULL; \ |
| 1116 | \ |
| 1117 | if (len_) \ |
| 1118 | { \ |
| 1119 | new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
| 1120 | (NULL, len_, \ |
| 1121 | offsetof (VEC(T,A),base.vec), sizeof (T) \ |
| 1122 | PASS_MEM_STAT)); \ |
| 1123 | \ |
| 1124 | new_vec_->base.num = len_; \ |
| 1125 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| 1126 | } \ |
| 1127 | return new_vec_; \ |
| 1128 | } \ |
| 1129 | \ |
| 1130 | static inline void VEC_OP (T,A,free) \ |
| 1131 | (VEC(T,A) **vec_) \ |
| 1132 | { \ |
| 1133 | if (*vec_) \ |
| 1134 | vec_##A##_free (*vec_); \ |
| 1135 | *vec_ = NULL; \ |
| 1136 | } \ |
| 1137 | \ |
| 1138 | static inline int VEC_OP (T,A,reserve) \ |
| 1139 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1140 | { \ |
| 1141 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 1142 | VEC_CHECK_PASS); \ |
| 1143 | \ |
| 1144 | if (extend) \ |
| 1145 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ |
| 1146 | offsetof (VEC(T,A),base.vec),\ |
| 1147 | sizeof (T) \ |
| 1148 | PASS_MEM_STAT); \ |
| 1149 | \ |
| 1150 | return extend; \ |
| 1151 | } \ |
| 1152 | \ |
| 1153 | static inline int VEC_OP (T,A,reserve_exact) \ |
| 1154 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1155 | { \ |
| 1156 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| 1157 | VEC_CHECK_PASS); \ |
| 1158 | \ |
| 1159 | if (extend) \ |
| 1160 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| 1161 | (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \ |
| 1162 | sizeof (T) PASS_MEM_STAT); \ |
| 1163 | \ |
| 1164 | return extend; \ |
| 1165 | } \ |
| 1166 | \ |
| 1167 | static inline void VEC_OP (T,A,safe_grow) \ |
| 1168 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1169 | { \ |
| 1170 | VEC_ASSERT (size_ >= 0 \ |
| 1171 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| 1172 | "grow", T, A); \ |
| 1173 | VEC_OP (T,A,reserve_exact) (vec_, \ |
| 1174 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| 1175 | VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1176 | VEC_BASE (*vec_)->num = size_; \ |
| 1177 | } \ |
| 1178 | \ |
| 1179 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| 1180 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1181 | { \ |
| 1182 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| 1183 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1184 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| 1185 | sizeof (T) * (size_ - oldsize)); \ |
| 1186 | } \ |
| 1187 | \ |
| 1188 | static inline T *VEC_OP (T,A,safe_push) \ |
| 1189 | (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1190 | { \ |
| 1191 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1192 | \ |
| 1193 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| 1194 | } \ |
| 1195 | \ |
| 1196 | static inline T *VEC_OP (T,A,safe_insert) \ |
| 1197 | (VEC(T,A) **vec_, unsigned ix_, const T obj_ \ |
| 1198 | VEC_CHECK_DECL MEM_STAT_DECL) \ |
| 1199 | { \ |
| 1200 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| 1201 | \ |
| 1202 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| 1203 | VEC_CHECK_PASS); \ |
| 1204 | } |
| 1205 | |
| 1206 | /* We support a vector which starts out with space on the stack and |
| 1207 | switches to heap space when forced to reallocate. This works a |
| 1208 | little differently. Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use |
| 1209 | DEF_VEC_ALLOC_P_STACK(TYPE). This uses alloca to get the initial |
| 1210 | space; because alloca can not be usefully called in an inline |
| 1211 | function, and because a macro can not define a macro, you must then |
| 1212 | write a #define for each type: |
| 1213 | |
| 1214 | #define VEC_{TYPE}_stack_alloc(alloc) \ |
| 1215 | VEC_stack_alloc({TYPE}, alloc) |
| 1216 | |
| 1217 | This is really a hack and perhaps can be made better. Note that |
| 1218 | this macro will wind up evaluating the ALLOC parameter twice. |
| 1219 | |
| 1220 | Only the initial allocation will be made using alloca, so pass a |
| 1221 | reasonable estimate that doesn't use too much stack space; don't |
| 1222 | pass zero. Don't return a VEC(TYPE,stack) vector from the function |
| 1223 | which allocated it. */ |
| 1224 | |
| 1225 | extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL); |
| 1226 | extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL); |
| 1227 | extern void *vec_stack_p_reserve_exact_1 (int, void *); |
| 1228 | extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| 1229 | extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t |
| 1230 | MEM_STAT_DECL); |
| 1231 | extern void vec_stack_free (void *); |
| 1232 | |
| 1233 | #ifdef GATHER_STATISTICS |
| 1234 | #define VEC_stack_alloc(T,alloc,name,line,function) \ |
| 1235 | (VEC_OP (T,stack,alloc1) \ |
| 1236 | (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc)))) |
| 1237 | #else |
| 1238 | #define VEC_stack_alloc(T,alloc) \ |
| 1239 | (VEC_OP (T,stack,alloc1) \ |
| 1240 | (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc)))) |
| 1241 | #endif |
| 1242 | |
| 1243 | #define DEF_VEC_ALLOC_P_STACK(T) \ |
| 1244 | VEC_TA(T,base,stack); \ |
| 1245 | DEF_VEC_ALLOC_FUNC_P_STACK(T) \ |
| 1246 | DEF_VEC_NONALLOC_FUNCS_P(T,stack) \ |
| 1247 | struct vec_swallow_trailing_semi |
| 1248 | |
| 1249 | #define DEF_VEC_ALLOC_FUNC_P_STACK(T) \ |
| 1250 | static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| 1251 | (int alloc_, VEC(T,stack)* space) \ |
| 1252 | { \ |
| 1253 | return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| 1254 | } |
| 1255 | |
| 1256 | #define DEF_VEC_ALLOC_O_STACK(T) \ |
| 1257 | VEC_TA(T,base,stack); \ |
| 1258 | DEF_VEC_ALLOC_FUNC_O_STACK(T) \ |
| 1259 | DEF_VEC_NONALLOC_FUNCS_O(T,stack) \ |
| 1260 | struct vec_swallow_trailing_semi |
| 1261 | |
| 1262 | #define DEF_VEC_ALLOC_FUNC_O_STACK(T) \ |
| 1263 | static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| 1264 | (int alloc_, VEC(T,stack)* space) \ |
| 1265 | { \ |
| 1266 | return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| 1267 | } |
| 1268 | |
| 1269 | #define DEF_VEC_ALLOC_I_STACK(T) \ |
| 1270 | VEC_TA(T,base,stack); \ |
| 1271 | DEF_VEC_ALLOC_FUNC_I_STACK(T) \ |
| 1272 | DEF_VEC_NONALLOC_FUNCS_I(T,stack) \ |
| 1273 | struct vec_swallow_trailing_semi |
| 1274 | |
| 1275 | #define DEF_VEC_ALLOC_FUNC_I_STACK(T) \ |
| 1276 | static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| 1277 | (int alloc_, VEC(T,stack)* space) \ |
| 1278 | { \ |
| 1279 | return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| 1280 | } |
| 1281 | |
| 1282 | #endif /* GCC_VEC_H */ |