| /* Vector API for GNU compiler. |
| Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010 |
| Free Software Foundation, Inc. |
| Contributed by Nathan Sidwell <nathan@codesourcery.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_VEC_H |
| #define GCC_VEC_H |
| |
| /* The macros here implement a set of templated vector types and |
| associated interfaces. These templates are implemented with |
| macros, as we're not in C++ land. The interface functions are |
| typesafe and use static inline functions, sometimes backed by |
| out-of-line generic functions. The vectors are designed to |
| interoperate with the GTY machinery. |
| |
| Because of the different behavior of structure objects, scalar |
| objects and of pointers, there are three flavors, one for each of |
| these variants. Both the structure object and pointer variants |
| pass pointers to objects around -- in the former case the pointers |
| are stored into the vector and in the latter case the pointers are |
| dereferenced and the objects copied into the vector. The scalar |
| object variant is suitable for int-like objects, and the vector |
| elements are returned by value. |
| |
| There are both 'index' and 'iterate' accessors. The iterator |
| returns a boolean iteration condition and updates the iteration |
| variable passed by reference. Because the iterator will be |
| inlined, the address-of can be optimized away. |
| |
| The vectors are implemented using the trailing array idiom, thus |
| they are not resizeable without changing the address of the vector |
| object itself. This means you cannot have variables or fields of |
| vector type -- always use a pointer to a vector. The one exception |
| is the final field of a structure, which could be a vector type. |
| You will have to use the embedded_size & embedded_init calls to |
| create such objects, and they will probably not be resizeable (so |
| don't use the 'safe' allocation variants). The trailing array |
| idiom is used (rather than a pointer to an array of data), because, |
| if we allow NULL to also represent an empty vector, empty vectors |
| occupy minimal space in the structure containing them. |
| |
| Each operation that increases the number of active elements is |
| available in 'quick' and 'safe' variants. The former presumes that |
| there is sufficient allocated space for the operation to succeed |
| (it dies if there is not). The latter will reallocate the |
| vector, if needed. Reallocation causes an exponential increase in |
| vector size. If you know you will be adding N elements, it would |
| be more efficient to use the reserve operation before adding the |
| elements with the 'quick' operation. This will ensure there are at |
| least as many elements as you ask for, it will exponentially |
| increase if there are too few spare slots. If you want reserve a |
| specific number of slots, but do not want the exponential increase |
| (for instance, you know this is the last allocation), use the |
| reserve_exact operation. You can also create a vector of a |
| specific size from the get go. |
| |
| You should prefer the push and pop operations, as they append and |
| remove from the end of the vector. If you need to remove several |
| items in one go, use the truncate operation. The insert and remove |
| operations allow you to change elements in the middle of the |
| vector. There are two remove operations, one which preserves the |
| element ordering 'ordered_remove', and one which does not |
| 'unordered_remove'. The latter function copies the end element |
| into the removed slot, rather than invoke a memmove operation. The |
| 'lower_bound' function will determine where to place an item in the |
| array using insert that will maintain sorted order. |
| |
| When a vector type is defined, first a non-memory managed version |
| is created. You can then define either or both garbage collected |
| and heap allocated versions. The allocation mechanism is specified |
| when the type is defined, and is therefore part of the type. If |
| you need both gc'd and heap allocated versions, you still must have |
| *exactly* one definition of the common non-memory managed base vector. |
| |
| If you need to directly manipulate a vector, then the 'address' |
| accessor will return the address of the start of the vector. Also |
| the 'space' predicate will tell you whether there is spare capacity |
| in the vector. You will not normally need to use these two functions. |
