blob: f95beca55c707f7990df9cbe712aa88bcd2332cd [file] [log] [blame]
// -*- C++ -*- header.
// Copyright (C) 2008, 2009, 2010, 2011
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file bits/atomic_2.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{atomic}
*/
#ifndef _GLIBCXX_ATOMIC_2_H
#define _GLIBCXX_ATOMIC_2_H 1
#pragma GCC system_header
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// 2 == __atomic2 == Always lock-free
// Assumed:
// _GLIBCXX_ATOMIC_BUILTINS_1
// _GLIBCXX_ATOMIC_BUILTINS_2
// _GLIBCXX_ATOMIC_BUILTINS_4
// _GLIBCXX_ATOMIC_BUILTINS_8
namespace __atomic2
{
/// atomic_flag
struct atomic_flag : public __atomic_flag_base
{
atomic_flag() = default;
~atomic_flag() = default;
atomic_flag(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) = delete;
atomic_flag& operator=(const atomic_flag&) volatile = delete;
// Conversion to ATOMIC_FLAG_INIT.
atomic_flag(bool __i): __atomic_flag_base({ __i }) { }
bool
test_and_set(memory_order __m = memory_order_seq_cst)
{
// Redundant synchronize if built-in for lock is a full barrier.
if (__m != memory_order_acquire && __m != memory_order_acq_rel)
__sync_synchronize();
return __sync_lock_test_and_set(&_M_i, 1);
}
bool
test_and_set(memory_order __m = memory_order_seq_cst) volatile
{
// Redundant synchronize if built-in for lock is a full barrier.
if (__m != memory_order_acquire && __m != memory_order_acq_rel)
__sync_synchronize();
return __sync_lock_test_and_set(&_M_i, 1);
}
void
clear(memory_order __m = memory_order_seq_cst)
{
__glibcxx_assert(__m != memory_order_consume);
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_lock_release(&_M_i);
if (__m != memory_order_acquire && __m != memory_order_acq_rel)
__sync_synchronize();
}
void
clear(memory_order __m = memory_order_seq_cst) volatile
{
__glibcxx_assert(__m != memory_order_consume);
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_lock_release(&_M_i);
if (__m != memory_order_acquire && __m != memory_order_acq_rel)
__sync_synchronize();
}
};
/// Base class for atomic integrals.
//
// For each of the integral types, define atomic_[integral type] struct
//
// atomic_bool bool
// atomic_char char
// atomic_schar signed char
// atomic_uchar unsigned char
// atomic_short short
// atomic_ushort unsigned short
// atomic_int int
// atomic_uint unsigned int
// atomic_long long
// atomic_ulong unsigned long
// atomic_llong long long
// atomic_ullong unsigned long long
// atomic_char16_t char16_t
// atomic_char32_t char32_t
// atomic_wchar_t wchar_t
//
// NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or
// 8 bytes, since that is what GCC built-in functions for atomic
// memory access expect.
template<typename _ITp>
struct __atomic_base
{
private:
typedef _ITp __int_type;
__int_type _M_i;
public:
__atomic_base() = default;
~__atomic_base() = default;
__atomic_base(const __atomic_base&) = delete;
__atomic_base& operator=(const __atomic_base&) = delete;
__atomic_base& operator=(const __atomic_base&) volatile = delete;
// Requires __int_type convertible to _M_i.
constexpr __atomic_base(__int_type __i): _M_i (__i) { }
operator __int_type() const
{ return load(); }
operator __int_type() const volatile
{ return load(); }
__int_type
operator=(__int_type __i)
{
store(__i);
return __i;
}
__int_type
operator=(__int_type __i) volatile
{
store(__i);
return __i;
}
__int_type
operator++(int)
{ return fetch_add(1); }
__int_type
operator++(int) volatile
{ return fetch_add(1); }
__int_type
operator--(int)
{ return fetch_sub(1); }
__int_type
operator--(int) volatile
{ return fetch_sub(1); }
__int_type
operator++()
{ return __sync_add_and_fetch(&_M_i, 1); }
__int_type
operator++() volatile
{ return __sync_add_and_fetch(&_M_i, 1); }
__int_type
operator--()
{ return __sync_sub_and_fetch(&_M_i, 1); }
__int_type
operator--() volatile
{ return __sync_sub_and_fetch(&_M_i, 1); }
__int_type
operator+=(__int_type __i)
{ return __sync_add_and_fetch(&_M_i, __i); }
__int_type
operator+=(__int_type __i) volatile
{ return __sync_add_and_fetch(&_M_i, __i); }
__int_type
operator-=(__int_type __i)
{ return __sync_sub_and_fetch(&_M_i, __i); }
__int_type
operator-=(__int_type __i) volatile
{ return __sync_sub_and_fetch(&_M_i, __i); }
__int_type
operator&=(__int_type __i)
{ return __sync_and_and_fetch(&_M_i, __i); }
__int_type
operator&=(__int_type __i) volatile
{ return __sync_and_and_fetch(&_M_i, __i); }
__int_type
operator|=(__int_type __i)
{ return __sync_or_and_fetch(&_M_i, __i); }
__int_type
operator|=(__int_type __i) volatile
{ return __sync_or_and_fetch(&_M_i, __i); }
__int_type
operator^=(__int_type __i)
{ return __sync_xor_and_fetch(&_M_i, __i); }
