| /* Inline functions for tree-flow.h |
| Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010 |
| Free Software Foundation, Inc. |
| Contributed by Diego Novillo <dnovillo@redhat.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef _TREE_FLOW_INLINE_H |
| #define _TREE_FLOW_INLINE_H 1 |
| |
| /* Inline functions for manipulating various data structures defined in |
| tree-flow.h. See tree-flow.h for documentation. */ |
| |
| /* Return true when gimple SSA form was built. |
| gimple_in_ssa_p is queried by gimplifier in various early stages before SSA |
| infrastructure is initialized. Check for presence of the datastructures |
| at first place. */ |
| static inline bool |
| gimple_in_ssa_p (const struct function *fun) |
| { |
| return fun && fun->gimple_df && fun->gimple_df->in_ssa_p; |
| } |
| |
| /* Array of all variables referenced in the function. */ |
| static inline htab_t |
| gimple_referenced_vars (const struct function *fun) |
| { |
| if (!fun->gimple_df) |
| return NULL; |
| return fun->gimple_df->referenced_vars; |
| } |
| |
| /* Artificial variable used for the virtual operand FUD chain. */ |
| static inline tree |
| gimple_vop (const struct function *fun) |
| { |
| gcc_assert (fun && fun->gimple_df); |
| return fun->gimple_df->vop; |
| } |
| |
| /* Initialize the hashtable iterator HTI to point to hashtable TABLE */ |
| |
| static inline void * |
| first_htab_element (htab_iterator *hti, htab_t table) |
| { |
| hti->htab = table; |
| hti->slot = table->entries; |
| hti->limit = hti->slot + htab_size (table); |
| do |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| break; |
| } while (++(hti->slot) < hti->limit); |
| |
| if (hti->slot < hti->limit) |
| return *(hti->slot); |
| return NULL; |
| } |
| |
| /* Return current non-empty/deleted slot of the hashtable pointed to by HTI, |
| or NULL if we have reached the end. */ |
| |
| static inline bool |
| end_htab_p (const htab_iterator *hti) |
| { |
| if (hti->slot >= hti->limit) |
| return true; |
| return false; |
| } |
| |
| /* Advance the hashtable iterator pointed to by HTI to the next element of the |
| hashtable. */ |
| |
| static inline void * |
| next_htab_element (htab_iterator *hti) |
| { |
| while (++(hti->slot) < hti->limit) |
| { |
| PTR x = *(hti->slot); |
| if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
| return x; |
| }; |
| return NULL; |
| } |
| |
| /* Initialize ITER to point to the first referenced variable in the |
| referenced_vars hashtable, and return that variable. */ |
| |
| static inline tree |
| first_referenced_var (referenced_var_iterator *iter) |
| { |
| return (tree) first_htab_element (&iter->hti, |
| gimple_referenced_vars (cfun)); |
| } |
| |
| /* Return true if we have hit the end of the referenced variables ITER is |
| iterating through. */ |
| |
| static inline bool |
| end_referenced_vars_p (const referenced_var_iterator *iter) |
| { |
| return end_htab_p (&iter->hti); |
| } |
| |
| /* Make ITER point to the next referenced_var in the referenced_var hashtable, |
| and return that variable. */ |
| |
| static inline tree |
| next_referenced_var (referenced_var_iterator *iter) |
| { |
| return (tree) next_htab_element (&iter->hti); |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Return NULL if the variable annotation doesn't already exist. */ |
| static inline var_ann_t |
| var_ann (const_tree t) |
| { |
| const var_ann_t *p = DECL_VAR_ANN_PTR (t); |
| return p ? *p : NULL; |
| } |
| |
| /* Return the variable annotation for T, which must be a _DECL node. |
| Create the variable annotation if it doesn't exist. */ |
| static inline var_ann_t |
| get_var_ann (tree var) |
| { |
| var_ann_t *p = DECL_VAR_ANN_PTR (var); |
| gcc_assert (p); |
| return *p ? *p : create_var_ann (var); |
| } |
| |
| /* Get the number of the next statement uid to be allocated. */ |
| static inline unsigned int |
| gimple_stmt_max_uid (struct function *fn) |
| { |
| return fn->last_stmt_uid; |
| } |
| |
| /* Set the number of the next statement uid to be allocated. */ |
| static inline void |