| |
| Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to |
| get the non-memory allocation version, and then a |
| DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed |
| vectors. Variables of vector type are declared using a |
| VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the |
| allocation strategy, and can be either 'gc' or 'heap' for garbage |
| collected and heap allocated respectively. It can be 'none' to get |
| a vector that must be explicitly allocated (for instance as a |
| trailing array of another structure). The characters O, P and I |
| indicate whether TYPEDEF is a pointer (P), object (O) or integral |
| (I) type. Be careful to pick the correct one, as you'll get an |
| awkward and inefficient API if you use the wrong one. There is a |
| check, which results in a compile-time warning, for the P and I |
| versions, but there is no check for the O versions, as that is not |
| possible in plain C. Due to the way GTY works, you must annotate |
| any structures you wish to insert or reference from a vector with a |
| GTY(()) tag. You need to do this even if you never declare the GC |
| allocated variants. |
| |
| An example of their use would be, |
| |
| DEF_VEC_P(tree); // non-managed tree vector. |
| DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must |
| // appear at file scope. |
| |
| struct my_struct { |
| VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. |
| }; |
| |
| struct my_struct *s; |
| |
| if (VEC_length(tree,s->v)) { we have some contents } |
| VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end |
| for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) |
| { do something with elt } |
| |
| */ |
| |
| /* Macros to invoke API calls. A single macro works for both pointer |
| and object vectors, but the argument and return types might well be |
| different. In each macro, T is the typedef of the vector elements, |
| and A is the allocation strategy. The allocation strategy is only |
| present when it is required. Some of these macros pass the vector, |
| V, by reference (by taking its address), this is noted in the |
| descriptions. */ |
| |
| /* Length of vector |
| unsigned VEC_T_length(const VEC(T) *v); |
| |
| Return the number of active elements in V. V can be NULL, in which |
| case zero is returned. */ |
| |
| #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V))) |
| |
| |
| /* Check if vector is empty |
| int VEC_T_empty(const VEC(T) *v); |
| |
| Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ |
| |
| #define VEC_empty(T,V) (VEC_length (T,V) == 0) |
| |
| |
| /* Get the final element of the vector. |
| T VEC_T_last(VEC(T) *v); // Integer |
| T VEC_T_last(VEC(T) *v); // Pointer |
| T *VEC_T_last(VEC(T) *v); // Object |
| |
| Return the final element. V must not be empty. */ |
| |
| #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO)) |
| |
| /* Index into vector |
| T VEC_T_index(VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer |
| T *VEC_T_index(VEC(T) *v, unsigned ix); // Object |
| |
| Return the IX'th element. If IX must be in the domain of V. */ |
| |
| #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| |
| /* Iterate over vector |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer |
| int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object |
| |
| Return iteration condition and update PTR to point to the IX'th |
| element. At the end of iteration, sets PTR to NULL. Use this to |
| iterate over the elements of a vector as follows, |
| |
| for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) |
| continue; */ |
| |
| #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P))) |
| |
| /* Allocate new vector. |
| VEC(T,A) *VEC_T_A_alloc(int reserve); |
| |
| Allocate a new vector with space for RESERVE objects. If RESERVE |
| is zero, NO vector is created. */ |
| |
| #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO)) |
| |
| /* Free a vector. |
| void VEC_T_A_free(VEC(T,A) *&); |
| |
| Free a vector and set it to NULL. */ |
| |
| #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V)) |
| |
| /* Use these to determine the required size and initialization of a |
| vector embedded within another structure (as the final member). |
| |
| size_t VEC_T_embedded_size(int reserve); |
| void VEC_T_embedded_init(VEC(T) *v, int reserve); |
| |
| These allow the caller to perform the memory allocation. */ |
| |
| #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N)) |