__int_type
operator^=(__int_type __i) volatile
{ return __sync_xor_and_fetch(&_M_i, __i); }
bool
is_lock_free() const
{ return true; }
bool
is_lock_free() const volatile
{ return true; }
void
store(__int_type __i, memory_order __m = memory_order_seq_cst)
{
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed)
_M_i = __i;
else
{
// write_mem_barrier();
_M_i = __i;
if (__m == memory_order_seq_cst)
__sync_synchronize();
}
}
void
store(__int_type __i, memory_order __m = memory_order_seq_cst) volatile
{
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed)
_M_i = __i;
else
{
// write_mem_barrier();
_M_i = __i;
if (__m == memory_order_seq_cst)
__sync_synchronize();
}
}
__int_type
load(memory_order __m = memory_order_seq_cst) const
{
__glibcxx_assert(__m != memory_order_release);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize();
__int_type __ret = _M_i;
__sync_synchronize();
return __ret;
}
__int_type
load(memory_order __m = memory_order_seq_cst) const volatile
{
__glibcxx_assert(__m != memory_order_release);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize();
__int_type __ret = _M_i;
__sync_synchronize();
return __ret;
}
__int_type
exchange(__int_type __i, memory_order __m = memory_order_seq_cst)
{
// XXX built-in assumes memory_order_acquire.
return __sync_lock_test_and_set(&_M_i, __i);
}
__int_type
exchange(__int_type __i, memory_order __m = memory_order_seq_cst) volatile
{
// XXX built-in assumes memory_order_acquire.
return __sync_lock_test_and_set(&_M_i, __i);
}
bool
compare_exchange_weak(__int_type& __i1, __int_type __i2,
memory_order __m1, memory_order __m2)
{ return compare_exchange_strong(__i1, __i2, __m1, __m2); }
bool
compare_exchange_weak(__int_type& __i1, __int_type __i2,
memory_order __m1, memory_order __m2) volatile
{ return compare_exchange_strong(__i1, __i2, __m1, __m2); }
bool
compare_exchange_weak(__int_type& __i1, __int_type __i2,
memory_order __m = memory_order_seq_cst)
{
return compare_exchange_weak(__i1, __i2, __m,
__calculate_memory_order(__m));
}
bool
compare_exchange_weak(__int_type& __i1, __int_type __i2,
memory_order __m = memory_order_seq_cst) volatile
{
return compare_exchange_weak(__i1, __i2, __m,
__calculate_memory_order(__m));
}
bool
compare_exchange_strong(__int_type& __i1, __int_type __i2,
memory_order __m1, memory_order __m2)
{
__glibcxx_assert(__m2 != memory_order_release);
__glibcxx_assert(__m2 != memory_order_acq_rel);
__glibcxx_assert(__m2 <= __m1);
__int_type __i1o = __i1;
__int_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2);
// Assume extra stores (of same value) allowed in true case.
__i1 = __i1n;
return __i1o == __i1n;
}
bool
compare_exchange_strong(__int_type& __i1, __int_type __i2,
memory_order __m1, memory_order __m2) volatile
{
__glibcxx_assert(__m2 != memory_order_release);
__glibcxx_assert(__m2 != memory_order_acq_rel);
__glibcxx_assert(__m2 <= __m1);
__int_type __i1o = __i1;
__int_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2);
// Assume extra stores (of same value) allowed in true case.
__i1 = __i1n;
return __i1o == __i1n;
}
bool
compare_exchange_strong(__int_type& __i1, __int_type __i2,
memory_order __m = memory_order_seq_cst)
{
return compare_exchange_strong(__i1, __i2, __m,
__calculate_memory_order(__m));
}
bool
compare_exchange_strong(__int_type& __i1, __int_type __i2,
memory_order __m = memory_order_seq_cst) volatile
{
return compare_exchange_strong(__i1, __i2, __m,
__calculate_memory_order(__m));
}
__int_type
fetch_add(__int_type __i, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_add(&_M_i, __i); }
__int_type
fetch_add(__int_type __i,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_add(&_M_i, __i); }
__int_type
fetch_sub(__int_type __i, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_sub(&_M_i, __i); }
__int_type
fetch_sub(__int_type __i,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_sub(&_M_i, __i); }
__int_type
fetch_and(__int_type __i, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_and(&_M_i, __i); }
__int_type
fetch_and(__int_type __i,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_and(&_M_i, __i); }
__int_type
fetch_or(__int_type __i, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_or(&_M_i, __i); }
__int_type
fetch_or(__int_type __i,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_or(&_M_i, __i); }
__int_type
fetch_xor(__int_type __i, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_xor(&_M_i, __i); }
__int_type
fetch_xor(__int_type __i,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_xor(&_M_i, __i); }
};
/// Partial specialization for pointer types.