| set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid) |
| { |
| fn->last_stmt_uid = maxid; |
| } |
| |
| /* Set the number of the next statement uid to be allocated. */ |
| static inline unsigned int |
| inc_gimple_stmt_max_uid (struct function *fn) |
| { |
| return fn->last_stmt_uid++; |
| } |
| |
| /* Return the line number for EXPR, or return -1 if we have no line |
| number information for it. */ |
| static inline int |
| get_lineno (const_gimple stmt) |
| { |
| location_t loc; |
| |
| if (!stmt) |
| return -1; |
| |
| loc = gimple_location (stmt); |
| if (loc == UNKNOWN_LOCATION) |
| return -1; |
| |
| return LOCATION_LINE (loc); |
| } |
| |
| /* Delink an immediate_uses node from its chain. */ |
| static inline void |
| delink_imm_use (ssa_use_operand_t *linknode) |
| { |
| /* Return if this node is not in a list. */ |
| if (linknode->prev == NULL) |
| return; |
| |
| linknode->prev->next = linknode->next; |
| linknode->next->prev = linknode->prev; |
| linknode->prev = NULL; |
| linknode->next = NULL; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for LIST. */ |
| static inline void |
| link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list) |
| { |
| /* Link the new node at the head of the list. If we are in the process of |
| traversing the list, we won't visit any new nodes added to it. */ |
| linknode->prev = list; |
| linknode->next = list->next; |
| list->next->prev = linknode; |
| list->next = linknode; |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF. */ |
| static inline void |
| link_imm_use (ssa_use_operand_t *linknode, tree def) |
| { |
| ssa_use_operand_t *root; |
| |
| if (!def || TREE_CODE (def) != SSA_NAME) |
| linknode->prev = NULL; |
| else |
| { |
| root = &(SSA_NAME_IMM_USE_NODE (def)); |
| #ifdef ENABLE_CHECKING |
| if (linknode->use) |
| gcc_assert (*(linknode->use) == def); |
| #endif |
| link_imm_use_to_list (linknode, root); |
| } |
| } |
| |
| /* Set the value of a use pointed to by USE to VAL. */ |
| static inline void |
| set_ssa_use_from_ptr (use_operand_p use, tree val) |
| { |
| delink_imm_use (use); |
| *(use->use) = val; |
| link_imm_use (use, val); |
| } |
| |
| /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring |
| in STMT. */ |
| static inline void |
| link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt) |
| { |
| if (stmt) |
| link_imm_use (linknode, def); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| /* Relink a new node in place of an old node in the list. */ |
| static inline void |
| relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old) |
| { |
| /* The node one had better be in the same list. */ |
| gcc_assert (*(old->use) == *(node->use)); |
| node->prev = old->prev; |
| node->next = old->next; |
| if (old->prev) |
| { |
| old->prev->next = node; |
| old->next->prev = node; |
| /* Remove the old node from the list. */ |
| old->prev = NULL; |
| } |
| } |
| |
| /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring |
| in STMT. */ |
| static inline void |
| relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, |
| gimple stmt) |
| { |
| if (stmt) |
| relink_imm_use (linknode, old); |
| else |
| link_imm_use (linknode, NULL); |
| linknode->loc.stmt = stmt; |
| } |
| |
| |
| /* Return true is IMM has reached the end of the immediate use list. */ |
| static inline bool |
| end_readonly_imm_use_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Initialize iterator IMM to process the list for VAR. */ |
| static inline use_operand_p |
| first_readonly_imm_use (imm_use_iterator *imm, tree var) |
| { |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| #ifdef ENABLE_CHECKING |
| imm->iter_node.next = imm->imm_use->next; |
| #endif |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* Bump IMM to the next use in the list. */ |
| static inline use_operand_p |
| next_readonly_imm_use (imm_use_iterator *imm) |
| { |
| use_operand_p old = imm->imm_use; |
| |
| #ifdef ENABLE_CHECKING |
| /* If this assertion fails, it indicates the 'next' pointer has changed |
| since the last bump. This indicates that the list is being modified |
| via stmt changes, or SET_USE, or somesuch thing, and you need to be |
| using the SAFE version of the iterator. */ |
| gcc_assert (imm->iter_node.next == old->next); |
| imm->iter_node.next = old->next->next; |
| #endif |
| |
| imm->imm_use = old->next; |
| if (end_readonly_imm_use_p (imm)) |
| return NULL_USE_OPERAND_P; |
| return imm->imm_use; |
| } |
| |
| /* tree-cfg.c */ |
| extern bool has_zero_uses_1 (const ssa_use_operand_t *head); |
| extern bool single_imm_use_1 (const ssa_use_operand_t *head, |
| use_operand_p *use_p, gimple *stmt); |
| |
| /* Return true if VAR has no nondebug uses. */ |
| static inline bool |
| has_zero_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| |
| /* A single use_operand means there is no items in the list. */ |
| if (ptr == ptr->next) |
| return true; |
| |
| /* If there are debug stmts, we have to look at each use and see |
| whether there are any nondebug uses. */ |
| if (!MAY_HAVE_DEBUG_STMTS) |
| return false; |
| |
| return has_zero_uses_1 (ptr); |
| } |
| |
| /* Return true if VAR has a single nondebug use. */ |
| static inline bool |
| has_single_use (const_tree var) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| |
| /* If there aren't any uses whatsoever, we're done. */ |
| if (ptr == ptr->next) |
| return false; |
| |
| /* If there's a single use, check that it's not a debug stmt. */ |
| if (ptr == ptr->next->next) |
| return !is_gimple_debug (USE_STMT (ptr->next)); |
| |
| /* If there are debug stmts, we have to look at each of them. */ |
| if (!MAY_HAVE_DEBUG_STMTS) |
| return false; |
| |
| return single_imm_use_1 (ptr, NULL, NULL); |
| } |
| |
| |
| /* If VAR has only a single immediate nondebug use, return true, and |
| set USE_P and STMT to the use pointer and stmt of occurrence. */ |
| static inline bool |
| single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt) |
| { |
| const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var)); |
| |
| /* If there aren't any uses whatsoever, we're done. */ |
| if (ptr == ptr->next) |
| { |
| return_false: |
| *use_p = NULL_USE_OPERAND_P; |
| *stmt = NULL; |
| return false; |
| } |
| |
| /* If there's a single use, check that it's not a debug stmt. */ |
| if (ptr == ptr->next->next) |
| { |
| if (!is_gimple_debug (USE_STMT (ptr->next))) |
| { |
| *use_p = ptr->next; |
| *stmt = ptr->next->loc.stmt; |
| return true; |
| } |
| else |
| goto return_false; |
| } |
| |
| /* If there are debug stmts, we have to look at each of them. */ |
| if (!MAY_HAVE_DEBUG_STMTS) |
| goto return_false; |
| |
| return single_imm_use_1 (ptr, use_p, stmt); |
| } |
| |
| /* Return the number of nondebug immediate uses of VAR. */ |
| static inline unsigned int |
| num_imm_uses (const_tree var) |
| { |
| const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var)); |
| const ssa_use_operand_t *ptr; |
| unsigned int num = 0; |
| |
| if (!MAY_HAVE_DEBUG_STMTS) |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| num++; |
| else |
| for (ptr = start->next; ptr != start; ptr = ptr->next) |
| if (!is_gimple_debug (USE_STMT (ptr))) |
| num++; |
| |
| return num; |
| } |
| |
| /* Return the tree pointed-to by USE. */ |
| static inline tree |
| get_use_from_ptr (use_operand_p use) |
| { |
| return *(use->use); |
| } |
| |
| /* Return the tree pointed-to by DEF. */ |
| static inline tree |
| get_def_from_ptr (def_operand_p def) |
| { |
| return *def; |
| } |
| |
| /* Return a use_operand_p pointer for argument I of PHI node GS. */ |
| |
| static inline use_operand_p |
| gimple_phi_arg_imm_use_ptr (gimple gs, int i) |
| { |
| return &gimple_phi_arg (gs, i)->imm_use; |
| } |
| |
| /* Return the tree operand for argument I of PHI node GS. */ |
| |
| static inline tree |
| gimple_phi_arg_def (gimple gs, size_t index) |
| { |
| struct phi_arg_d *pd = gimple_phi_arg (gs, index); |
| return get_use_from_ptr (&pd->imm_use); |
| } |
| |
| /* Return a pointer to the tree operand for argument I of PHI node GS. */ |
| |
| static inline tree * |
| gimple_phi_arg_def_ptr (gimple gs, size_t index) |