| #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N)) |
| |
| /* Copy a vector. |
| VEC(T,A) *VEC_T_A_copy(VEC(T) *); |
| |
| Copy the live elements of a vector into a new vector. The new and |
| old vectors need not be allocated by the same mechanism. */ |
| |
| #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO)) |
| |
| /* Determine if a vector has additional capacity. |
| |
| int VEC_T_space (VEC(T) *v,int reserve) |
| |
| If V has space for RESERVE additional entries, return nonzero. You |
| usually only need to use this if you are doing your own vector |
| reallocation, for instance on an embedded vector. This returns |
| nonzero in exactly the same circumstances that VEC_T_reserve |
| will. */ |
| |
| #define VEC_space(T,V,R) \ |
| (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO)) |
| |
| /* Reserve space. |
| int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); |
| |
| Ensure that V has at least RESERVE slots available. This will |
| create additional headroom. Note this can cause V to be |
| reallocated. Returns nonzero iff reallocation actually |
| occurred. */ |
| |
| #define VEC_reserve(T,A,V,R) \ |
| (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Reserve space exactly. |
| int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); |
| |
| Ensure that V has at least RESERVE slots available. This will not |
| create additional headroom. Note this can cause V to be |
| reallocated. Returns nonzero iff reallocation actually |
| occurred. */ |
| |
| #define VEC_reserve_exact(T,A,V,R) \ |
| (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Push object with no reallocation |
| T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer |
| T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer |
| T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object |
| |
| Push a new element onto the end, returns a pointer to the slot |
| filled in. For object vectors, the new value can be NULL, in which |
| case NO initialization is performed. There must |
| be sufficient space in the vector. */ |
| |
| #define VEC_quick_push(T,V,O) \ |
| (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO)) |
| |
| /* Push object with reallocation |
| T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer |
| T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer |
| T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object |
| |
| Push a new element onto the end, returns a pointer to the slot |
| filled in. For object vectors, the new value can be NULL, in which |
| case NO initialization is performed. Reallocates V, if needed. */ |
| |
| #define VEC_safe_push(T,A,V,O) \ |
| (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Pop element off end |
| T VEC_T_pop (VEC(T) *v); // Integer |
| T VEC_T_pop (VEC(T) *v); // Pointer |
| void VEC_T_pop (VEC(T) *v); // Object |
| |
| Pop the last element off the end. Returns the element popped, for |
| pointer vectors. */ |
| |
| #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO)) |
| |
| /* Truncate to specific length |
| void VEC_T_truncate (VEC(T) *v, unsigned len); |
| |
| Set the length as specified. The new length must be less than or |
| equal to the current length. This is an O(1) operation. */ |
| |
| #define VEC_truncate(T,V,I) \ |
| (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| |
| /* Grow to a specific length. |
| void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); |
| |
| Grow the vector to a specific length. The LEN must be as |
| long or longer than the current length. The new elements are |
| uninitialized. */ |
| |
| #define VEC_safe_grow(T,A,V,I) \ |
| (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Grow to a specific length. |
| void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); |
| |
| Grow the vector to a specific length. The LEN must be as |
| long or longer than the current length. The new elements are |
| initialized to zero. */ |
| |
| #define VEC_safe_grow_cleared(T,A,V,I) \ |
| (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Replace element |
| T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer |
| T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer |
| T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object |
| |
| Replace the IXth element of V with a new value, VAL. For pointer |
| vectors returns the original value. For object vectors returns a |
| pointer to the new value. For object vectors the new value can be |