template<typename _PTp>
struct __atomic_base<_PTp*>
{
private:
typedef _PTp* __pointer_type;
__pointer_type _M_p;
public:
__atomic_base() = default;
~__atomic_base() = default;
__atomic_base(const __atomic_base&) = delete;
__atomic_base& operator=(const __atomic_base&) = delete;
__atomic_base& operator=(const __atomic_base&) volatile = delete;
// Requires __pointer_type convertible to _M_p.
constexpr __atomic_base(__pointer_type __p): _M_p (__p) { }
operator __pointer_type() const
{ return load(); }
operator __pointer_type() const volatile
{ return load(); }
__pointer_type
operator=(__pointer_type __p)
{
store(__p);
return __p;
}
__pointer_type
operator=(__pointer_type __p) volatile
{
store(__p);
return __p;
}
__pointer_type
operator++(int)
{ return fetch_add(1); }
__pointer_type
operator++(int) volatile
{ return fetch_add(1); }
__pointer_type
operator--(int)
{ return fetch_sub(1); }
__pointer_type
operator--(int) volatile
{ return fetch_sub(1); }
__pointer_type
operator++()
{ return fetch_add(1) + 1; }
__pointer_type
operator++() volatile
{ return fetch_add(1) + 1; }
__pointer_type
operator--()
{ return fetch_sub(1) -1; }
__pointer_type
operator--() volatile
{ return fetch_sub(1) -1; }
__pointer_type
operator+=(ptrdiff_t __d)
{ return fetch_add(__d) + __d; }
__pointer_type
operator+=(ptrdiff_t __d) volatile
{ return fetch_add(__d) + __d; }
__pointer_type
operator-=(ptrdiff_t __d)
{ return fetch_sub(__d) - __d; }
__pointer_type
operator-=(ptrdiff_t __d) volatile
{ return fetch_sub(__d) - __d; }
bool
is_lock_free() const
{ return true; }
bool
is_lock_free() const volatile
{ return true; }
void
store(__pointer_type __p, memory_order __m = memory_order_seq_cst)
{
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed)
_M_p = __p;
else
{
// write_mem_barrier();
_M_p = __p;
if (__m == memory_order_seq_cst)
__sync_synchronize();
}
}
void
store(__pointer_type __p,
memory_order __m = memory_order_seq_cst) volatile
{
__glibcxx_assert(__m != memory_order_acquire);
__glibcxx_assert(__m != memory_order_acq_rel);
__glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed)
_M_p = __p;
else
{
// write_mem_barrier();
_M_p = __p;
if (__m == memory_order_seq_cst)
__sync_synchronize();
}
}
__pointer_type
load(memory_order __m = memory_order_seq_cst) const
{
__glibcxx_assert(__m != memory_order_release);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize();
__pointer_type __ret = _M_p;
__sync_synchronize();
return __ret;
}
__pointer_type
load(memory_order __m = memory_order_seq_cst) const volatile
{
__glibcxx_assert(__m != memory_order_release);
__glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize();
__pointer_type __ret = _M_p;
__sync_synchronize();
return __ret;
}
__pointer_type
exchange(__pointer_type __p, memory_order __m = memory_order_seq_cst)
{
// XXX built-in assumes memory_order_acquire.
return __sync_lock_test_and_set(&_M_p, __p);
}
__pointer_type
exchange(__pointer_type __p,
memory_order __m = memory_order_seq_cst) volatile
{
// XXX built-in assumes memory_order_acquire.
return __sync_lock_test_and_set(&_M_p, __p);
}
bool
compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
memory_order __m1, memory_order __m2)
{
__glibcxx_assert(__m2 != memory_order_release);
__glibcxx_assert(__m2 != memory_order_acq_rel);
__glibcxx_assert(__m2 <= __m1);
__pointer_type __p1o = __p1;
__pointer_type __p1n = __sync_val_compare_and_swap(&_M_p, __p1o, __p2);
// Assume extra stores (of same value) allowed in true case.
__p1 = __p1n;
return __p1o == __p1n;
}
bool
compare_exchange_strong(__pointer_type& __p1, __pointer_type __p2,
memory_order __m1, memory_order __m2) volatile
{
__glibcxx_assert(__m2 != memory_order_release);
__glibcxx_assert(__m2 != memory_order_acq_rel);
__glibcxx_assert(__m2 <= __m1);
__pointer_type __p1o = __p1;
__pointer_type __p1n = __sync_val_compare_and_swap(&_M_p, __p1o, __p2);
// Assume extra stores (of same value) allowed in true case.
__p1 = __p1n;
return __p1o == __p1n;
}
__pointer_type
fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_add(&_M_p, __d); }
__pointer_type
fetch_add(ptrdiff_t __d,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_add(&_M_p, __d); }
__pointer_type
fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst)
{ return __sync_fetch_and_sub(&_M_p, __d); }
__pointer_type
fetch_sub(ptrdiff_t __d,
memory_order __m = memory_order_seq_cst) volatile
{ return __sync_fetch_and_sub(&_M_p, __d); }
};
} // namespace __atomic2
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif