blob: 66eca202eae4d3e5b60dd0f01e950c37c8bd2db8 [file] [log] [blame]
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright 2002-2007, Ralink Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*************************************************************************
*/
#include "../rt_config.h"
#define MAX_TX_IN_TBTT (16)
UCHAR SNAP_802_1H[] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00};
UCHAR SNAP_BRIDGE_TUNNEL[] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8};
// Add Cisco Aironet SNAP heade for CCX2 support
UCHAR SNAP_AIRONET[] = {0xaa, 0xaa, 0x03, 0x00, 0x40, 0x96, 0x00, 0x00};
UCHAR CKIP_LLC_SNAP[] = {0xaa, 0xaa, 0x03, 0x00, 0x40, 0x96, 0x00, 0x02};
UCHAR EAPOL_LLC_SNAP[]= {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e};
UCHAR EAPOL[] = {0x88, 0x8e};
UCHAR TPID[] = {0x81, 0x00}; /* VLAN related */
UCHAR IPX[] = {0x81, 0x37};
UCHAR APPLE_TALK[] = {0x80, 0xf3};
UCHAR RateIdToPlcpSignal[12] = {
0, /* RATE_1 */ 1, /* RATE_2 */ 2, /* RATE_5_5 */ 3, /* RATE_11 */ // see BBP spec
11, /* RATE_6 */ 15, /* RATE_9 */ 10, /* RATE_12 */ 14, /* RATE_18 */ // see IEEE802.11a-1999 p.14
9, /* RATE_24 */ 13, /* RATE_36 */ 8, /* RATE_48 */ 12 /* RATE_54 */ }; // see IEEE802.11a-1999 p.14
UCHAR OfdmSignalToRateId[16] = {
RATE_54, RATE_54, RATE_54, RATE_54, // OFDM PLCP Signal = 0, 1, 2, 3 respectively
RATE_54, RATE_54, RATE_54, RATE_54, // OFDM PLCP Signal = 4, 5, 6, 7 respectively
RATE_48, RATE_24, RATE_12, RATE_6, // OFDM PLCP Signal = 8, 9, 10, 11 respectively
RATE_54, RATE_36, RATE_18, RATE_9, // OFDM PLCP Signal = 12, 13, 14, 15 respectively
};
UCHAR OfdmRateToRxwiMCS[12] = {
0, 0, 0, 0,
0, 1, 2, 3, // OFDM rate 6,9,12,18 = rxwi mcs 0,1,2,3
4, 5, 6, 7, // OFDM rate 24,36,48,54 = rxwi mcs 4,5,6,7
};
UCHAR RxwiMCSToOfdmRate[12] = {
RATE_6, RATE_9, RATE_12, RATE_18,
RATE_24, RATE_36, RATE_48, RATE_54, // OFDM rate 6,9,12,18 = rxwi mcs 0,1,2,3
4, 5, 6, 7, // OFDM rate 24,36,48,54 = rxwi mcs 4,5,6,7
};
char* MCSToMbps[] = {"1Mbps","2Mbps","5.5Mbps","11Mbps","06Mbps","09Mbps","12Mbps","18Mbps","24Mbps","36Mbps","48Mbps","54Mbps","MM-0","MM-1","MM-2","MM-3","MM-4","MM-5","MM-6","MM-7","MM-8","MM-9","MM-10","MM-11","MM-12","MM-13","MM-14","MM-15","MM-32","ee1","ee2","ee3"};
UCHAR default_cwmin[]={CW_MIN_IN_BITS, CW_MIN_IN_BITS, CW_MIN_IN_BITS-1, CW_MIN_IN_BITS-2};
UCHAR default_sta_aifsn[]={3,7,2,2};
UCHAR MapUserPriorityToAccessCategory[8] = {QID_AC_BE, QID_AC_BK, QID_AC_BK, QID_AC_BE, QID_AC_VI, QID_AC_VI, QID_AC_VO, QID_AC_VO};
/*
========================================================================
Routine Description:
API for MLME to transmit management frame to AP (BSS Mode)
or station (IBSS Mode)
Arguments:
pAd Pointer to our adapter
pData Pointer to the outgoing 802.11 frame
Length Size of outgoing management frame
Return Value:
NDIS_STATUS_FAILURE
NDIS_STATUS_PENDING
NDIS_STATUS_SUCCESS
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
NDIS_STATUS MiniportMMRequest(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PUCHAR pData,
IN UINT Length)
{
PNDIS_PACKET pPacket;
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
ULONG FreeNum;
#ifdef RT2860
unsigned long IrqFlags = 0;
#endif
UCHAR IrqState;
UCHAR rtmpHwHdr[TXINFO_SIZE + TXWI_SIZE]; //RTMP_HW_HDR_LEN];
ASSERT(Length <= MGMT_DMA_BUFFER_SIZE);
QueIdx=3;
// 2860C use Tx Ring
IrqState = pAd->irq_disabled;
#ifdef RT2860
if ((pAd->MACVersion == 0x28600100) && (!IrqState))
RTMP_IRQ_LOCK(&pAd->irq_lock, IrqFlags);
#endif
do
{
// Reset is in progress, stop immediately
if ( RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) ||
RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)||
!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_START_UP))
{
Status = NDIS_STATUS_FAILURE;
break;
}
// Check Free priority queue
// Since we use PBF Queue2 for management frame. Its corresponding DMA ring should be using TxRing.
// 2860C use Tx Ring
if (pAd->MACVersion == 0x28600100)
{
FreeNum = GET_TXRING_FREENO(pAd, QueIdx);
}
else
{
FreeNum = GET_MGMTRING_FREENO(pAd);
}
if ((FreeNum > 0))
{
// We need to reserve space for rtmp hardware header. i.e., TxWI for RT2860 and TxInfo+TxWI for RT2870
NdisZeroMemory(&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE));
Status = RTMPAllocateNdisPacket(pAd, &pPacket, (PUCHAR)&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE), pData, Length);
if (Status != NDIS_STATUS_SUCCESS)
{
DBGPRINT(RT_DEBUG_WARN, ("MiniportMMRequest (error:: can't allocate NDIS PACKET)\n"));
break;
}
//pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_CCK;
//pAd->CommonCfg.MlmeRate = RATE_2;
Status = MlmeHardTransmit(pAd, QueIdx, pPacket);
if (Status != NDIS_STATUS_SUCCESS)
RTMPFreeNdisPacket(pAd, pPacket);
}
else
{
pAd->RalinkCounters.MgmtRingFullCount++;
DBGPRINT(RT_DEBUG_ERROR, ("Qidx(%d), not enough space in MgmtRing, MgmtRingFullCount=%ld!\n",
QueIdx, pAd->RalinkCounters.MgmtRingFullCount));
}
} while (FALSE);
#ifdef RT2860
// 2860C use Tx Ring
if ((pAd->MACVersion == 0x28600100) && (!IrqState))
RTMP_IRQ_UNLOCK(&pAd->irq_lock, IrqFlags);
#endif
return Status;
}
#ifdef RT2860
NDIS_STATUS MiniportMMRequestUnlock(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PUCHAR pData,
IN UINT Length)
{
PNDIS_PACKET pPacket;
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
ULONG FreeNum;
TXWI_STRUC TXWI;
ULONG SW_TX_IDX;
PTXD_STRUC pTxD;
QueIdx = 3;
ASSERT(Length <= MGMT_DMA_BUFFER_SIZE);
do
{
// Reset is in progress, stop immediately
if ( RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) ||
RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)||
!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_START_UP))
{
Status = NDIS_STATUS_FAILURE;
break;
}
// Check Free priority queue
// Since we use PBF Queue2 for management frame. Its corresponding DMA ring should be using TxRing.
// 2860C use Tx Ring
if (pAd->MACVersion == 0x28600100)
{
FreeNum = GET_TXRING_FREENO(pAd, QueIdx);
SW_TX_IDX = pAd->TxRing[QueIdx].TxCpuIdx;
pTxD = (PTXD_STRUC) pAd->TxRing[QueIdx].Cell[SW_TX_IDX].AllocVa;
}
else
{
FreeNum = GET_MGMTRING_FREENO(pAd);
SW_TX_IDX = pAd->MgmtRing.TxCpuIdx;
pTxD = (PTXD_STRUC) pAd->MgmtRing.Cell[SW_TX_IDX].AllocVa;
}
if ((FreeNum > 0))
{
NdisZeroMemory(&TXWI, TXWI_SIZE);
Status = RTMPAllocateNdisPacket(pAd, &pPacket, (PUCHAR)&TXWI, TXWI_SIZE, pData, Length);
if (Status != NDIS_STATUS_SUCCESS)
{
DBGPRINT(RT_DEBUG_WARN, ("MiniportMMRequest (error:: can't allocate NDIS PACKET)\n"));
break;
}
Status = MlmeHardTransmit(pAd, QueIdx, pPacket);
if (Status != NDIS_STATUS_SUCCESS)
RTMPFreeNdisPacket(pAd, pPacket);
}
else
{
pAd->RalinkCounters.MgmtRingFullCount++;
DBGPRINT(RT_DEBUG_ERROR, ("Qidx(%d), not enough space in MgmtRing\n", QueIdx));
}
} while (FALSE);
return Status;
}
#endif
#ifdef RT30xx
NDIS_STATUS MlmeDataHardTransmit(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PNDIS_PACKET pPacket);
#define MAX_DATAMM_RETRY 3
/*
========================================================================
Routine Description:
API for MLME to transmit management frame to AP (BSS Mode)
or station (IBSS Mode)
Arguments:
pAd Pointer to our adapter
pData Pointer to the outgoing 802.11 frame
Length Size of outgoing management frame
Return Value:
NDIS_STATUS_FAILURE
NDIS_STATUS_PENDING
NDIS_STATUS_SUCCESS
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
NDIS_STATUS MiniportDataMMRequest(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PUCHAR pData,
IN UINT Length)
{
PNDIS_PACKET pPacket;
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
ULONG FreeNum;
int retry = 0;
UCHAR IrqState;
UCHAR rtmpHwHdr[TXINFO_SIZE + TXWI_SIZE]; //RTMP_HW_HDR_LEN];
ASSERT(Length <= MGMT_DMA_BUFFER_SIZE);
// 2860C use Tx Ring
IrqState = pAd->irq_disabled;
do
{
// Reset is in progress, stop immediately
if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) ||
RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)||
!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_START_UP))
{
Status = NDIS_STATUS_FAILURE;
break;
}
// Check Free priority queue
// Since we use PBF Queue2 for management frame. Its corresponding DMA ring should be using TxRing.