| { |
| return &gimple_phi_arg (gs, index)->def; |
| } |
| |
| /* Return the edge associated with argument I of phi node GS. */ |
| |
| static inline edge |
| gimple_phi_arg_edge (gimple gs, size_t i) |
| { |
| return EDGE_PRED (gimple_bb (gs), i); |
| } |
| |
| /* Return the source location of gimple argument I of phi node GS. */ |
| |
| static inline source_location |
| gimple_phi_arg_location (gimple gs, size_t i) |
| { |
| return gimple_phi_arg (gs, i)->locus; |
| } |
| |
| /* Return the source location of the argument on edge E of phi node GS. */ |
| |
| static inline source_location |
| gimple_phi_arg_location_from_edge (gimple gs, edge e) |
| { |
| return gimple_phi_arg (gs, e->dest_idx)->locus; |
| } |
| |
| /* Set the source location of gimple argument I of phi node GS to LOC. */ |
| |
| static inline void |
| gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc) |
| { |
| gimple_phi_arg (gs, i)->locus = loc; |
| } |
| |
| /* Return TRUE if argument I of phi node GS has a location record. */ |
| |
| static inline bool |
| gimple_phi_arg_has_location (gimple gs, size_t i) |
| { |
| return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION; |
| } |
| |
| |
| /* Return the PHI nodes for basic block BB, or NULL if there are no |
| PHI nodes. */ |
| static inline gimple_seq |
| phi_nodes (const_basic_block bb) |
| { |
| gcc_assert (!(bb->flags & BB_RTL)); |
| if (!bb->il.gimple) |
| return NULL; |
| return bb->il.gimple->phi_nodes; |
| } |
| |
| /* Set PHI nodes of a basic block BB to SEQ. */ |
| |
| static inline void |
| set_phi_nodes (basic_block bb, gimple_seq seq) |
| { |
| gimple_stmt_iterator i; |
| |
| gcc_assert (!(bb->flags & BB_RTL)); |
| bb->il.gimple->phi_nodes = seq; |
| if (seq) |
| for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) |
| gimple_set_bb (gsi_stmt (i), bb); |
| } |
| |
| /* Return the phi argument which contains the specified use. */ |
| |
| static inline int |
| phi_arg_index_from_use (use_operand_p use) |
| { |
| struct phi_arg_d *element, *root; |
| size_t index; |
| gimple phi; |
| |
| /* Since the use is the first thing in a PHI argument element, we can |
| calculate its index based on casting it to an argument, and performing |
| pointer arithmetic. */ |
| |
| phi = USE_STMT (use); |
| gcc_assert (gimple_code (phi) == GIMPLE_PHI); |
| |
| element = (struct phi_arg_d *)use; |
| root = gimple_phi_arg (phi, 0); |
| index = element - root; |
| |
| #ifdef ENABLE_CHECKING |
| /* Make sure the calculation doesn't have any leftover bytes. If it does, |
| then imm_use is likely not the first element in phi_arg_d. */ |
| gcc_assert ((((char *)element - (char *)root) |
| % sizeof (struct phi_arg_d)) == 0 |
| && index < gimple_phi_capacity (phi)); |
| #endif |
| |
| return index; |
| } |
| |
| /* Mark VAR as used, so that it'll be preserved during rtl expansion. */ |
| |
| static inline void |
| set_is_used (tree var) |
| { |
| var_ann_t ann = get_var_ann (var); |
| ann->used = 1; |
| } |
| |
| |
| /* Return true if T (assumed to be a DECL) is a global variable. |
| A variable is considered global if its storage is not automatic. */ |
| |
| static inline bool |
| is_global_var (const_tree t) |
| { |
| return (TREE_STATIC (t) || DECL_EXTERNAL (t)); |
| } |
| |
| |
| /* Return true if VAR may be aliased. A variable is considered as |
| maybe aliased if it has its address taken by the local TU |
| or possibly by another TU and might be modified through a pointer. */ |
| |
| static inline bool |
| may_be_aliased (const_tree var) |
| { |
| return (TREE_CODE (var) != CONST_DECL |
| && !((TREE_STATIC (var) || TREE_PUBLIC (var) || DECL_EXTERNAL (var)) |
| && TREE_READONLY (var) |
| && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var))) |
| && (TREE_PUBLIC (var) |
| || DECL_EXTERNAL (var) |
| || TREE_ADDRESSABLE (var))); |
| } |
| |
| |
| /* PHI nodes should contain only ssa_names and invariants. A test |
| for ssa_name is definitely simpler; don't let invalid contents |
| slip in in the meantime. */ |
| |
| static inline bool |
| phi_ssa_name_p (const_tree t) |
| { |
| if (TREE_CODE (t) == SSA_NAME) |
| return true; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (is_gimple_min_invariant (t)); |
| #endif |
| return false; |
| } |
| |
| |
| /* Returns the loop of the statement STMT. */ |
| |
| static inline struct loop * |
| loop_containing_stmt (gimple stmt) |
| { |
| basic_block bb = gimple_bb (stmt); |
| if (!bb) |
| return NULL; |
| |
| return bb->loop_father; |
| } |
| |
| |
| /* Return true if VAR is clobbered by function calls. */ |
| static inline bool |
| is_call_clobbered (const_tree var) |
| { |
| return (is_global_var (var) |
| || (may_be_aliased (var) |
| && pt_solution_includes (&cfun->gimple_df->escaped, var))); |
| } |
| |
| /* Return true if VAR is used by function calls. */ |
| static inline bool |
| is_call_used (const_tree var) |
| { |
| return (is_call_clobbered (var) |
| || (may_be_aliased (var) |
| && pt_solution_includes (&cfun->gimple_df->callused, var))); |
| } |
| |
| /* ----------------------------------------------------------------------- */ |
| |
| /* The following set of routines are used to iterator over various type of |
| SSA operands. */ |
| |
| /* Return true if PTR is finished iterating. */ |
| static inline bool |
| op_iter_done (const ssa_op_iter *ptr) |
| { |
| return ptr->done; |
| } |
| |
| /* Get the next iterator use value for PTR. */ |
| static inline use_operand_p |
| op_iter_next_use (ssa_op_iter *ptr) |
| { |
| use_operand_p use_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_use); |
| #endif |
| if (ptr->uses) |
| { |
| use_p = USE_OP_PTR (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return use_p; |
| } |
| if (ptr->phi_i < ptr->num_phi) |
| { |
| return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++); |
| } |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| /* Get the next iterator def value for PTR. */ |
| static inline def_operand_p |
| op_iter_next_def (ssa_op_iter *ptr) |
| { |
| def_operand_p def_p; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_def); |
| #endif |
| if (ptr->defs) |
| { |
| def_p = DEF_OP_PTR (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return def_p; |
| } |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| /* Get the next iterator tree value for PTR. */ |
| static inline tree |
| op_iter_next_tree (ssa_op_iter *ptr) |
| { |
| tree val; |
| #ifdef ENABLE_CHECKING |
| gcc_assert (ptr->iter_type == ssa_op_iter_tree); |
| #endif |
| if (ptr->uses) |
| { |
| val = USE_OP (ptr->uses); |
| ptr->uses = ptr->uses->next; |
| return val; |
| } |
| if (ptr->defs) |
| { |
| val = DEF_OP (ptr->defs); |
| ptr->defs = ptr->defs->next; |
| return val; |
| } |
| |
| ptr->done = true; |
| return NULL_TREE; |
| |
| } |
| |
| |
| /* This functions clears the iterator PTR, and marks it done. This is normally |
| used to prevent warnings in the compile about might be uninitialized |
| components. */ |
| |
| static inline void |
| clear_and_done_ssa_iter (ssa_op_iter *ptr) |
| { |
| ptr->defs = NULL; |
| ptr->uses = NULL; |
| ptr->iter_type = ssa_op_iter_none; |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL; |
| ptr->done = true; |
| } |
| |
| /* Initialize the iterator PTR to the virtual defs in STMT. */ |
| static inline void |
| op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| /* We do not support iterating over virtual defs or uses without |
| iterating over defs or uses at the same time. */ |
| gcc_assert ((!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF)) |
| && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE))); |
| ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL; |
| if (!(flags & SSA_OP_VDEF) |
| && ptr->defs |
| && gimple_vdef (stmt) != NULL_TREE) |
| ptr->defs = ptr->defs->next; |
| ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL; |
| if (!(flags & SSA_OP_VUSE) |
| && ptr->uses |
| && gimple_vuse (stmt) != NULL_TREE) |
| ptr->uses = ptr->uses->next; |
| ptr->done = false; |
| |
| ptr->phi_i = 0; |
| ptr->num_phi = 0; |
| ptr->phi_stmt = NULL; |
| } |
| |
| /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return |
| the first use. */ |
| static inline use_operand_p |
| op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0 |
| && (flags & SSA_OP_USE)); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return |
| the first def. */ |
| static inline def_operand_p |
| op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| gcc_assert ((flags & SSA_OP_ALL_USES) == 0 |
| && (flags & SSA_OP_DEF)); |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_def; |
| return op_iter_next_def (ptr); |
| } |
| |
| /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return |
| the first operand as a tree. */ |
| static inline tree |
| op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags) |
| { |
| op_iter_init (ptr, stmt, flags); |
| ptr->iter_type = ssa_op_iter_tree; |
| return op_iter_next_tree (ptr); |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline tree |
| single_ssa_tree_operand (gimple stmt, int flags) |
| { |
| tree var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_tree (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_TREE; |
| op_iter_next_tree (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_TREE; |
| } |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline use_operand_p |
| single_ssa_use_operand (gimple stmt, int flags) |
| { |
| use_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_use (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_USE_OPERAND_P; |
| op_iter_next_use (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| |
| |
| /* If there is a single operand in STMT matching FLAGS, return it. Otherwise |
| return NULL. */ |
| static inline def_operand_p |
| single_ssa_def_operand (gimple stmt, int flags) |
| { |
| def_operand_p var; |
| ssa_op_iter iter; |
| |
| var = op_iter_init_def (&iter, stmt, flags); |
| if (op_iter_done (&iter)) |
| return NULL_DEF_OPERAND_P; |
| op_iter_next_def (&iter); |
| if (op_iter_done (&iter)) |
| return var; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| |
| /* Return true if there are zero operands in STMT matching the type |
| given in FLAGS. */ |
| static inline bool |
| zero_ssa_operands (gimple stmt, int flags) |
| { |
| ssa_op_iter iter; |
| |
| op_iter_init_tree (&iter, stmt, flags); |
| return op_iter_done (&iter); |
| } |
| |
| |
| /* Return the number of operands matching FLAGS in STMT. */ |
| static inline int |
| num_ssa_operands (gimple stmt, int flags) |
| { |
| ssa_op_iter iter; |
| tree t; |
| int num = 0; |
| |
| FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags) |
| num++; |
| return num; |
| } |
| |
| |
| /* Delink all immediate_use information for STMT. */ |
| static inline void |
| delink_stmt_imm_use (gimple stmt) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| |
| if (ssa_operands_active ()) |
| FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) |
| delink_imm_use (use_p); |
| } |
| |
| |
| /* If there is a single DEF in the PHI node which matches FLAG, return it. |
| Otherwise return NULL_DEF_OPERAND_P. */ |
| static inline tree |
| single_phi_def (gimple stmt, int flags) |
| { |
| tree def = PHI_RESULT (stmt); |
| if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) |
| return def; |
| if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def)) |
| return def; |
| return NULL_TREE; |
| } |
| |
| /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should |
| be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */ |
| static inline use_operand_p |
| op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags) |
| { |
| tree phi_def = gimple_phi_result (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| /* If the PHI node doesn't the operand type we care about, we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_USE_OPERAND_P; |
| } |
| |
| ptr->phi_stmt = phi; |
| ptr->num_phi = gimple_phi_num_args (phi); |
| ptr->iter_type = ssa_op_iter_use; |
| return op_iter_next_use (ptr); |
| } |
| |
| |
| /* Start an iterator for a PHI definition. */ |
| |
| static inline def_operand_p |
| op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags) |
| { |
| tree phi_def = PHI_RESULT (phi); |
| int comp; |
| |
| clear_and_done_ssa_iter (ptr); |
| ptr->done = false; |
| |
| gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0); |
| |
| comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS); |
| |
| /* If the PHI node doesn't have the operand type we care about, |
| we're done. */ |
| if ((flags & comp) == 0) |
| { |
| ptr->done = true; |
| return NULL_DEF_OPERAND_P; |
| } |
| |
| ptr->iter_type = ssa_op_iter_def; |
| /* The first call to op_iter_next_def will terminate the iterator since |
| all the fields are NULL. Simply return the result here as the first and |
| therefore only result. */ |
| return PHI_RESULT_PTR (phi); |
| } |
| |
| /* Return true is IMM has reached the end of the immediate use stmt list. */ |
| |
| static inline bool |
| end_imm_use_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == imm->end_p); |
| } |
| |
| /* Finished the traverse of an immediate use stmt list IMM by removing the |
| placeholder node from the list. */ |
| |
| static inline void |
| end_imm_use_stmt_traverse (imm_use_iterator *imm) |
| { |
| delink_imm_use (&(imm->iter_node)); |
| } |
| |
| /* Immediate use traversal of uses within a stmt require that all the |
| uses on a stmt be sequentially listed. This routine is used to build up |
| this sequential list by adding USE_P to the end of the current list |
| currently delimited by HEAD and LAST_P. The new LAST_P value is |
| returned. */ |
| |
| static inline use_operand_p |
| move_use_after_head (use_operand_p use_p, use_operand_p head, |
| use_operand_p last_p) |
| { |
| #ifdef ENABLE_CHECKING |
| gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head)); |
| #endif |
| /* Skip head when we find it. */ |
| if (use_p != head) |
| { |
| /* If use_p is already linked in after last_p, continue. */ |
| if (last_p->next == use_p) |
| last_p = use_p; |
| else |
| { |
| /* Delink from current location, and link in at last_p. */ |
| delink_imm_use (use_p); |
| link_imm_use_to_list (use_p, last_p); |
| last_p = use_p; |
| } |
| } |
| return last_p; |
| } |
| |
| |
| /* This routine will relink all uses with the same stmt as HEAD into the list |
| immediately following HEAD for iterator IMM. */ |
| |
| static inline void |
| link_use_stmts_after (use_operand_p head, imm_use_iterator *imm) |
| { |
| use_operand_p use_p; |
| use_operand_p last_p = head; |
| gimple head_stmt = USE_STMT (head); |
| tree use = USE_FROM_PTR (head); |
| ssa_op_iter op_iter; |
| int flag; |
| |
| /* Only look at virtual or real uses, depending on the type of HEAD. */ |
| flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES); |
| |
| if (gimple_code (head_stmt) == GIMPLE_PHI) |
| { |
| FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else |
| { |
| if (flag == SSA_OP_USE) |
| { |
| FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag) |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P) |
| { |
| if (USE_FROM_PTR (use_p) == use) |
| last_p = move_use_after_head (use_p, head, last_p); |
| } |
| } |
| /* Link iter node in after last_p. */ |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| link_imm_use_to_list (&(imm->iter_node), last_p); |
| } |
| |
| /* Initialize IMM to traverse over uses of VAR. Return the first statement. */ |
| static inline gimple |
| first_imm_use_stmt (imm_use_iterator *imm, tree var) |
| { |
| imm->end_p = &(SSA_NAME_IMM_USE_NODE (var)); |
| imm->imm_use = imm->end_p->next; |
| imm->next_imm_name = NULL_USE_OPERAND_P; |
| |
| /* iter_node is used as a marker within the immediate use list to indicate |
| where the end of the current stmt's uses are. Initialize it to NULL |
| stmt and use, which indicates a marker node. */ |
| imm->iter_node.prev = NULL_USE_OPERAND_P; |
| imm->iter_node.next = NULL_USE_OPERAND_P; |
| imm->iter_node.loc.stmt = NULL; |
| imm->iter_node.use = NULL; |
| |
| if (end_imm_use_stmt_p (imm)) |
| return NULL; |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* Bump IMM to the next stmt which has a use of var. */ |
| |
| static inline gimple |
| next_imm_use_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->iter_node.next; |
| if (end_imm_use_stmt_p (imm)) |
| { |
| if (imm->iter_node.prev != NULL) |
| delink_imm_use (&imm->iter_node); |
| return NULL; |
| } |
| |
| link_use_stmts_after (imm->imm_use, imm); |
| return USE_STMT (imm->imm_use); |
| } |
| |
| /* This routine will return the first use on the stmt IMM currently refers |
| to. */ |
| |
| static inline use_operand_p |
| first_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| |
| /* Return TRUE if the last use on the stmt IMM refers to has been visited. */ |
| |
| static inline bool |
| end_imm_use_on_stmt_p (const imm_use_iterator *imm) |
| { |
| return (imm->imm_use == &(imm->iter_node)); |
| } |
| |
| /* Bump to the next use on the stmt IMM refers to, return NULL if done. */ |
| |
| static inline use_operand_p |
| next_imm_use_on_stmt (imm_use_iterator *imm) |
| { |
| imm->imm_use = imm->next_imm_name; |
| if (end_imm_use_on_stmt_p (imm)) |
| return NULL_USE_OPERAND_P; |
| else |
| { |
| imm->next_imm_name = imm->imm_use->next; |
| return imm->imm_use; |
| } |
| } |
| |
| /* Return true if VAR cannot be modified by the program. */ |
| |
| static inline bool |
| unmodifiable_var_p (const_tree var) |
| { |
| if (TREE_CODE (var) == SSA_NAME) |
| var = SSA_NAME_VAR (var); |
| |
| return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var)); |
| } |
| |
| /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */ |
| |
| static inline bool |
| array_ref_contains_indirect_ref (const_tree ref) |
| { |
| gcc_assert (TREE_CODE (ref) == ARRAY_REF); |
| |
| do { |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return TREE_CODE (ref) == INDIRECT_REF; |
| } |
| |
| /* Return true if REF, a handled component reference, has an ARRAY_REF |
| somewhere in it. */ |
| |
| static inline bool |
| ref_contains_array_ref (const_tree ref) |
| { |
| gcc_assert (handled_component_p (ref)); |
| |
| do { |
| if (TREE_CODE (ref) == ARRAY_REF) |
| return true; |
| ref = TREE_OPERAND (ref, 0); |
| } while (handled_component_p (ref)); |
| |
| return false; |
| } |
| |
| /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */ |
| |
| static inline bool |
| contains_view_convert_expr_p (const_tree ref) |
| { |
| while (handled_component_p (ref)) |
| { |
| if (TREE_CODE (ref) == VIEW_CONVERT_EXPR) |
| return true; |
| ref = TREE_OPERAND (ref, 0); |
| } |
| |
| return false; |
| } |
| |
| /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2] |
| overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the |
| range is open-ended. Otherwise return false. */ |
| |
| static inline bool |
| ranges_overlap_p (unsigned HOST_WIDE_INT pos1, |
| unsigned HOST_WIDE_INT size1, |
| unsigned HOST_WIDE_INT pos2, |
| unsigned HOST_WIDE_INT size2) |
| { |
| if (pos1 >= pos2 |
| && (size2 == (unsigned HOST_WIDE_INT)-1 |
| || pos1 < (pos2 + size2))) |
| return true; |
| if (pos2 >= pos1 |
| && (size1 == (unsigned HOST_WIDE_INT)-1 |
| || pos2 < (pos1 + size1))) |
| return true; |
| |
| return false; |
| } |
| |
| /* Accessor to tree-ssa-operands.c caches. */ |
| static inline struct ssa_operands * |
| gimple_ssa_operands (const struct function *fun) |
| { |
| return &fun->gimple_df->ssa_operands; |
| } |
| |
| /* Given an edge_var_map V, return the PHI arg definition. */ |
| |
| static inline tree |
| redirect_edge_var_map_def (edge_var_map *v) |
| { |
| return v->def; |
| } |
| |
| /* Given an edge_var_map V, return the PHI result. */ |
| |
| static inline tree |
| redirect_edge_var_map_result (edge_var_map *v) |
| { |
| return v->result; |
| } |
| |
| /* Given an edge_var_map V, return the PHI arg location. */ |
| |
| static inline source_location |
| redirect_edge_var_map_location (edge_var_map *v) |
| { |
| return v->locus; |
| } |
| |
| |
| /* Return an SSA_NAME node for variable VAR defined in statement STMT |
| in function cfun. */ |
| |
| static inline tree |
| make_ssa_name (tree var, gimple stmt) |
| { |
| return make_ssa_name_fn (cfun, var, stmt); |
| } |
| |
| #endif /* _TREE_FLOW_INLINE_H */ |