| NULL, in which case no overwriting of the slot is actually |
| performed. */ |
| |
| #define VEC_replace(T,V,I,O) \ |
| (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO)) |
| |
| /* Insert object with no reallocation |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer |
| T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object |
| |
| Insert an element, VAL, at the IXth position of V. Return a pointer |
| to the slot created. For vectors of object, the new value can be |
| NULL, in which case no initialization of the inserted slot takes |
| place. There must be sufficient space. */ |
| |
| #define VEC_quick_insert(T,V,I,O) \ |
| (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO)) |
| |
| /* Insert object with reallocation |
| T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer |
| T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer |
| T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object |
| |
| Insert an element, VAL, at the IXth position of V. Return a pointer |
| to the slot created. For vectors of object, the new value can be |
| NULL, in which case no initialization of the inserted slot takes |
| place. Reallocate V, if necessary. */ |
| |
| #define VEC_safe_insert(T,A,V,I,O) \ |
| (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) |
| |
| /* Remove element retaining order |
| T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object |
| |
| Remove an element from the IXth position of V. Ordering of |
| remaining elements is preserved. For pointer vectors returns the |
| removed object. This is an O(N) operation due to a memmove. */ |
| |
| #define VEC_ordered_remove(T,V,I) \ |
| (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| |
| /* Remove element destroying order |
| T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer |
| T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer |
| void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object |
| |
| Remove an element from the IXth position of V. Ordering of |
| remaining elements is destroyed. For pointer vectors returns the |
| removed object. This is an O(1) operation. */ |
| |
| #define VEC_unordered_remove(T,V,I) \ |
| (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) |
| |
| /* Remove a block of elements |
| void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); |
| |
| Remove LEN elements starting at the IXth. Ordering is retained. |
| This is an O(1) operation. */ |
| |
| #define VEC_block_remove(T,V,I,L) \ |
| (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO)) |
| |
| /* Get the address of the array of elements |
| T *VEC_T_address (VEC(T) v) |
| |
| If you need to directly manipulate the array (for instance, you |
| want to feed it to qsort), use this accessor. */ |
| |
| #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V))) |
| |
| /* Find the first index in the vector not less than the object. |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| bool (*lessthan) (const T, const T)); // Integer |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
| bool (*lessthan) (const T, const T)); // Pointer |
| unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, |
| bool (*lessthan) (const T*, const T*)); // Object |
| |
| Find the first position in which VAL could be inserted without |
| changing the ordering of V. LESSTHAN is a function that returns |
| true if the first argument is strictly less than the second. */ |
| |
| #define VEC_lower_bound(T,V,O,LT) \ |
| (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO)) |
| |
| /* Reallocate an array of elements with prefix. */ |
| extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); |
| extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL); |
| extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t |
| MEM_STAT_DECL); |
| extern void ggc_free (void *); |
| #define vec_gc_free(V) ggc_free (V) |
| extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); |
| extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL); |
| extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t |
| MEM_STAT_DECL); |
| extern void dump_vec_loc_statistics (void); |
| #ifdef GATHER_STATISTICS |
| void vec_heap_free (void *); |
| #else |
| #define vec_heap_free(V) free (V) |
| #endif |
| |
| #if ENABLE_CHECKING |
| #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ |
| #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ |
| #define VEC_CHECK_PASS ,file_,line_,function_ |
| |
| #define VEC_ASSERT(EXPR,OP,T,A) \ |
| (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) |
| |
| extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) |
| ATTRIBUTE_NORETURN; |
| #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) |
| #else |
| #define VEC_CHECK_INFO |
| #define VEC_CHECK_DECL |
| #define VEC_CHECK_PASS |
| #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) |
| #endif |
| |
| /* Note: gengtype has hardwired knowledge of the expansions of the |
| VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the |
| expansions of these macros you may need to change gengtype too. */ |
| |
| #define VEC(T,A) VEC_##T##_##A |
| #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP |
| |
| /* Base of vector type, not user visible. */ |
| #define VEC_T(T,B) \ |
| typedef struct VEC(T,B) \ |
| { \ |
| unsigned num; \ |
| unsigned alloc; \ |
| T vec[1]; \ |
| } VEC(T,B) |
| |
| #define VEC_T_GTY(T,B) \ |
| typedef struct GTY(()) VEC(T,B) \ |
| { \ |
| unsigned num; \ |
| unsigned alloc; \ |
| T GTY ((length ("%h.num"))) vec[1]; \ |
| } VEC(T,B) |
| |
| /* Derived vector type, user visible. */ |
| #define VEC_TA_GTY(T,B,A,GTY) \ |
| typedef struct GTY VEC(T,A) \ |
| { \ |
| VEC(T,B) base; \ |
| } VEC(T,A) |
| |
| #define VEC_TA(T,B,A) \ |
| typedef struct VEC(T,A) \ |
| { \ |
| VEC(T,B) base; \ |
| } VEC(T,A) |
| |
| /* Convert to base type. */ |
| #define VEC_BASE(P) ((P) ? &(P)->base : 0) |
| |
| /* Vector of integer-like object. */ |
| #define DEF_VEC_I(T) \ |
| static inline void VEC_OP (T,must_be,integral_type) (void) \ |
| { \ |
| (void)~(T)0; \ |
| } \ |
| \ |
| VEC_T(T,base); \ |
| VEC_TA(T,base,none); \ |
| DEF_VEC_FUNC_P(T) \ |
| struct vec_swallow_trailing_semi |
| #define DEF_VEC_ALLOC_I(T,A) \ |
| VEC_TA(T,base,A); \ |
| DEF_VEC_ALLOC_FUNC_I(T,A) \ |
| DEF_VEC_NONALLOC_FUNCS_I(T,A) \ |
| struct vec_swallow_trailing_semi |
| |
| /* Vector of pointer to object. */ |
| #define DEF_VEC_P(T) \ |
| static inline void VEC_OP (T,must_be,pointer_type) (void) \ |
| { \ |
| (void)((T)1 == (void *)1); \ |
| } \ |
| \ |
| VEC_T_GTY(T,base); \ |
| VEC_TA(T,base,none); \ |
| DEF_VEC_FUNC_P(T) \ |
| struct vec_swallow_trailing_semi |
| #define DEF_VEC_ALLOC_P(T,A) \ |
| VEC_TA(T,base,A); \ |
| DEF_VEC_ALLOC_FUNC_P(T,A) \ |
| DEF_VEC_NONALLOC_FUNCS_P(T,A) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_FUNC_P(T) \ |
| static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
| { \ |
| return vec_ ? vec_->num : 0; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,last) \ |
| (const VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
| \ |
| return vec_->vec[vec_->num - 1]; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,index) \ |
| (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
| \ |
| return vec_->vec[ix_]; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,base,iterate) \ |
| (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \ |
| { \ |
| if (vec_ && ix_ < vec_->num) \ |
| { \ |
| *ptr = vec_->vec[ix_]; \ |
| return 1; \ |
| } \ |
| else \ |
| { \ |
| *ptr = (T) 0; \ |
| return 0; \ |
| } \ |
| } \ |
| \ |
| static inline size_t VEC_OP (T,base,embedded_size) \ |
| (int alloc_) \ |
| { \ |
| return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,embedded_init) \ |
| (VEC(T,base) *vec_, int alloc_) \ |
| { \ |
| vec_->num = 0; \ |
| vec_->alloc = alloc_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,base,space) \ |
| (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
| return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,quick_push) \ |
| (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
| slot_ = &vec_->vec[vec_->num++]; \ |
| *slot_ = obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| { \ |
| T obj_; \ |
| \ |
| VEC_ASSERT (vec_->num, "pop", T, base); \ |
| obj_ = vec_->vec[--vec_->num]; \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,truncate) \ |
| (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
| if (vec_) \ |
| vec_->num = size_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,replace) \ |
| (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ |
| { \ |
| T old_obj_; \ |
| \ |
| VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
| old_obj_ = vec_->vec[ix_]; \ |
| vec_->vec[ix_] = obj_; \ |
| \ |
| return old_obj_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,quick_insert) \ |
| (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ |
| VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| *slot_ = obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,ordered_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| T obj_; \ |
| \ |
| VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| obj_ = *slot_; \ |
| memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline T VEC_OP (T,base,unordered_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| T obj_; \ |
| \ |
| VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| obj_ = *slot_; \ |
| *slot_ = vec_->vec[--vec_->num]; \ |
| \ |
| return obj_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,block_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| vec_->num -= len_; \ |
| memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,address) \ |
| (VEC(T,base) *vec_) \ |
| { \ |
| return vec_ ? vec_->vec : 0; \ |
| } \ |
| \ |
| static inline unsigned VEC_OP (T,base,lower_bound) \ |
| (VEC(T,base) *vec_, const T obj_, \ |
| bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \ |
| { \ |
| unsigned int len_ = VEC_OP (T,base, length) (vec_); \ |
| unsigned int half_, middle_; \ |
| unsigned int first_ = 0; \ |
| while (len_ > 0) \ |
| { \ |
| T middle_elem_; \ |
| half_ = len_ >> 1; \ |
| middle_ = first_; \ |
| middle_ += half_; \ |
| middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ |
| if (lessthan_ (middle_elem_, obj_)) \ |
| { \ |
| first_ = middle_; \ |
| ++first_; \ |
| len_ = len_ - half_ - 1; \ |
| } \ |
| else \ |
| len_ = half_; \ |
| } \ |
| return first_; \ |
| } |
| |
| #define DEF_VEC_ALLOC_FUNC_P(T,A) \ |
| static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| (int alloc_ MEM_STAT_DECL) \ |
| { \ |
| return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \ |
| PASS_MEM_STAT); \ |
| } |
| |
| |
| #define DEF_VEC_NONALLOC_FUNCS_P(T,A) \ |
| static inline void VEC_OP (T,A,free) \ |
| (VEC(T,A) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_##A##_free (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T,A) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \ |
| (NULL, len_ PASS_MEM_STAT)); \ |
| \ |
| new_vec_->base.num = len_; \ |
| memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve_exact) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \ |
| PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_ASSERT (size_ >= 0 \ |
| && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| "grow", T, A); \ |
| VEC_OP (T,A,reserve_exact) (vec_, \ |
| size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| VEC_CHECK_PASS PASS_MEM_STAT); \ |
| VEC_BASE (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| sizeof (T) * (size_ - oldsize)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_push) \ |
| (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_insert) \ |
| (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| VEC_CHECK_PASS); \ |
| } |
| |
| /* Vector of object. */ |
| #define DEF_VEC_O(T) \ |
| VEC_T_GTY(T,base); \ |
| VEC_TA(T,base,none); \ |
| DEF_VEC_FUNC_O(T) \ |
| struct vec_swallow_trailing_semi |
| #define DEF_VEC_ALLOC_O(T,A) \ |
| VEC_TA(T,base,A); \ |
| DEF_VEC_ALLOC_FUNC_O(T,A) \ |
| DEF_VEC_NONALLOC_FUNCS_O(T,A) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_FUNC_O(T) \ |
| static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
| { \ |
| return vec_ ? vec_->num : 0; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
| \ |
| return &vec_->vec[vec_->num - 1]; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,index) \ |
| (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
| \ |
| return &vec_->vec[ix_]; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,base,iterate) \ |
| (VEC(T,base) *vec_, unsigned ix_, T **ptr) \ |
| { \ |
| if (vec_ && ix_ < vec_->num) \ |
| { \ |
| *ptr = &vec_->vec[ix_]; \ |
| return 1; \ |
| } \ |
| else \ |
| { \ |
| *ptr = 0; \ |
| return 0; \ |
| } \ |
| } \ |
| \ |
| static inline size_t VEC_OP (T,base,embedded_size) \ |
| (int alloc_) \ |
| { \ |
| return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,embedded_init) \ |
| (VEC(T,base) *vec_, int alloc_) \ |
| { \ |
| vec_->num = 0; \ |
| vec_->alloc = alloc_; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,base,space) \ |
| (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
| return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,quick_push) \ |
| (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
| slot_ = &vec_->vec[vec_->num++]; \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_->num, "pop", T, base); \ |
| --vec_->num; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,truncate) \ |
| (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
| if (vec_) \ |
| vec_->num = size_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,replace) \ |
| (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,quick_insert) \ |
| (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ |
| VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
| if (obj_) \ |
| *slot_ = *obj_; \ |
| \ |
| return slot_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,ordered_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,unordered_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ |
| { \ |
| VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
| vec_->vec[ix_] = vec_->vec[--vec_->num]; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,base,block_remove) \ |
| (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ |
| { \ |
| T *slot_; \ |
| \ |
| VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ |
| slot_ = &vec_->vec[ix_]; \ |
| vec_->num -= len_; \ |
| memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,base,address) \ |
| (VEC(T,base) *vec_) \ |
| { \ |
| return vec_ ? vec_->vec : 0; \ |
| } \ |
| \ |
| static inline unsigned VEC_OP (T,base,lower_bound) \ |
| (VEC(T,base) *vec_, const T *obj_, \ |
| bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \ |
| { \ |
| unsigned int len_ = VEC_OP (T, base, length) (vec_); \ |
| unsigned int half_, middle_; \ |
| unsigned int first_ = 0; \ |
| while (len_ > 0) \ |
| { \ |
| T *middle_elem_; \ |
| half_ = len_ >> 1; \ |
| middle_ = first_; \ |
| middle_ += half_; \ |
| middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ |
| if (lessthan_ (middle_elem_, obj_)) \ |
| { \ |
| first_ = middle_; \ |
| ++first_; \ |
| len_ = len_ - half_ - 1; \ |
| } \ |
| else \ |
| len_ = half_; \ |
| } \ |
| return first_; \ |
| } |
| |
| #define DEF_VEC_ALLOC_FUNC_O(T,A) \ |
| static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| (int alloc_ MEM_STAT_DECL) \ |
| { \ |
| return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \ |
| offsetof (VEC(T,A),base.vec), \ |
| sizeof (T) \ |
| PASS_MEM_STAT); \ |
| } |
| |
| #define DEF_VEC_NONALLOC_FUNCS_O(T,A) \ |
| static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T,A) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
| (NULL, len_, \ |
| offsetof (VEC(T,A),base.vec), sizeof (T) \ |
| PASS_MEM_STAT)); \ |
| \ |
| new_vec_->base.num = len_; \ |
| memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,free) \ |
| (VEC(T,A) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_##A##_free (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ |
| offsetof (VEC(T,A),base.vec),\ |
| sizeof (T) \ |
| PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve_exact) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| (*vec_, alloc_, \ |
| offsetof (VEC(T,A),base.vec), \ |
| sizeof (T) PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_ASSERT (size_ >= 0 \ |
| && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| "grow", T, A); \ |
| VEC_OP (T,A,reserve_exact) (vec_, \ |
| size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| VEC_CHECK_PASS PASS_MEM_STAT); \ |
| VEC_BASE (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| sizeof (T) * (size_ - oldsize)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_push) \ |
| (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_insert) \ |
| (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \ |
| VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| VEC_CHECK_PASS); \ |
| } |
| |
| #define DEF_VEC_ALLOC_FUNC_I(T,A) \ |
| static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
| (int alloc_ MEM_STAT_DECL) \ |
| { \ |
| return (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| (NULL, alloc_, offsetof (VEC(T,A),base.vec), \ |
| sizeof (T) PASS_MEM_STAT); \ |
| } |
| |
| #define DEF_VEC_NONALLOC_FUNCS_I(T,A) \ |
| static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
| { \ |
| size_t len_ = vec_ ? vec_->num : 0; \ |
| VEC (T,A) *new_vec_ = NULL; \ |
| \ |
| if (len_) \ |
| { \ |
| new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
| (NULL, len_, \ |
| offsetof (VEC(T,A),base.vec), sizeof (T) \ |
| PASS_MEM_STAT)); \ |
| \ |
| new_vec_->base.num = len_; \ |
| memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ |
| } \ |
| return new_vec_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,free) \ |
| (VEC(T,A) **vec_) \ |
| { \ |
| if (*vec_) \ |
| vec_##A##_free (*vec_); \ |
| *vec_ = NULL; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ |
| offsetof (VEC(T,A),base.vec),\ |
| sizeof (T) \ |
| PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline int VEC_OP (T,A,reserve_exact) \ |
| (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
| VEC_CHECK_PASS); \ |
| \ |
| if (extend) \ |
| *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
| (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \ |
| sizeof (T) PASS_MEM_STAT); \ |
| \ |
| return extend; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_ASSERT (size_ >= 0 \ |
| && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ |
| "grow", T, A); \ |
| VEC_OP (T,A,reserve_exact) (vec_, \ |
| size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ |
| VEC_CHECK_PASS PASS_MEM_STAT); \ |
| VEC_BASE (*vec_)->num = size_; \ |
| } \ |
| \ |
| static inline void VEC_OP (T,A,safe_grow_cleared) \ |
| (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ |
| VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ |
| memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ |
| sizeof (T) * (size_ - oldsize)); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_push) \ |
| (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ |
| } \ |
| \ |
| static inline T *VEC_OP (T,A,safe_insert) \ |
| (VEC(T,A) **vec_, unsigned ix_, const T obj_ \ |
| VEC_CHECK_DECL MEM_STAT_DECL) \ |
| { \ |
| VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ |
| \ |
| return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ |
| VEC_CHECK_PASS); \ |
| } |
| |
| /* We support a vector which starts out with space on the stack and |
| switches to heap space when forced to reallocate. This works a |
| little differently. Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use |
| DEF_VEC_ALLOC_P_STACK(TYPE). This uses alloca to get the initial |
| space; because alloca can not be usefully called in an inline |
| function, and because a macro can not define a macro, you must then |
| write a #define for each type: |
| |
| #define VEC_{TYPE}_stack_alloc(alloc) \ |
| VEC_stack_alloc({TYPE}, alloc) |
| |
| This is really a hack and perhaps can be made better. Note that |
| this macro will wind up evaluating the ALLOC parameter twice. |
| |
| Only the initial allocation will be made using alloca, so pass a |
| reasonable estimate that doesn't use too much stack space; don't |
| pass zero. Don't return a VEC(TYPE,stack) vector from the function |
| which allocated it. */ |
| |
| extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL); |
| extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL); |
| extern void *vec_stack_p_reserve_exact_1 (int, void *); |
| extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
| extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t |
| MEM_STAT_DECL); |
| extern void vec_stack_free (void *); |
| |
| #ifdef GATHER_STATISTICS |
| #define VEC_stack_alloc(T,alloc,name,line,function) \ |
| (VEC_OP (T,stack,alloc1) \ |
| (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc)))) |
| #else |
| #define VEC_stack_alloc(T,alloc) \ |
| (VEC_OP (T,stack,alloc1) \ |
| (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc)))) |
| #endif |
| |
| #define DEF_VEC_ALLOC_P_STACK(T) \ |
| VEC_TA(T,base,stack); \ |
| DEF_VEC_ALLOC_FUNC_P_STACK(T) \ |
| DEF_VEC_NONALLOC_FUNCS_P(T,stack) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_ALLOC_FUNC_P_STACK(T) \ |
| static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| (int alloc_, VEC(T,stack)* space) \ |
| { \ |
| return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| } |
| |
| #define DEF_VEC_ALLOC_O_STACK(T) \ |
| VEC_TA(T,base,stack); \ |
| DEF_VEC_ALLOC_FUNC_O_STACK(T) \ |
| DEF_VEC_NONALLOC_FUNCS_O(T,stack) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_ALLOC_FUNC_O_STACK(T) \ |
| static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| (int alloc_, VEC(T,stack)* space) \ |
| { \ |
| return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| } |
| |
| #define DEF_VEC_ALLOC_I_STACK(T) \ |
| VEC_TA(T,base,stack); \ |
| DEF_VEC_ALLOC_FUNC_I_STACK(T) \ |
| DEF_VEC_NONALLOC_FUNCS_I(T,stack) \ |
| struct vec_swallow_trailing_semi |
| |
| #define DEF_VEC_ALLOC_FUNC_I_STACK(T) \ |
| static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \ |
| (int alloc_, VEC(T,stack)* space) \ |
| { \ |
| return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \ |
| } |
| |
| #endif /* GCC_VEC_H */ |