// 2860C use Tx Ring
// free Tx(QueIdx) resources
FreeNum = GET_TXRING_FREENO(pAd, QueIdx);
if ((FreeNum > 0))
{
// We need to reserve space for rtmp hardware header. i.e., TxWI for RT2860 and TxInfo+TxWI for RT2870
NdisZeroMemory(&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE));
Status = RTMPAllocateNdisPacket(pAd, &pPacket, (PUCHAR)&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE), pData, Length);
if (Status != NDIS_STATUS_SUCCESS)
{
DBGPRINT(RT_DEBUG_WARN, ("MiniportMMRequest (error:: can't allocate NDIS PACKET)\n"));
break;
}
//pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_CCK;
//pAd->CommonCfg.MlmeRate = RATE_2;
Status = MlmeDataHardTransmit(pAd, QueIdx, pPacket);
if (Status != NDIS_STATUS_SUCCESS)
RTMPFreeNdisPacket(pAd, pPacket);
retry = MAX_DATAMM_RETRY;
}
else
{
retry ++;
printk("retry %d\n", retry);
pAd->RalinkCounters.MgmtRingFullCount++;
if (retry >= MAX_DATAMM_RETRY)
{
DBGPRINT(RT_DEBUG_ERROR, ("Qidx(%d), not enough space in DataRing, MgmtRingFullCount=%ld!\n",
QueIdx, pAd->RalinkCounters.MgmtRingFullCount));
}
}
} while (retry < MAX_DATAMM_RETRY);
return Status;
}
#endif /* RT30xx */
/*
========================================================================
Routine Description:
Copy frame from waiting queue into relative ring buffer and set
appropriate ASIC register to kick hardware transmit function
Arguments:
pAd Pointer to our adapter
pBuffer Pointer to memory of outgoing frame
Length Size of outgoing management frame
Return Value:
NDIS_STATUS_FAILURE
NDIS_STATUS_PENDING
NDIS_STATUS_SUCCESS
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
NDIS_STATUS MlmeHardTransmit(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PNDIS_PACKET pPacket)
{
if (pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE)
{
return NDIS_STATUS_FAILURE;
}
#ifdef RT2860
if ( pAd->MACVersion == 0x28600100 )
return MlmeHardTransmitTxRing(pAd,QueIdx,pPacket);
else
#endif
return MlmeHardTransmitMgmtRing(pAd,QueIdx,pPacket);
}
#ifdef RT2860
NDIS_STATUS MlmeHardTransmitTxRing(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PNDIS_PACKET pPacket)
{
PACKET_INFO PacketInfo;
PUCHAR pSrcBufVA;
UINT SrcBufLen;
PTXD_STRUC pTxD;
PHEADER_802_11 pHeader_802_11;
BOOLEAN bAckRequired, bInsertTimestamp;
ULONG SrcBufPA;
UCHAR MlmeRate;
ULONG SwIdx = pAd->TxRing[QueIdx].TxCpuIdx;
PTXWI_STRUC pFirstTxWI;
ULONG FreeNum;
MAC_TABLE_ENTRY *pMacEntry = NULL;
RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pSrcBufVA, &SrcBufLen);
if (pSrcBufVA == NULL)
{
// The buffer shouldn't be NULL
return NDIS_STATUS_FAILURE;
}
// Make sure MGMT ring resource won't be used by other threads
//NdisAcquireSpinLock(&pAd->TxRingLock);
FreeNum = GET_TXRING_FREENO(pAd, QueIdx);
if (FreeNum == 0)
{
//NdisReleaseSpinLock(&pAd->TxRingLock);
return NDIS_STATUS_FAILURE;
}
SwIdx = pAd->TxRing[QueIdx].TxCpuIdx;
pTxD = (PTXD_STRUC) pAd->TxRing[QueIdx].Cell[SwIdx].AllocVa;
if (pAd->TxRing[QueIdx].Cell[SwIdx].pNdisPacket)
{
printk("MlmeHardTransmit Error\n");
return NDIS_STATUS_FAILURE;
}
// outgoing frame always wakeup PHY to prevent frame lost
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE))
AsicForceWakeup(pAd, FROM_TX);
pFirstTxWI =(PTXWI_STRUC)pSrcBufVA;
pHeader_802_11 = (PHEADER_802_11) (pSrcBufVA + TXWI_SIZE);
if (pHeader_802_11->Addr1[0] & 0x01)
{
MlmeRate = pAd->CommonCfg.BasicMlmeRate;
}
else
{
MlmeRate = pAd->CommonCfg.MlmeRate;
}
if ((pHeader_802_11->FC.Type == BTYPE_DATA) &&
(pHeader_802_11->FC.SubType == SUBTYPE_QOS_NULL))
{
pMacEntry = MacTableLookup(pAd, pHeader_802_11->Addr1);
}
// Verify Mlme rate for a / g bands.
if ((pAd->LatchRfRegs.Channel > 14) && (MlmeRate < RATE_6)) // 11A band
MlmeRate = RATE_6;
//
// Should not be hard code to set PwrMgmt to 0 (PWR_ACTIVE)
// Snice it's been set to 0 while on MgtMacHeaderInit
// By the way this will cause frame to be send on PWR_SAVE failed.
//
//
// In WMM-UAPSD, mlme frame should be set psm as power saving but probe request frame
// Data-Null packets alse pass through MMRequest in RT2860, however, we hope control the psm bit to pass APSD
if (pHeader_802_11->FC.Type != BTYPE_DATA)
{
if ((pHeader_802_11->FC.SubType == SUBTYPE_PROBE_REQ) || !(pAd->CommonCfg.bAPSDCapable && pAd->CommonCfg.APEdcaParm.bAPSDCapable))
{
pHeader_802_11->FC.PwrMgmt = PWR_ACTIVE;
}
else
{
pHeader_802_11->FC.PwrMgmt = pAd->CommonCfg.bAPSDForcePowerSave;
}
}
bInsertTimestamp = FALSE;
if (pHeader_802_11->FC.Type == BTYPE_CNTL) // must be PS-POLL
{
bAckRequired = FALSE;
}
else // BTYPE_MGMT or BTYPE_DATA(must be NULL frame)
{
if (pHeader_802_11->Addr1[0] & 0x01) // MULTICAST, BROADCAST
{
bAckRequired = FALSE;
pHeader_802_11->Duration = 0;
}
else
{
bAckRequired = TRUE;
pHeader_802_11->Duration = RTMPCalcDuration(pAd, MlmeRate, 14);
if (pHeader_802_11->FC.SubType == SUBTYPE_PROBE_RSP)
{
bInsertTimestamp = TRUE;
}
}
}
pHeader_802_11->Sequence = pAd->Sequence++;
if (pAd->Sequence > 0xfff)
pAd->Sequence = 0;
// Before radar detection done, mgmt frame can not be sent but probe req
// Because we need to use probe req to trigger driver to send probe req in passive scan
if ((pHeader_802_11->FC.SubType != SUBTYPE_PROBE_REQ)
&& (pAd->CommonCfg.bIEEE80211H == 1)
&& (pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE))
{
DBGPRINT(RT_DEBUG_ERROR,("MlmeHardTransmit --> radar detect not in normal mode !!!\n"));
return (NDIS_STATUS_FAILURE);
}
//
// fill scatter-and-gather buffer list into TXD. Internally created NDIS PACKET
// should always has only one ohysical buffer, and the whole frame size equals
// to the first scatter buffer size
//
// Initialize TX Descriptor
// For inter-frame gap, the number is for this frame and next frame
// For MLME rate, we will fix as 2Mb to match other vendor's implement
// management frame doesn't need encryption. so use RESERVED_WCID no matter u are sending to specific wcid or not.
// Only beacon use Nseq=TRUE. So here we use Nseq=FALSE.
if (pMacEntry == NULL)
{
RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE, bInsertTimestamp, FALSE, bAckRequired, FALSE,
0, RESERVED_WCID, (SrcBufLen - TXWI_SIZE), PID_MGMT, 0, (UCHAR)pAd->CommonCfg.MlmeTransmit.field.MCS, IFS_BACKOFF, FALSE, &pAd->CommonCfg.MlmeTransmit);
}
else
{
RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE,
bInsertTimestamp, FALSE, bAckRequired, FALSE,
0, pMacEntry->Aid, (SrcBufLen - TXWI_SIZE),
pMacEntry->MaxHTPhyMode.field.MCS, 0,
(UCHAR)pMacEntry->MaxHTPhyMode.field.MCS,
IFS_BACKOFF, FALSE, &pMacEntry->MaxHTPhyMode);
}
pAd->TxRing[QueIdx].Cell[SwIdx].pNdisPacket = pPacket;
pAd->TxRing[QueIdx].Cell[SwIdx].pNextNdisPacket = NULL;
SrcBufPA = PCI_MAP_SINGLE(pAd, pSrcBufVA, SrcBufLen, 0, PCI_DMA_TODEVICE);
RTMPWriteTxDescriptor(pAd, pTxD, TRUE, FIFO_EDCA);
pTxD->LastSec0 = 1;
pTxD->LastSec1 = 1;
pTxD->SDLen0 = SrcBufLen;
pTxD->SDLen1 = 0;
pTxD->SDPtr0 = SrcBufPA;
pTxD->DMADONE = 0;
pAd->RalinkCounters.KickTxCount++;
pAd->RalinkCounters.OneSecTxDoneCount++;
// Increase TX_CTX_IDX, but write to register later.
INC_RING_INDEX(pAd->TxRing[QueIdx].TxCpuIdx, TX_RING_SIZE);
RTMP_IO_WRITE32(pAd, TX_CTX_IDX0 + QueIdx*0x10, pAd->TxRing[QueIdx].TxCpuIdx);
return NDIS_STATUS_SUCCESS;
}
#endif /* RT2860 */
#ifdef RT30xx
NDIS_STATUS MlmeDataHardTransmit(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PNDIS_PACKET pPacket)
{
if ((pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE)
)
{
return NDIS_STATUS_FAILURE;
}
#ifdef RT2870
return MlmeHardTransmitMgmtRing(pAd,QueIdx,pPacket);
#endif // RT2870 //
}
#endif /* RT30xx */
NDIS_STATUS MlmeHardTransmitMgmtRing(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx,
IN PNDIS_PACKET pPacket)
{
PACKET_INFO PacketInfo;
PUCHAR pSrcBufVA;
UINT SrcBufLen;
PHEADER_802_11 pHeader_802_11;
BOOLEAN bAckRequired, bInsertTimestamp;
UCHAR MlmeRate;
PTXWI_STRUC pFirstTxWI;
MAC_TABLE_ENTRY *pMacEntry = NULL;
RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pSrcBufVA, &SrcBufLen);
RTMP_SEM_LOCK(&pAd->MgmtRingLock);
if (pSrcBufVA == NULL)
{
RTMP_SEM_UNLOCK(&pAd->MgmtRingLock);
return NDIS_STATUS_FAILURE;
}
// outgoing frame always wakeup PHY to prevent frame lost
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE))
#ifdef RT2860
AsicForceWakeup(pAd, FROM_TX);
#endif
#ifdef RT2870
AsicForceWakeup(pAd, TRUE);
#endif
pFirstTxWI = (PTXWI_STRUC)(pSrcBufVA + TXINFO_SIZE);
pHeader_802_11 = (PHEADER_802_11) (pSrcBufVA + TXINFO_SIZE + TXWI_SIZE); //TXWI_SIZE);
if (pHeader_802_11->Addr1[0] & 0x01)
{
MlmeRate = pAd->CommonCfg.BasicMlmeRate;
}
else
{
MlmeRate = pAd->CommonCfg.MlmeRate;
}
// Verify Mlme rate for a / g bands.
if ((pAd->LatchRfRegs.Channel > 14) && (MlmeRate < RATE_6)) // 11A band
MlmeRate = RATE_6;
if ((pHeader_802_11->FC.Type == BTYPE_DATA) &&
(pHeader_802_11->FC.SubType == SUBTYPE_QOS_NULL))
{
pMacEntry = MacTableLookup(pAd, pHeader_802_11->Addr1);
}
{
// Fixed W52 with Activity scan issue in ABG_MIXED and ABGN_MIXED mode.
if (pAd->CommonCfg.PhyMode == PHY_11ABG_MIXED
|| pAd->CommonCfg.PhyMode == PHY_11ABGN_MIXED
)
{
if (pAd->LatchRfRegs.Channel > 14)
pAd->CommonCfg.MlmeTransmit.field.MODE = 1;
else
pAd->CommonCfg.MlmeTransmit.field.MODE = 0;
}
}
//
// Should not be hard code to set PwrMgmt to 0 (PWR_ACTIVE)
// Snice it's been set to 0 while on MgtMacHeaderInit
// By the way this will cause frame to be send on PWR_SAVE failed.
//
// pHeader_802_11->FC.PwrMgmt = 0; // (pAd->StaCfg.Psm == PWR_SAVE);
//
// In WMM-UAPSD, mlme frame should be set psm as power saving but probe request frame
// Data-Null packets alse pass through MMRequest in RT2860, however, we hope control the psm bit to pass APSD
if ((pHeader_802_11->FC.Type != BTYPE_DATA) && (pHeader_802_11->FC.Type != BTYPE_CNTL))
{
if ((pAd->StaCfg.Psm == PWR_SAVE) &&
(pHeader_802_11->FC.SubType == SUBTYPE_ACTION))
pHeader_802_11->FC.PwrMgmt = PWR_SAVE;
else
pHeader_802_11->FC.PwrMgmt = PWR_ACTIVE;
}
bInsertTimestamp = FALSE;
if (pHeader_802_11->FC.Type == BTYPE_CNTL) // must be PS-POLL
{
//Set PM bit in ps-poll, to fix WLK 1.2 PowerSaveMode_ext failure issue.
if ((pAd->OpMode == OPMODE_STA) && (pHeader_802_11->FC.SubType == SUBTYPE_PS_POLL))
{
pHeader_802_11->FC.PwrMgmt = PWR_SAVE;
}
bAckRequired = FALSE;
}
else // BTYPE_MGMT or BTYPE_DATA(must be NULL frame)
{
if (pHeader_802_11->Addr1[0] & 0x01) // MULTICAST, BROADCAST
{
bAckRequired = FALSE;
pHeader_802_11->Duration = 0;
}
else
{
bAckRequired = TRUE;
pHeader_802_11->Duration = RTMPCalcDuration(pAd, MlmeRate, 14);
if (pHeader_802_11->FC.SubType == SUBTYPE_PROBE_RSP)
{
bInsertTimestamp = TRUE;
}
}
}
pHeader_802_11->Sequence = pAd->Sequence++;
if (pAd->Sequence >0xfff)
pAd->Sequence = 0;
// Before radar detection done, mgmt frame can not be sent but probe req
// Because we need to use probe req to trigger driver to send probe req in passive scan
if ((pHeader_802_11->FC.SubType != SUBTYPE_PROBE_REQ)
&& (pAd->CommonCfg.bIEEE80211H == 1)
&& (pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE))
{
DBGPRINT(RT_DEBUG_ERROR,("MlmeHardTransmit --> radar detect not in normal mode !!!\n"));
RTMP_SEM_UNLOCK(&pAd->MgmtRingLock);
return (NDIS_STATUS_FAILURE);
}
//
// fill scatter-and-gather buffer list into TXD. Internally created NDIS PACKET
// should always has only one ohysical buffer, and the whole frame size equals
// to the first scatter buffer size
//
// Initialize TX Descriptor
// For inter-frame gap, the number is for this frame and next frame
// For MLME rate, we will fix as 2Mb to match other vendor's implement
// management frame doesn't need encryption. so use RESERVED_WCID no matter u are sending to specific wcid or not.
if (pMacEntry == NULL)
{
RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE, bInsertTimestamp, FALSE, bAckRequired, FALSE,
0, RESERVED_WCID, (SrcBufLen - TXINFO_SIZE - TXWI_SIZE), PID_MGMT, 0, (UCHAR)pAd->CommonCfg.MlmeTransmit.field.MCS, IFS_BACKOFF, FALSE, &pAd->CommonCfg.MlmeTransmit);
}
else
{
RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE,
bInsertTimestamp, FALSE, bAckRequired, FALSE,
0, pMacEntry->Aid, (SrcBufLen - TXINFO_SIZE - TXWI_SIZE),
pMacEntry->MaxHTPhyMode.field.MCS, 0,
(UCHAR)pMacEntry->MaxHTPhyMode.field.MCS,
IFS_BACKOFF, FALSE, &pMacEntry->MaxHTPhyMode);
}
// Now do hardware-depened kick out.
HAL_KickOutMgmtTx(pAd, QueIdx, pPacket, pSrcBufVA, SrcBufLen);
// Make sure to release MGMT ring resource
RTMP_SEM_UNLOCK(&pAd->MgmtRingLock);
return NDIS_STATUS_SUCCESS;
}
/********************************************************************************
New DeQueue Procedures.
********************************************************************************/
#define DEQUEUE_LOCK(lock, bIntContext, IrqFlags) \
do{ \
if (bIntContext == FALSE) \
RTMP_IRQ_LOCK((lock), IrqFlags); \
}while(0)
#define DEQUEUE_UNLOCK(lock, bIntContext, IrqFlags) \
do{ \
if (bIntContext == FALSE) \
RTMP_IRQ_UNLOCK((lock), IrqFlags); \
}while(0)
/*
========================================================================
Tx Path design algorithm:
Basically, we divide the packets into four types, Broadcast/Multicast, 11N Rate(AMPDU, AMSDU, Normal), B/G Rate(ARALINK, Normal),
Specific Packet Type. Following show the classification rule and policy for each kinds of packets.
Classification Rule=>
Multicast: (*addr1 & 0x01) == 0x01
Specific : bDHCPFrame, bARPFrame, bEAPOLFrame, etc.
11N Rate : If peer support HT
(1).AMPDU -- If TXBA is negotiated.
(2).AMSDU -- If AMSDU is capable for both peer and ourself.
*). AMSDU can embedded in a AMPDU, but now we didn't support it.
(3).Normal -- Other packets which send as 11n rate.
B/G Rate : If peer is b/g only.
(1).ARALINK-- If both of peer/us supprot Ralink proprietary Aggregation and the TxRate is large than RATE_6
(2).Normal -- Other packets which send as b/g rate.
Fragment:
The packet must be unicast, NOT A-RALINK, NOT A-MSDU, NOT 11n, then can consider about fragment.
Classified Packet Handle Rule=>
Multicast:
No ACK, //pTxBlk->bAckRequired = FALSE;
No WMM, //pTxBlk->bWMM = FALSE;
No piggyback, //pTxBlk->bPiggyBack = FALSE;
Force LowRate, //pTxBlk->bForceLowRate = TRUE;
Specific : Basically, for specific packet, we should handle it specifically, but now all specific packets are use
the same policy to handle it.
Force LowRate, //pTxBlk->bForceLowRate = TRUE;
11N Rate :
No piggyback, //pTxBlk->bPiggyBack = FALSE;
(1).AMSDU
pTxBlk->bWMM = TRUE;
(2).AMPDU
pTxBlk->bWMM = TRUE;
(3).Normal
B/G Rate :
(1).ARALINK
(2).Normal
========================================================================
*/
static UCHAR TxPktClassification(
IN RTMP_ADAPTER *pAd,
IN PNDIS_PACKET pPacket)
{
UCHAR TxFrameType = TX_UNKOWN_FRAME;
UCHAR Wcid;
MAC_TABLE_ENTRY *pMacEntry = NULL;
BOOLEAN bHTRate = FALSE;
Wcid = RTMP_GET_PACKET_WCID(pPacket);
if (Wcid == MCAST_WCID)
{ // Handle for RA is Broadcast/Multicast Address.
return TX_MCAST_FRAME;
}
// Handle for unicast packets
pMacEntry = &pAd->MacTab.Content[Wcid];
if (RTMP_GET_PACKET_LOWRATE(pPacket))
{ // It's a specific packet need to force low rate, i.e., bDHCPFrame, bEAPOLFrame, bWAIFrame
TxFrameType = TX_LEGACY_FRAME;
}
else if (IS_HT_RATE(pMacEntry))
{ // it's a 11n capable packet
// Depends on HTPhyMode to check if the peer support the HTRate transmission.
// Currently didn't support A-MSDU embedded in A-MPDU
bHTRate = TRUE;
if (RTMP_GET_PACKET_MOREDATA(pPacket) || (pMacEntry->PsMode == PWR_SAVE))
TxFrameType = TX_LEGACY_FRAME;
#ifdef UAPSD_AP_SUPPORT
else if (RTMP_GET_PACKET_EOSP(pPacket))
TxFrameType = TX_LEGACY_FRAME;
#endif // UAPSD_AP_SUPPORT //
else if((pMacEntry->TXBAbitmap & (1<<(RTMP_GET_PACKET_UP(pPacket)))) != 0)
return TX_AMPDU_FRAME;
else if(CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_AMSDU_INUSED))
return TX_AMSDU_FRAME;
else
TxFrameType = TX_LEGACY_FRAME;
}
else
{ // it's a legacy b/g packet.
if ((CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_AGGREGATION_CAPABLE) && pAd->CommonCfg.bAggregationCapable) &&
(RTMP_GET_PACKET_TXRATE(pPacket) >= RATE_6) &&
(!(OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE))))
{ // if peer support Ralink Aggregation, we use it.
TxFrameType = TX_RALINK_FRAME;
}
else
{
TxFrameType = TX_LEGACY_FRAME;
}
}
// Currently, our fragment only support when a unicast packet send as NOT-ARALINK, NOT-AMSDU and NOT-AMPDU.
if ((RTMP_GET_PACKET_FRAGMENTS(pPacket) > 1) && (TxFrameType == TX_LEGACY_FRAME))
TxFrameType = TX_FRAG_FRAME;
return TxFrameType;
}
BOOLEAN RTMP_FillTxBlkInfo(
IN RTMP_ADAPTER *pAd,
IN TX_BLK *pTxBlk)
{
PACKET_INFO PacketInfo;
PNDIS_PACKET pPacket;
PMAC_TABLE_ENTRY pMacEntry = NULL;
pPacket = pTxBlk->pPacket;
RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pTxBlk->pSrcBufHeader, &pTxBlk->SrcBufLen);
pTxBlk->Wcid = RTMP_GET_PACKET_WCID(pPacket);
pTxBlk->apidx = RTMP_GET_PACKET_IF(pPacket);
pTxBlk->UserPriority = RTMP_GET_PACKET_UP(pPacket);
pTxBlk->FrameGap = IFS_HTTXOP; // ASIC determine Frame Gap
if (RTMP_GET_PACKET_CLEAR_EAP_FRAME(pTxBlk->pPacket))
TX_BLK_SET_FLAG(pTxBlk, fTX_bClearEAPFrame);
else
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bClearEAPFrame);
// Default to clear this flag
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bForceNonQoS);
if (pTxBlk->Wcid == MCAST_WCID)
{
pTxBlk->pMacEntry = NULL;
{
#ifdef MCAST_RATE_SPECIFIC
PUCHAR pDA = GET_OS_PKT_DATAPTR(pPacket);
if (((*pDA & 0x01) == 0x01) && (*pDA != 0xff))
pTxBlk->pTransmit = &pAd->CommonCfg.MCastPhyMode;
else
#endif // MCAST_RATE_SPECIFIC //
pTxBlk->pTransmit = &pAd->MacTab.Content[MCAST_WCID].HTPhyMode;
}
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAckRequired); // AckRequired = FALSE, when broadcast packet in Adhoc mode.
//TX_BLK_SET_FLAG(pTxBlk, fTX_bForceLowRate);
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAllowFrag);
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bWMM);
if (RTMP_GET_PACKET_MOREDATA(pPacket))
{
TX_BLK_SET_FLAG(pTxBlk, fTX_bMoreData);
}
}
else
{
pTxBlk->pMacEntry = &pAd->MacTab.Content[pTxBlk->Wcid];
pTxBlk->pTransmit = &pTxBlk->pMacEntry->HTPhyMode;
pMacEntry = pTxBlk->pMacEntry;
// For all unicast packets, need Ack unless the Ack Policy is not set as NORMAL_ACK.
if (pAd->CommonCfg.AckPolicy[pTxBlk->QueIdx] != NORMAL_ACK)
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAckRequired);
else
TX_BLK_SET_FLAG(pTxBlk, fTX_bAckRequired);
{
// If support WMM, enable it.
#ifdef RT2860
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED))
#endif
#ifdef RT2870
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) &&
CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE))
#endif
TX_BLK_SET_FLAG(pTxBlk, fTX_bWMM);
}
if (pTxBlk->TxFrameType == TX_LEGACY_FRAME)
{
if ( (RTMP_GET_PACKET_LOWRATE(pPacket)) ||
((pAd->OpMode == OPMODE_AP) && (pMacEntry->MaxHTPhyMode.field.MODE == MODE_CCK) && (pMacEntry->MaxHTPhyMode.field.MCS == RATE_1)))
{ // Specific packet, i.e., bDHCPFrame, bEAPOLFrame, bWAIFrame, need force low rate.
pTxBlk->pTransmit = &pAd->MacTab.Content[MCAST_WCID].HTPhyMode;
// Modify the WMM bit for ICV issue. If we have a packet with EOSP field need to set as 1, how to handle it???
if (IS_HT_STA(pTxBlk->pMacEntry) &&
(CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_RALINK_CHIPSET)) &&
((pAd->CommonCfg.bRdg == TRUE) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_RDG_CAPABLE)))
{
TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bWMM);
TX_BLK_SET_FLAG(pTxBlk, fTX_bForceNonQoS);
}
}
if ( (IS_HT_RATE(pMacEntry) == FALSE) &&
(CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_PIGGYBACK_CAPABLE)))
{ // Currently piggy-back only support when peer is operate in b/g mode.
TX_BLK_SET_FLAG(pTxBlk, fTX_bPiggyBack);
}
if (RTMP_GET_PACKET_MOREDATA(pPacket))
{
TX_BLK_SET_FLAG(pTxBlk, fTX_bMoreData);
}
#ifdef UAPSD_AP_SUPPORT
if (RTMP_GET_PACKET_EOSP(pPacket))
{
TX_BLK_SET_FLAG(pTxBlk, fTX_bWMM_UAPSD_EOSP);
}
#endif // UAPSD_AP_SUPPORT //
}
else if (pTxBlk->TxFrameType == TX_FRAG_FRAME)
{
TX_BLK_SET_FLAG(pTxBlk, fTX_bAllowFrag);
}
pMacEntry->DebugTxCount++;
}
return TRUE;
#ifdef RT30xx
FillTxBlkErr:
return FALSE;
#endif
}
BOOLEAN CanDoAggregateTransmit(
IN RTMP_ADAPTER *pAd,
IN NDIS_PACKET *pPacket,
IN TX_BLK *pTxBlk)
{
//printk("Check if can do aggregation! TxFrameType=%d!\n", pTxBlk->TxFrameType);
if (RTMP_GET_PACKET_WCID(pPacket) == MCAST_WCID)
return FALSE;
if (RTMP_GET_PACKET_DHCP(pPacket) ||
RTMP_GET_PACKET_EAPOL(pPacket) ||
RTMP_GET_PACKET_WAI(pPacket))
return FALSE;
if ((pTxBlk->TxFrameType == TX_AMSDU_FRAME) &&
((pTxBlk->TotalFrameLen + GET_OS_PKT_LEN(pPacket))> (RX_BUFFER_AGGRESIZE - 100)))
{ // For AMSDU, allow the packets with total length < max-amsdu size
return FALSE;
}
if ((pTxBlk->TxFrameType == TX_RALINK_FRAME) &&
(pTxBlk->TxPacketList.Number == 2))
{ // For RALINK-Aggregation, allow two frames in one batch.
return FALSE;
}
if ((INFRA_ON(pAd)) && (pAd->OpMode == OPMODE_STA)) // must be unicast to AP
return TRUE;
else
return FALSE;
}
/*
========================================================================
Routine Description:
To do the enqueue operation and extract the first item of waiting
list. If a number of available shared memory segments could meet
the request of extracted item, the extracted item will be fragmented
into shared memory segments.
Arguments:
pAd Pointer to our adapter
pQueue Pointer to Waiting Queue
Return Value:
None
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPDeQueuePacket(
IN PRTMP_ADAPTER pAd,
IN BOOLEAN bIntContext,
IN UCHAR QIdx, /* BulkOutPipeId */
IN UCHAR Max_Tx_Packets)
{
PQUEUE_ENTRY pEntry = NULL;
PNDIS_PACKET pPacket;
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
UCHAR Count=0;
PQUEUE_HEADER pQueue;
ULONG FreeNumber[NUM_OF_TX_RING];
UCHAR QueIdx, sQIdx, eQIdx;
unsigned long IrqFlags = 0;
BOOLEAN hasTxDesc = FALSE;
TX_BLK TxBlk;
TX_BLK *pTxBlk;
#ifdef DBG_DIAGNOSE
BOOLEAN firstRound;
RtmpDiagStruct *pDiagStruct = &pAd->DiagStruct;
#endif
if (QIdx == NUM_OF_TX_RING)
{
sQIdx = 0;
//PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
eQIdx = 3; // 4 ACs, start from 0.
}
else
{
sQIdx = eQIdx = QIdx;
}
for (QueIdx=sQIdx; QueIdx <= eQIdx; QueIdx++)
{
Count=0;
RT28XX_START_DEQUEUE(pAd, QueIdx, IrqFlags);
#ifdef DBG_DIAGNOSE
firstRound = ((QueIdx == 0) ? TRUE : FALSE);
#endif // DBG_DIAGNOSE //
while (1)
{
if ((RTMP_TEST_FLAG(pAd, (fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS |
fRTMP_ADAPTER_RADIO_OFF |
fRTMP_ADAPTER_RESET_IN_PROGRESS |
fRTMP_ADAPTER_HALT_IN_PROGRESS |
fRTMP_ADAPTER_NIC_NOT_EXIST))))
{
RT28XX_STOP_DEQUEUE(pAd, QueIdx, IrqFlags);
return;
}
if (Count >= Max_Tx_Packets)
break;
DEQUEUE_LOCK(&pAd->irq_lock, bIntContext, IrqFlags);
if (&pAd->TxSwQueue[QueIdx] == NULL)
{
#ifdef DBG_DIAGNOSE
if (firstRound == TRUE)
pDiagStruct->TxSWQueCnt[pDiagStruct->ArrayCurIdx][0]++;
#endif // DBG_DIAGNOSE //
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
break;
}
#ifdef RT2860
FreeNumber[QueIdx] = GET_TXRING_FREENO(pAd, QueIdx);
#ifdef DBG_DIAGNOSE
if (firstRound == TRUE)
{
UCHAR txDescNumLevel, txSwQNumLevel;
txDescNumLevel = (TX_RING_SIZE - FreeNumber[QueIdx]); // Number of occupied hw desc.
txDescNumLevel = ((txDescNumLevel <=15) ? txDescNumLevel : 15);
pDiagStruct->TxDescCnt[pDiagStruct->ArrayCurIdx][txDescNumLevel]++;
txSwQNumLevel = ((pAd->TxSwQueue[QueIdx].Number <=7) ? pAd->TxSwQueue[QueIdx].Number : 8);
pDiagStruct->TxSWQueCnt[pDiagStruct->ArrayCurIdx][txSwQNumLevel]++;
firstRound = FALSE;
}
#endif // DBG_DIAGNOSE //
if (FreeNumber[QueIdx] <= 5)
{
// free Tx(QueIdx) resources
RTMPFreeTXDUponTxDmaDone(pAd, QueIdx);
FreeNumber[QueIdx] = GET_TXRING_FREENO(pAd, QueIdx);
}
#endif /* RT2860 */
// probe the Queue Head
pQueue = &pAd->TxSwQueue[QueIdx];
if ((pEntry = pQueue->Head) == NULL)
{
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
break;
}
pTxBlk = &TxBlk;
NdisZeroMemory((PUCHAR)pTxBlk, sizeof(TX_BLK));
pTxBlk->QueIdx = QueIdx;
pPacket = QUEUE_ENTRY_TO_PKT(pEntry);
// Early check to make sure we have enoguh Tx Resource.
hasTxDesc = RT28XX_HAS_ENOUGH_FREE_DESC(pAd, pTxBlk, FreeNumber[QueIdx], pPacket);
if (!hasTxDesc)
{
pAd->PrivateInfo.TxRingFullCnt++;
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
break;
}
pTxBlk->TxFrameType = TxPktClassification(pAd, pPacket);
pEntry = RemoveHeadQueue(pQueue);
pTxBlk->TotalFrameNum++;
pTxBlk->TotalFragNum += RTMP_GET_PACKET_FRAGMENTS(pPacket); // The real fragment number maybe vary
pTxBlk->TotalFrameLen += GET_OS_PKT_LEN(pPacket);
pTxBlk->pPacket = pPacket;
InsertTailQueue(&pTxBlk->TxPacketList, PACKET_TO_QUEUE_ENTRY(pPacket));
if (pTxBlk->TxFrameType == TX_RALINK_FRAME || pTxBlk->TxFrameType == TX_AMSDU_FRAME)
{
// Enhance SW Aggregation Mechanism
if (NEED_QUEUE_BACK_FOR_AGG(pAd, QueIdx, FreeNumber[QueIdx], pTxBlk->TxFrameType))
{
InsertHeadQueue(pQueue, PACKET_TO_QUEUE_ENTRY(pPacket));
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
break;
}
do{
if((pEntry = pQueue->Head) == NULL)
break;
// For TX_AMSDU_FRAME/TX_RALINK_FRAME, Need to check if next pakcet can do aggregation.
pPacket = QUEUE_ENTRY_TO_PKT(pEntry);
FreeNumber[QueIdx] = GET_TXRING_FREENO(pAd, QueIdx);
hasTxDesc = RT28XX_HAS_ENOUGH_FREE_DESC(pAd, pTxBlk, FreeNumber[QueIdx], pPacket);
if ((hasTxDesc == FALSE) || (CanDoAggregateTransmit(pAd, pPacket, pTxBlk) == FALSE))
break;
//Remove the packet from the TxSwQueue and insert into pTxBlk
pEntry = RemoveHeadQueue(pQueue);
ASSERT(pEntry);
pPacket = QUEUE_ENTRY_TO_PKT(pEntry);
pTxBlk->TotalFrameNum++;
pTxBlk->TotalFragNum += RTMP_GET_PACKET_FRAGMENTS(pPacket); // The real fragment number maybe vary
pTxBlk->TotalFrameLen += GET_OS_PKT_LEN(pPacket);
InsertTailQueue(&pTxBlk->TxPacketList, PACKET_TO_QUEUE_ENTRY(pPacket));
}while(1);
if (pTxBlk->TxPacketList.Number == 1)
pTxBlk->TxFrameType = TX_LEGACY_FRAME;
}
#ifdef RT2870
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
#endif // RT2870 //
Count += pTxBlk->TxPacketList.Number;
// Do HardTransmit now.
Status = STAHardTransmit(pAd, pTxBlk, QueIdx);
#ifdef RT2860
DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags);
// static rate also need NICUpdateFifoStaCounters() function.
//if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_TX_RATE_SWITCH_ENABLED))
NICUpdateFifoStaCounters(pAd);
#endif
}
RT28XX_STOP_DEQUEUE(pAd, QueIdx, IrqFlags);
#ifdef RT2870
if (!hasTxDesc)
RTUSBKickBulkOut(pAd);
#endif // RT2870 //
}
}
/*
========================================================================
Routine Description:
Calculates the duration which is required to transmit out frames
with given size and specified rate.
Arguments:
pAd Pointer to our adapter
Rate Transmit rate
Size Frame size in units of byte
Return Value:
Duration number in units of usec
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
USHORT RTMPCalcDuration(
IN PRTMP_ADAPTER pAd,
IN UCHAR Rate,
IN ULONG Size)
{
ULONG Duration = 0;
if (Rate < RATE_FIRST_OFDM_RATE) // CCK
{
if ((Rate > RATE_1) && OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED))
Duration = 96; // 72+24 preamble+plcp
else
Duration = 192; // 144+48 preamble+plcp
Duration += (USHORT)((Size << 4) / RateIdTo500Kbps[Rate]);
if ((Size << 4) % RateIdTo500Kbps[Rate])
Duration ++;
}
else if (Rate <= RATE_LAST_OFDM_RATE)// OFDM rates
{
Duration = 20 + 6; // 16+4 preamble+plcp + Signal Extension
Duration += 4 * (USHORT)((11 + Size * 4) / RateIdTo500Kbps[Rate]);
if ((11 + Size * 4) % RateIdTo500Kbps[Rate])
Duration += 4;
}
else //mimo rate
{
Duration = 20 + 6; // 16+4 preamble+plcp + Signal Extension
}
return (USHORT)Duration;
}
/*
========================================================================
Routine Description:
Calculates the duration which is required to transmit out frames
with given size and specified rate.
Arguments:
pTxWI Pointer to head of each MPDU to HW.
Ack Setting for Ack requirement bit
Fragment Setting for Fragment bit
RetryMode Setting for retry mode
Ifs Setting for IFS gap
Rate Setting for transmit rate
Service Setting for service
Length Frame length
TxPreamble Short or Long preamble when using CCK rates
QueIdx - 0-3, according to 802.11e/d4.4 June/2003
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
See also : BASmartHardTransmit() !!!
========================================================================
*/
VOID RTMPWriteTxWI(
IN PRTMP_ADAPTER pAd,
IN PTXWI_STRUC pOutTxWI,
IN BOOLEAN FRAG,
IN BOOLEAN CFACK,
IN BOOLEAN InsTimestamp,
IN BOOLEAN AMPDU,
IN BOOLEAN Ack,
IN BOOLEAN NSeq, // HW new a sequence.
IN UCHAR BASize,
IN UCHAR WCID,
IN ULONG Length,
IN UCHAR PID,
IN UCHAR TID,
IN UCHAR TxRate,
IN UCHAR Txopmode,
IN BOOLEAN CfAck,
IN HTTRANSMIT_SETTING *pTransmit)
{
PMAC_TABLE_ENTRY pMac = NULL;
TXWI_STRUC TxWI;
PTXWI_STRUC pTxWI;
if (WCID < MAX_LEN_OF_MAC_TABLE)
pMac = &pAd->MacTab.Content[WCID];
//
// Always use Long preamble before verifiation short preamble functionality works well.
// Todo: remove the following line if short preamble functionality works
//
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED);
NdisZeroMemory(&TxWI, TXWI_SIZE);
pTxWI = &TxWI;
pTxWI->FRAG= FRAG;
pTxWI->CFACK = CFACK;
pTxWI->TS= InsTimestamp;
pTxWI->AMPDU = AMPDU;
pTxWI->ACK = Ack;
pTxWI->txop= Txopmode;
pTxWI->NSEQ = NSeq;
// John tune the performace with Intel Client in 20 MHz performance
BASize = pAd->CommonCfg.TxBASize;
if( BASize >7 )
BASize =7;
pTxWI->BAWinSize = BASize;
pTxWI->ShortGI = pTransmit->field.ShortGI;
pTxWI->STBC = pTransmit->field.STBC;
pTxWI->WirelessCliID = WCID;
pTxWI->MPDUtotalByteCount = Length;
pTxWI->PacketId = PID;
// If CCK or OFDM, BW must be 20
pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW);
pTxWI->MCS = pTransmit->field.MCS;
pTxWI->PHYMODE = pTransmit->field.MODE;
pTxWI->CFACK = CfAck;
if (pMac)
{
if (pAd->CommonCfg.bMIMOPSEnable)
{
if ((pMac->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7))
{
// Dynamic MIMO Power Save Mode
pTxWI->MIMOps = 1;
}
else if (pMac->MmpsMode == MMPS_STATIC)
{
// Static MIMO Power Save Mode
if (pTransmit->field.MODE >= MODE_HTMIX && pTransmit->field.MCS > 7)
{
pTxWI->MCS = 7;
pTxWI->MIMOps = 0;
}
}
}
//pTxWI->MIMOps = (pMac->PsMode == PWR_MMPS)? 1:0;
if (pMac->bIAmBadAtheros && (pMac->WepStatus != Ndis802_11WEPDisabled))
{
pTxWI->MpduDensity = 7;
}
else
{
pTxWI->MpduDensity = pMac->MpduDensity;
}
}
pTxWI->PacketId = pTxWI->MCS;
NdisMoveMemory(pOutTxWI, &TxWI, sizeof(TXWI_STRUC));
}
VOID RTMPWriteTxWI_Data(
IN PRTMP_ADAPTER pAd,
IN OUT PTXWI_STRUC pTxWI,
IN TX_BLK *pTxBlk)
{
HTTRANSMIT_SETTING *pTransmit;
PMAC_TABLE_ENTRY pMacEntry;
UCHAR BASize;
ASSERT(pTxWI);
pTransmit = pTxBlk->pTransmit;
pMacEntry = pTxBlk->pMacEntry;
//
// Always use Long preamble before verifiation short preamble functionality works well.
// Todo: remove the following line if short preamble functionality works
//
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED);
NdisZeroMemory(pTxWI, TXWI_SIZE);
pTxWI->FRAG = TX_BLK_TEST_FLAG(pTxBlk, fTX_bAllowFrag);
pTxWI->ACK = TX_BLK_TEST_FLAG(pTxBlk, fTX_bAckRequired);
pTxWI->txop = pTxBlk->FrameGap;
pTxWI->WirelessCliID = pTxBlk->Wcid;
pTxWI->MPDUtotalByteCount = pTxBlk->MpduHeaderLen + pTxBlk->SrcBufLen;
pTxWI->CFACK = TX_BLK_TEST_FLAG(pTxBlk, fTX_bPiggyBack);
// If CCK or OFDM, BW must be 20
pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW);
pTxWI->AMPDU = ((pTxBlk->TxFrameType == TX_AMPDU_FRAME) ? TRUE : FALSE);
// John tune the performace with Intel Client in 20 MHz performance
BASize = pAd->CommonCfg.TxBASize;
if((pTxBlk->TxFrameType == TX_AMPDU_FRAME) && (pMacEntry))
{
UCHAR RABAOriIdx = 0; //The RA's BA Originator table index.
RABAOriIdx = pTxBlk->pMacEntry->BAOriWcidArray[pTxBlk->UserPriority];
BASize = pAd->BATable.BAOriEntry[RABAOriIdx].BAWinSize;
}
pTxWI->TxBF = pTransmit->field.TxBF;
pTxWI->BAWinSize = BASize;
pTxWI->ShortGI = pTransmit->field.ShortGI;
pTxWI->STBC = pTransmit->field.STBC;
pTxWI->MCS = pTransmit->field.MCS;
pTxWI->PHYMODE = pTransmit->field.MODE;
if (pMacEntry)
{
if ((pMacEntry->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7))
{
// Dynamic MIMO Power Save Mode
pTxWI->MIMOps = 1;
}
else if (pMacEntry->MmpsMode == MMPS_STATIC)
{
// Static MIMO Power Save Mode
if (pTransmit->field.MODE >= MODE_HTMIX && pTransmit->field.MCS > 7)
{
pTxWI->MCS = 7;
pTxWI->MIMOps = 0;
}
}
if (pMacEntry->bIAmBadAtheros && (pMacEntry->WepStatus != Ndis802_11WEPDisabled))
{
pTxWI->MpduDensity = 7;
}
else
{
pTxWI->MpduDensity = pMacEntry->MpduDensity;
}
}
#ifdef DBG_DIAGNOSE
if (pTxBlk->QueIdx== 0)
{
pAd->DiagStruct.TxDataCnt[pAd->DiagStruct.ArrayCurIdx]++;
pAd->DiagStruct.TxMcsCnt[pAd->DiagStruct.ArrayCurIdx][pTxWI->MCS]++;
}
#endif // DBG_DIAGNOSE //
// for rate adapation
pTxWI->PacketId = pTxWI->MCS;
}
VOID RTMPWriteTxWI_Cache(
IN PRTMP_ADAPTER pAd,
IN OUT PTXWI_STRUC pTxWI,
IN TX_BLK *pTxBlk)
{
PHTTRANSMIT_SETTING pTransmit;
PMAC_TABLE_ENTRY pMacEntry;
//
// update TXWI
//
pMacEntry = pTxBlk->pMacEntry;
pTransmit = pTxBlk->pTransmit;
if (pMacEntry->bAutoTxRateSwitch)
{
pTxWI->txop = IFS_HTTXOP;
// If CCK or OFDM, BW must be 20
pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW);
pTxWI->ShortGI = pTransmit->field.ShortGI;
pTxWI->STBC = pTransmit->field.STBC;
pTxWI->MCS = pTransmit->field.MCS;
pTxWI->PHYMODE = pTransmit->field.MODE;
// set PID for TxRateSwitching
pTxWI->PacketId = pTransmit->field.MCS;
}
pTxWI->AMPDU = ((pMacEntry->NoBADataCountDown == 0) ? TRUE: FALSE);
pTxWI->MIMOps = 0;
if (pAd->CommonCfg.bMIMOPSEnable)
{
// MIMO Power Save Mode
if ((pMacEntry->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7))
{
// Dynamic MIMO Power Save Mode
pTxWI->MIMOps = 1;
}
else if (pMacEntry->MmpsMode == MMPS_STATIC)
{
// Static MIMO Power Save Mode
if ((pTransmit->field.MODE >= MODE_HTMIX) && (pTransmit->field.MCS > 7))
{
pTxWI->MCS = 7;
pTxWI->MIMOps = 0;
}
}
}
#ifdef DBG_DIAGNOSE
if (pTxBlk->QueIdx== 0)
{
pAd->DiagStruct.TxDataCnt[pAd->DiagStruct.ArrayCurIdx]++;
pAd->DiagStruct.TxMcsCnt[pAd->DiagStruct.ArrayCurIdx][pTxWI->MCS]++;
}
#endif // DBG_DIAGNOSE //
pTxWI->MPDUtotalByteCount = pTxBlk->MpduHeaderLen + pTxBlk->SrcBufLen;
}
/*
========================================================================
Routine Description:
Calculates the duration which is required to transmit out frames
with given size and specified rate.
Arguments:
pTxD Pointer to transmit descriptor
Ack Setting for Ack requirement bit
Fragment Setting for Fragment bit
RetryMode Setting for retry mode
Ifs Setting for IFS gap
Rate Setting for transmit rate
Service Setting for service
Length Frame length
TxPreamble Short or Long preamble when using CCK rates
QueIdx - 0-3, according to 802.11e/d4.4 June/2003
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
========================================================================
*/
VOID RTMPWriteTxDescriptor(
IN PRTMP_ADAPTER pAd,
IN PTXD_STRUC pTxD,
IN BOOLEAN bWIV,
IN UCHAR QueueSEL)
{
//
// Always use Long preamble before verifiation short preamble functionality works well.
// Todo: remove the following line if short preamble functionality works
//
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED);
pTxD->WIV = (bWIV) ? 1: 0;
pTxD->QSEL= (QueueSEL);
if (pAd->bGenOneHCCA == TRUE)
pTxD->QSEL= FIFO_HCCA;
pTxD->DMADONE = 0;
}
// should be called only when -
// 1. MEADIA_CONNECTED
// 2. AGGREGATION_IN_USED
// 3. Fragmentation not in used
// 4. either no previous frame (pPrevAddr1=NULL) .OR. previoud frame is aggregatible
BOOLEAN TxFrameIsAggregatible(
IN PRTMP_ADAPTER pAd,
IN PUCHAR pPrevAddr1,
IN PUCHAR p8023hdr)
{
// can't aggregate EAPOL (802.1x) frame
if ((p8023hdr[12] == 0x88) && (p8023hdr[13] == 0x8e))
return FALSE;
// can't aggregate multicast/broadcast frame
if (p8023hdr[0] & 0x01)
return FALSE;
if (INFRA_ON(pAd)) // must be unicast to AP
return TRUE;
else if ((pPrevAddr1 == NULL) || MAC_ADDR_EQUAL(pPrevAddr1, p8023hdr)) // unicast to same STA
return TRUE;
else
return FALSE;
}
/*
========================================================================
Routine Description:
Check the MSDU Aggregation policy
1.HT aggregation is A-MSDU
2.legaacy rate aggregation is software aggregation by Ralink.
Arguments:
Return Value:
Note:
========================================================================
*/
BOOLEAN PeerIsAggreOn(
IN PRTMP_ADAPTER pAd,
IN ULONG TxRate,
IN PMAC_TABLE_ENTRY pMacEntry)
{
ULONG AFlags = (fCLIENT_STATUS_AMSDU_INUSED | fCLIENT_STATUS_AGGREGATION_CAPABLE);
if (pMacEntry != NULL && CLIENT_STATUS_TEST_FLAG(pMacEntry, AFlags))
{
if (pMacEntry->HTPhyMode.field.MODE >= MODE_HTMIX)
{
return TRUE;
}
#ifdef AGGREGATION_SUPPORT
if (TxRate >= RATE_6 && pAd->CommonCfg.bAggregationCapable && (!(OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE))))
{ // legacy Ralink Aggregation support
return TRUE;
}
#endif // AGGREGATION_SUPPORT //
}
return FALSE;
}
/*
========================================================================
Routine Description:
Check and fine the packet waiting in SW queue with highest priority
Arguments:
pAd Pointer to our adapter
Return Value:
pQueue Pointer to Waiting Queue
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
PQUEUE_HEADER RTMPCheckTxSwQueue(
IN PRTMP_ADAPTER pAd,
OUT PUCHAR pQueIdx)
{
ULONG Number;
Number = pAd->TxSwQueue[QID_AC_BK].Number
+ pAd->TxSwQueue[QID_AC_BE].Number
+ pAd->TxSwQueue[QID_AC_VI].Number
+ pAd->TxSwQueue[QID_AC_VO].Number
+ pAd->TxSwQueue[QID_HCCA].Number;
if (pAd->TxSwQueue[QID_AC_VO].Head != NULL)
{
*pQueIdx = QID_AC_VO;
return (&pAd->TxSwQueue[QID_AC_VO]);
}
else if (pAd->TxSwQueue[QID_AC_VI].Head != NULL)
{
*pQueIdx = QID_AC_VI;
return (&pAd->TxSwQueue[QID_AC_VI]);
}
else if (pAd->TxSwQueue[QID_AC_BE].Head != NULL)
{
*pQueIdx = QID_AC_BE;
return (&pAd->TxSwQueue[QID_AC_BE]);
}
else if (pAd->TxSwQueue[QID_AC_BK].Head != NULL)
{
*pQueIdx = QID_AC_BK;
return (&pAd->TxSwQueue[QID_AC_BK]);
}
else if (pAd->TxSwQueue[QID_HCCA].Head != NULL)
{
*pQueIdx = QID_HCCA;
return (&pAd->TxSwQueue[QID_HCCA]);
}
// No packet pending in Tx Sw queue
*pQueIdx = QID_AC_BK;
return (NULL);
}
#ifdef RT2860
BOOLEAN RTMPFreeTXDUponTxDmaDone(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx)
{
PRTMP_TX_RING pTxRing;
PTXD_STRUC pTxD;
PNDIS_PACKET pPacket;
UCHAR FREE = 0;
TXD_STRUC TxD, *pOriTxD;
//ULONG IrqFlags;
BOOLEAN bReschedule = FALSE;
ASSERT(QueIdx < NUM_OF_TX_RING);
pTxRing = &pAd->TxRing[QueIdx];
RTMP_IO_READ32(pAd, TX_DTX_IDX0 + QueIdx * RINGREG_DIFF, &pTxRing->TxDmaIdx);
while (pTxRing->TxSwFreeIdx != pTxRing->TxDmaIdx)
{
// static rate also need NICUpdateFifoStaCounters() function.
//if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_TX_RATE_SWITCH_ENABLED))
NICUpdateFifoStaCounters(pAd);
/* Note : If (pAd->ate.bQATxStart == TRUE), we will never reach here. */
FREE++;
pTxD = (PTXD_STRUC) (pTxRing->Cell[pTxRing->TxSwFreeIdx].AllocVa);
pOriTxD = pTxD;
NdisMoveMemory(&TxD, pTxD, sizeof(TXD_STRUC));
pTxD = &TxD;
pTxD->DMADONE = 0;
/*====================================================================*/
{
pPacket = pTxRing->Cell[pTxRing->TxSwFreeIdx].pNdisPacket;
if (pPacket)
{
#ifdef CONFIG_5VT_ENHANCE
if (RTMP_GET_PACKET_5VT(pPacket))
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr1, 16, PCI_DMA_TODEVICE);
else
#endif // CONFIG_5VT_ENHANCE //
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr1, pTxD->SDLen1, PCI_DMA_TODEVICE);
RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS);
}
//Always assign pNdisPacket as NULL after clear
pTxRing->Cell[pTxRing->TxSwFreeIdx].pNdisPacket = NULL;
pPacket = pTxRing->Cell[pTxRing->TxSwFreeIdx].pNextNdisPacket;
ASSERT(pPacket == NULL);
if (pPacket)
{
#ifdef CONFIG_5VT_ENHANCE
if (RTMP_GET_PACKET_5VT(pPacket))
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr1, 16, PCI_DMA_TODEVICE);
else
#endif // CONFIG_5VT_ENHANCE //
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr1, pTxD->SDLen1, PCI_DMA_TODEVICE);
RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS);
}
//Always assign pNextNdisPacket as NULL after clear
pTxRing->Cell[pTxRing->TxSwFreeIdx].pNextNdisPacket = NULL;
}
/*====================================================================*/
pAd->RalinkCounters.TransmittedByteCount += (pTxD->SDLen1 + pTxD->SDLen0);
pAd->RalinkCounters.OneSecDmaDoneCount[QueIdx] ++;
INC_RING_INDEX(pTxRing->TxSwFreeIdx, TX_RING_SIZE);
/* get tx_tdx_idx again */
RTMP_IO_READ32(pAd, TX_DTX_IDX0 + QueIdx * RINGREG_DIFF , &pTxRing->TxDmaIdx);
NdisMoveMemory(pOriTxD, pTxD, sizeof(TXD_STRUC));
}
return bReschedule;
}
/*
========================================================================
Routine Description:
Process TX Rings DMA Done interrupt, running in DPC level
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = DISPATCH_LEVEL
========================================================================
*/
BOOLEAN RTMPHandleTxRingDmaDoneInterrupt(
IN PRTMP_ADAPTER pAd,
IN INT_SOURCE_CSR_STRUC TxRingBitmap)
{
unsigned long IrqFlags;
BOOLEAN bReschedule = FALSE;
// Make sure Tx ring resource won't be used by other threads
RTMP_IRQ_LOCK(&pAd->irq_lock, IrqFlags);
if (TxRingBitmap.field.Ac0DmaDone)
bReschedule = RTMPFreeTXDUponTxDmaDone(pAd, QID_AC_BE);
if (TxRingBitmap.field.HccaDmaDone)
bReschedule |= RTMPFreeTXDUponTxDmaDone(pAd, QID_HCCA);
if (TxRingBitmap.field.Ac3DmaDone)
bReschedule |= RTMPFreeTXDUponTxDmaDone(pAd, QID_AC_VO);
if (TxRingBitmap.field.Ac2DmaDone)
bReschedule |= RTMPFreeTXDUponTxDmaDone(pAd, QID_AC_VI);
if (TxRingBitmap.field.Ac1DmaDone)
bReschedule |= RTMPFreeTXDUponTxDmaDone(pAd, QID_AC_BK);
// Make sure to release Tx ring resource
RTMP_IRQ_UNLOCK(&pAd->irq_lock, IrqFlags);
// Dequeue outgoing frames from TxSwQueue[] and process it
RTMPDeQueuePacket(pAd, FALSE, NUM_OF_TX_RING, MAX_TX_PROCESS);
return bReschedule;
}
/*
========================================================================
Routine Description:
Process MGMT ring DMA done interrupt, running in DPC level
Arguments:
pAd Pointer to our adapter
Return Value:
None
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPHandleMgmtRingDmaDoneInterrupt(
IN PRTMP_ADAPTER pAd)
{
PTXD_STRUC pTxD;
PNDIS_PACKET pPacket;
UCHAR FREE = 0;
PRTMP_MGMT_RING pMgmtRing = &pAd->MgmtRing;
NdisAcquireSpinLock(&pAd->MgmtRingLock);
RTMP_IO_READ32(pAd, TX_MGMTDTX_IDX, &pMgmtRing->TxDmaIdx);
while (pMgmtRing->TxSwFreeIdx!= pMgmtRing->TxDmaIdx)
{
FREE++;
pTxD = (PTXD_STRUC) (pMgmtRing->Cell[pAd->MgmtRing.TxSwFreeIdx].AllocVa);
pTxD->DMADONE = 0;
pPacket = pMgmtRing->Cell[pMgmtRing->TxSwFreeIdx].pNdisPacket;
if (pPacket)
{
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr0, pTxD->SDLen0, PCI_DMA_TODEVICE);
RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS);
}
pMgmtRing->Cell[pMgmtRing->TxSwFreeIdx].pNdisPacket = NULL;
pPacket = pMgmtRing->Cell[pMgmtRing->TxSwFreeIdx].pNextNdisPacket;
if (pPacket)
{
PCI_UNMAP_SINGLE(pAd, pTxD->SDPtr1, pTxD->SDLen1, PCI_DMA_TODEVICE);
RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS);
}
pMgmtRing->Cell[pMgmtRing->TxSwFreeIdx].pNextNdisPacket = NULL;
INC_RING_INDEX(pMgmtRing->TxSwFreeIdx, MGMT_RING_SIZE);
}
NdisReleaseSpinLock(&pAd->MgmtRingLock);
}
/*
========================================================================
Routine Description:
Arguments:
Adapter Pointer to our adapter. Dequeue all power safe delayed braodcast frames after beacon.
IRQL = DISPATCH_LEVEL
========================================================================
*/
VOID RTMPHandleTBTTInterrupt(
IN PRTMP_ADAPTER pAd)
{
{
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE))
{
}
}
}
/*
========================================================================
Routine Description:
Arguments:
Adapter Pointer to our adapter. Rewrite beacon content before next send-out.
IRQL = DISPATCH_LEVEL
========================================================================
*/
VOID RTMPHandlePreTBTTInterrupt(
IN PRTMP_ADAPTER pAd)
{
{
if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE))
{
DBGPRINT(RT_DEBUG_TRACE, ("RTMPHandlePreTBTTInterrupt...\n"));
}
}
}
VOID RTMPHandleRxCoherentInterrupt(
IN PRTMP_ADAPTER pAd)
{
WPDMA_GLO_CFG_STRUC GloCfg;
if (pAd == NULL)
{
DBGPRINT(RT_DEBUG_TRACE, ("====> pAd is NULL, return.\n"));
return;
}
DBGPRINT(RT_DEBUG_TRACE, ("==> RTMPHandleRxCoherentInterrupt \n"));
RTMP_IO_READ32(pAd, WPDMA_GLO_CFG , &GloCfg.word);
GloCfg.field.EnTXWriteBackDDONE = 0;
GloCfg.field.EnableRxDMA = 0;
GloCfg.field.EnableTxDMA = 0;
RTMP_IO_WRITE32(pAd, WPDMA_GLO_CFG, GloCfg.word);
RTMPRingCleanUp(pAd, QID_AC_BE);
RTMPRingCleanUp(pAd, QID_AC_BK);
RTMPRingCleanUp(pAd, QID_AC_VI);
RTMPRingCleanUp(pAd, QID_AC_VO);
RTMPRingCleanUp(pAd, QID_HCCA);
RTMPRingCleanUp(pAd, QID_MGMT);
RTMPRingCleanUp(pAd, QID_RX);
RTMPEnableRxTx(pAd);
DBGPRINT(RT_DEBUG_TRACE, ("<== RTMPHandleRxCoherentInterrupt \n"));
}
VOID DBGPRINT_TX_RING(
IN PRTMP_ADAPTER pAd,
IN UCHAR QueIdx)
{
UINT32 Ac0Base;
UINT32 Ac0HwIdx = 0, Ac0SwIdx = 0, AC0freeIdx;
int i;
PULONG ptemp;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("=====================================================\n " ));
switch (QueIdx)
{
case QID_AC_BE:
RTMP_IO_READ32(pAd, TX_BASE_PTR0, &Ac0Base);
RTMP_IO_READ32(pAd, TX_CTX_IDX0, &Ac0SwIdx);
RTMP_IO_READ32(pAd, TX_DTX_IDX0, &Ac0HwIdx);
DBGPRINT_RAW(RT_DEBUG_TRACE, ("All QID_AC_BE DESCRIPTOR \n " ));
for (i=0;i<TX_RING_SIZE;i++)
{
ptemp= (PULONG)pAd->TxRing[QID_AC_BE].Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08lx: %08lx: %08lx: %08lx\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT_RAW(RT_DEBUG_TRACE, (" \n " ));
break;
case QID_AC_BK:
RTMP_IO_READ32(pAd, TX_BASE_PTR1, &Ac0Base);
RTMP_IO_READ32(pAd, TX_CTX_IDX1, &Ac0SwIdx);
RTMP_IO_READ32(pAd, TX_DTX_IDX1, &Ac0HwIdx);
DBGPRINT_RAW(RT_DEBUG_TRACE, ("All QID_AC_BK DESCRIPTOR \n " ));
for (i=0;i<TX_RING_SIZE;i++)
{
ptemp= (PULONG)pAd->TxRing[QID_AC_BK].Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08lx: %08lx: %08lx: %08lx\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT_RAW(RT_DEBUG_TRACE, (" \n " ));
break;
case QID_AC_VI:
RTMP_IO_READ32(pAd, TX_BASE_PTR2, &Ac0Base);
RTMP_IO_READ32(pAd, TX_CTX_IDX2, &Ac0SwIdx);
RTMP_IO_READ32(pAd, TX_DTX_IDX2, &Ac0HwIdx);
DBGPRINT_RAW(RT_DEBUG_TRACE, ("All QID_AC_VI DESCRIPTOR \n " ));
for (i=0;i<TX_RING_SIZE;i++)
{
ptemp= (PULONG)pAd->TxRing[QID_AC_VI].Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08lx: %08lx: %08lx: %08lx\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT_RAW(RT_DEBUG_TRACE, (" \n " ));
break;
case QID_AC_VO:
RTMP_IO_READ32(pAd, TX_BASE_PTR3, &Ac0Base);
RTMP_IO_READ32(pAd, TX_CTX_IDX3, &Ac0SwIdx);
RTMP_IO_READ32(pAd, TX_DTX_IDX3, &Ac0HwIdx);
DBGPRINT_RAW(RT_DEBUG_TRACE, ("All QID_AC_VO DESCRIPTOR \n " ));
for (i=0;i<TX_RING_SIZE;i++)
{
ptemp= (PULONG)pAd->TxRing[QID_AC_VO].Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08lx: %08lx: %08lx: %08lx\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT_RAW(RT_DEBUG_TRACE, (" \n " ));
break;
case QID_MGMT:
RTMP_IO_READ32(pAd, TX_BASE_PTR5, &Ac0Base);
RTMP_IO_READ32(pAd, TX_CTX_IDX5, &Ac0SwIdx);
RTMP_IO_READ32(pAd, TX_DTX_IDX5, &Ac0HwIdx);
DBGPRINT_RAW(RT_DEBUG_TRACE, (" All QID_MGMT DESCRIPTOR \n " ));
for (i=0;i<MGMT_RING_SIZE;i++)
{
ptemp= (PULONG)pAd->MgmtRing.Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08lx: %08lx: %08lx: %08lx\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT_RAW(RT_DEBUG_TRACE, (" \n " ));
break;
default:
DBGPRINT_ERR(("DBGPRINT_TX_RING(Ring %d) not supported\n", QueIdx));
break;
}
AC0freeIdx = pAd->TxRing[QueIdx].TxSwFreeIdx;
DBGPRINT(RT_DEBUG_TRACE,("TxRing%d, TX_DTX_IDX=%d, TX_CTX_IDX=%d\n", QueIdx, Ac0HwIdx, Ac0SwIdx));
DBGPRINT_RAW(RT_DEBUG_TRACE,(" TxSwFreeIdx[%d]", AC0freeIdx));
DBGPRINT_RAW(RT_DEBUG_TRACE,(" pending-NDIS=%ld\n", pAd->RalinkCounters.PendingNdisPacketCount));
}
VOID DBGPRINT_RX_RING(
IN PRTMP_ADAPTER pAd)
{
UINT32 Ac0Base;
UINT32 Ac0HwIdx = 0, Ac0SwIdx = 0, AC0freeIdx;
int i;
UINT32 *ptemp;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("=====================================================\n " ));
RTMP_IO_READ32(pAd, RX_BASE_PTR, &Ac0Base);
RTMP_IO_READ32(pAd, RX_CRX_IDX, &Ac0SwIdx);
RTMP_IO_READ32(pAd, RX_DRX_IDX, &Ac0HwIdx);
AC0freeIdx = pAd->RxRing.RxSwReadIdx;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("All RX DSP \n " ));
for (i=0;i<RX_RING_SIZE;i++)
{
ptemp = (UINT32 *)pAd->RxRing.Cell[i].AllocVa;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("[%02d] %08x: %08x: %08x: %08x\n " , i, *ptemp,*(ptemp+1),*(ptemp+2),*(ptemp+3)));
}
DBGPRINT(RT_DEBUG_TRACE,("RxRing, RX_DRX_IDX=%d, RX_CRX_IDX=%d \n", Ac0HwIdx, Ac0SwIdx));
DBGPRINT_RAW(RT_DEBUG_TRACE,(" RxSwReadIdx [%d]=", AC0freeIdx));
DBGPRINT_RAW(RT_DEBUG_TRACE,(" pending-NDIS=%ld\n", pAd->RalinkCounters.PendingNdisPacketCount));
}
#endif /* RT2860 */
/*
========================================================================
Routine Description:
Suspend MSDU transmission
Arguments:
pAd Pointer to our adapter
Return Value:
None
Note:
========================================================================
*/
VOID RTMPSuspendMsduTransmission(
IN PRTMP_ADAPTER pAd)
{
DBGPRINT(RT_DEBUG_TRACE,("SCANNING, suspend MSDU transmission ...\n"));
//
// Before BSS_SCAN_IN_PROGRESS, we need to keep Current R66 value and
// use Lowbound as R66 value on ScanNextChannel(...)
//
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R66, &pAd->BbpTuning.R66CurrentValue);
// set BBP_R66 to 0x30/0x40 when scanning (AsicSwitchChannel will set R66 according to channel when scanning)
RTMPSetAGCInitValue(pAd, BW_20);
RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS);
}
/*
========================================================================
Routine Description:
Resume MSDU transmission
Arguments:
pAd Pointer to our adapter
Return Value:
None
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPResumeMsduTransmission(
IN PRTMP_ADAPTER pAd)
{
DBGPRINT(RT_DEBUG_TRACE,("SCAN done, resume MSDU transmission ...\n"));
#ifdef RT30xx
// After finish BSS_SCAN_IN_PROGRESS, we need to restore Current R66 value
// R66 should not be 0
if (pAd->BbpTuning.R66CurrentValue == 0)
{
pAd->BbpTuning.R66CurrentValue = 0x38;
DBGPRINT_ERR(("RTMPResumeMsduTransmission, R66CurrentValue=0...\n"));
}
#endif
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, pAd->BbpTuning.R66CurrentValue);
RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS);
RTMPDeQueuePacket(pAd, FALSE, NUM_OF_TX_RING, MAX_TX_PROCESS);
}
UINT deaggregate_AMSDU_announce(
IN PRTMP_ADAPTER pAd,
PNDIS_PACKET pPacket,
IN PUCHAR pData,
IN ULONG DataSize)
{
USHORT PayloadSize;
USHORT SubFrameSize;
PHEADER_802_3 pAMSDUsubheader;
UINT nMSDU;
UCHAR Header802_3[14];
PUCHAR pPayload, pDA, pSA, pRemovedLLCSNAP;
PNDIS_PACKET pClonePacket;
nMSDU = 0;
while (DataSize > LENGTH_802_3)
{
nMSDU++;
pAMSDUsubheader = (PHEADER_802_3)pData;
PayloadSize = pAMSDUsubheader->Octet[1] + (pAMSDUsubheader->Octet[0]<<8);
SubFrameSize = PayloadSize + LENGTH_802_3;
if ((DataSize < SubFrameSize) || (PayloadSize > 1518 ))
{
break;
}
pPayload = pData + LENGTH_802_3;
pDA = pData;
pSA = pData + MAC_ADDR_LEN;
// convert to 802.3 header
CONVERT_TO_802_3(Header802_3, pDA, pSA, pPayload, PayloadSize, pRemovedLLCSNAP);
if ((Header802_3[12] == 0x88) && (Header802_3[13] == 0x8E) )
{
// avoid local heap overflow, use dyanamic allocation
MLME_QUEUE_ELEM *Elem = (MLME_QUEUE_ELEM *) kmalloc(sizeof(MLME_QUEUE_ELEM), MEM_ALLOC_FLAG);
memmove(Elem->Msg+(LENGTH_802_11 + LENGTH_802_1_H), pPayload, PayloadSize);
Elem->MsgLen = LENGTH_802_11 + LENGTH_802_1_H + PayloadSize;
WpaEAPOLKeyAction(pAd, Elem);
kfree(Elem);
}
{
if (pRemovedLLCSNAP)
{
pPayload -= LENGTH_802_3;
PayloadSize += LENGTH_802_3;
NdisMoveMemory(pPayload, &Header802_3[0], LENGTH_802_3);
}
}
pClonePacket = ClonePacket(pAd, pPacket, pPayload, PayloadSize);
if (pClonePacket)
{
ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pClonePacket, RTMP_GET_PACKET_IF(pPacket));
}
// A-MSDU has padding to multiple of 4 including subframe header.
// align SubFrameSize up to multiple of 4
SubFrameSize = (SubFrameSize+3)&(~0x3);
if (SubFrameSize > 1528 || SubFrameSize < 32)
{
break;
}
if (DataSize > SubFrameSize)
{
pData += SubFrameSize;
DataSize -= SubFrameSize;
}
else
{
// end of A-MSDU
DataSize = 0;
}
}
// finally release original rx packet
RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS);
return nMSDU;
}
UINT BA_Reorder_AMSDU_Annnounce(
IN PRTMP_ADAPTER pAd,
IN PNDIS_PACKET pPacket)
{
PUCHAR pData;
USHORT DataSize;
UINT nMSDU = 0;
pData = (PUCHAR) GET_OS_PKT_DATAPTR(pPacket);
DataSize = (USHORT) GET_OS_PKT_LEN(pPacket);
nMSDU = deaggregate_AMSDU_announce(pAd, pPacket, pData, DataSize);
return nMSDU;
}
/*
==========================================================================
Description:
Look up the MAC address in the MAC table. Return NULL if not found.
Return:
pEntry - pointer to the MAC entry; NULL is not found
==========================================================================
*/
MAC_TABLE_ENTRY *MacTableLookup(
IN PRTMP_ADAPTER pAd,
PUCHAR pAddr)
{
ULONG HashIdx;
MAC_TABLE_ENTRY *pEntry = NULL;
HashIdx = MAC_ADDR_HASH_INDEX(pAddr);
pEntry = pAd->MacTab.Hash[HashIdx];
while (pEntry && (pEntry->ValidAsCLI || pEntry->ValidAsWDS || pEntry->ValidAsApCli || pEntry->ValidAsMesh))
{
if (MAC_ADDR_EQUAL(pEntry->Addr, pAddr))
{
break;
}
else
pEntry = pEntry->pNext;
}
return pEntry;
}
MAC_TABLE_ENTRY *MacTableInsertEntry(
IN PRTMP_ADAPTER pAd,
IN PUCHAR pAddr,
IN UCHAR apidx,
IN BOOLEAN CleanAll)
{
UCHAR HashIdx;
int i, FirstWcid;
MAC_TABLE_ENTRY *pEntry = NULL, *pCurrEntry;
// if FULL, return
if (pAd->MacTab.Size >= MAX_LEN_OF_MAC_TABLE)
return NULL;
FirstWcid = 1;
if (pAd->StaCfg.BssType == BSS_INFRA)
FirstWcid = 2;
// allocate one MAC entry
NdisAcquireSpinLock(&pAd->MacTabLock);
for (i = FirstWcid; i< MAX_LEN_OF_MAC_TABLE; i++) // skip entry#0 so that "entry index == AID" for fast lookup
{
// pick up the first available vacancy
if ((pAd->MacTab.Content[i].ValidAsCLI == FALSE) &&
(pAd->MacTab.Content[i].ValidAsWDS == FALSE) &&
(pAd->MacTab.Content[i].ValidAsApCli== FALSE) &&
(pAd->MacTab.Content[i].ValidAsMesh == FALSE)
)
{
pEntry = &pAd->MacTab.Content[i];
if (CleanAll == TRUE)
{
pEntry->MaxSupportedRate = RATE_11;
pEntry->CurrTxRate = RATE_11;
NdisZeroMemory(pEntry, sizeof(MAC_TABLE_ENTRY));
pEntry->PairwiseKey.KeyLen = 0;
pEntry->PairwiseKey.CipherAlg = CIPHER_NONE;
}
{
{
pEntry->ValidAsCLI = TRUE;
pEntry->ValidAsWDS = FALSE;
pEntry->ValidAsApCli = FALSE;
pEntry->ValidAsMesh = FALSE;
pEntry->ValidAsDls = FALSE;
}
}
pEntry->bIAmBadAtheros = FALSE;
pEntry->pAd = pAd;
pEntry->CMTimerRunning = FALSE;
pEntry->EnqueueEapolStartTimerRunning = EAPOL_START_DISABLE;
pEntry->RSNIE_Len = 0;
NdisZeroMemory(pEntry->R_Counter, sizeof(pEntry->R_Counter));
pEntry->ReTryCounter = PEER_MSG1_RETRY_TIMER_CTR;
if (pEntry->ValidAsMesh)
pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_MESH);
else if (pEntry->ValidAsApCli)
pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_APCLI);
else if (pEntry->ValidAsWDS)
pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_WDS);
else
pEntry->apidx = apidx;
{
{
pEntry->AuthMode = pAd->StaCfg.AuthMode;
pEntry->WepStatus = pAd->StaCfg.WepStatus;
pEntry->PrivacyFilter = Ndis802_11PrivFilterAcceptAll;
#ifdef RT2860
AsicRemovePairwiseKeyEntry(pAd, pEntry->apidx, (UCHAR)i);
#endif
}
}
pEntry->GTKState = REKEY_NEGOTIATING;
pEntry->PairwiseKey.KeyLen = 0;
pEntry->PairwiseKey.CipherAlg = CIPHER_NONE;
#ifdef RT2860
if ((pAd->OpMode == OPMODE_STA) &&
(pAd->StaCfg.BssType == BSS_ADHOC))
pEntry->PortSecured = WPA_802_1X_PORT_SECURED;
else
#endif
pEntry->PortSecured = WPA_802_1X_PORT_NOT_SECURED;
pEntry->PMKID_CacheIdx = ENTRY_NOT_FOUND;
COPY_MAC_ADDR(pEntry->Addr, pAddr);
pEntry->Sst = SST_NOT_AUTH;
pEntry->AuthState = AS_NOT_AUTH;
pEntry->Aid = (USHORT)i; //0;
pEntry->CapabilityInfo = 0;
pEntry->PsMode = PWR_ACTIVE;
pEntry->PsQIdleCount = 0;
pEntry->NoDataIdleCount = 0;
pEntry->ContinueTxFailCnt = 0;
InitializeQueueHeader(&pEntry->PsQueue);
pAd->MacTab.Size ++;
// Add this entry into ASIC RX WCID search table
RT28XX_STA_ENTRY_ADD(pAd, pEntry);
DBGPRINT(RT_DEBUG_TRACE, ("MacTableInsertEntry - allocate entry #%d, Total= %d\n",i, pAd->MacTab.Size));
break;
}
}
// add this MAC entry into HASH table
if (pEntry)
{
HashIdx = MAC_ADDR_HASH_INDEX(pAddr);
if (pAd->MacTab.Hash[HashIdx] == NULL)
{
pAd->MacTab.Hash[HashIdx] = pEntry;
}
else
{
pCurrEntry = pAd->MacTab.Hash[HashIdx];
while (pCurrEntry->pNext != NULL)
pCurrEntry = pCurrEntry->pNext;
pCurrEntry->pNext = pEntry;
}
}
NdisReleaseSpinLock(&pAd->MacTabLock);
return pEntry;
}
/*
==========================================================================
Description:
Delete a specified client from MAC table
==========================================================================
*/
BOOLEAN MacTableDeleteEntry(
IN PRTMP_ADAPTER pAd,
IN USHORT wcid,
IN PUCHAR pAddr)
{
USHORT HashIdx;
MAC_TABLE_ENTRY *pEntry, *pPrevEntry, *pProbeEntry;
BOOLEAN Cancelled;
if (wcid >= MAX_LEN_OF_MAC_TABLE)
return FALSE;
NdisAcquireSpinLock(&pAd->MacTabLock);
HashIdx = MAC_ADDR_HASH_INDEX(pAddr);
pEntry = &pAd->MacTab.Content[wcid];
if (pEntry && (pEntry->ValidAsCLI || pEntry->ValidAsApCli || pEntry->ValidAsWDS || pEntry->ValidAsMesh
))
{
if (MAC_ADDR_EQUAL(pEntry->Addr, pAddr))
{
// Delete this entry from ASIC on-chip WCID Table
RT28XX_STA_ENTRY_MAC_RESET(pAd, wcid);
// free resources of BA
BASessionTearDownALL(pAd, pEntry->Aid);
pPrevEntry = NULL;
pProbeEntry = pAd->MacTab.Hash[HashIdx];
ASSERT(pProbeEntry);
// update Hash list
do
{
if (pProbeEntry == pEntry)
{
if (pPrevEntry == NULL)
{
pAd->MacTab.Hash[HashIdx] = pEntry->pNext;
}
else
{
pPrevEntry->pNext = pEntry->pNext;
}
break;
}
pPrevEntry = pProbeEntry;
pProbeEntry = pProbeEntry->pNext;
} while (pProbeEntry);
// not found !!!
ASSERT(pProbeEntry != NULL);
RT28XX_STA_ENTRY_KEY_DEL(pAd, BSS0, wcid);
if (pEntry->EnqueueEapolStartTimerRunning != EAPOL_START_DISABLE)
{
RTMPCancelTimer(&pEntry->EnqueueStartForPSKTimer, &Cancelled);
pEntry->EnqueueEapolStartTimerRunning = EAPOL_START_DISABLE;
}
NdisZeroMemory(pEntry, sizeof(MAC_TABLE_ENTRY));
pAd->MacTab.Size --;
DBGPRINT(RT_DEBUG_TRACE, ("MacTableDeleteEntry1 - Total= %d\n", pAd->MacTab.Size));
}
else
{
printk("\n%s: Impossible Wcid = %d !!!!!\n", __func__, wcid);
}
}
NdisReleaseSpinLock(&pAd->MacTabLock);
//Reset operating mode when no Sta.
if (pAd->MacTab.Size == 0)
{
pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode = 0;
#ifndef RT30xx
AsicUpdateProtect(pAd, 0 /*pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode*/, (ALLN_SETPROTECT), TRUE, 0 /*pAd->MacTab.fAnyStationNonGF*/);
#endif
#ifdef RT30xx
RT28XX_UPDATE_PROTECT(pAd); // edit by johnli, fix "in_interrupt" error when call "MacTableDeleteEntry" in Rx tasklet
#endif
}
return TRUE;
}
/*
==========================================================================
Description:
This routine reset the entire MAC table. All packets pending in
the power-saving queues are freed here.
==========================================================================
*/
VOID MacTableReset(
IN PRTMP_ADAPTER pAd)
{
int i;
DBGPRINT(RT_DEBUG_TRACE, ("MacTableReset\n"));
//NdisAcquireSpinLock(&pAd->MacTabLock);
for (i=1; i<MAX_LEN_OF_MAC_TABLE; i++)
{
#ifdef RT2860
RT28XX_STA_ENTRY_MAC_RESET(pAd, i);
#endif
if (pAd->MacTab.Content[i].ValidAsCLI == TRUE)
{
// free resources of BA
BASessionTearDownALL(pAd, i);
pAd->MacTab.Content[i].ValidAsCLI = FALSE;
#ifdef RT2870
NdisZeroMemory(pAd->MacTab.Content[i].Addr, 6);
RT28XX_STA_ENTRY_MAC_RESET(pAd, i);
#endif // RT2870 //
//AsicDelWcidTab(pAd, i);
}
}
return;
}
/*
==========================================================================
Description:
IRQL = DISPATCH_LEVEL
==========================================================================
*/
VOID AssocParmFill(
IN PRTMP_ADAPTER pAd,
IN OUT MLME_ASSOC_REQ_STRUCT *AssocReq,
IN PUCHAR pAddr,
IN USHORT CapabilityInfo,
IN ULONG Timeout,
IN USHORT ListenIntv)
{
COPY_MAC_ADDR(AssocReq->Addr, pAddr);
// Add mask to support 802.11b mode only
AssocReq->CapabilityInfo = CapabilityInfo & SUPPORTED_CAPABILITY_INFO; // not cf-pollable, not cf-poll-request
AssocReq->Timeout = Timeout;
AssocReq->ListenIntv = ListenIntv;
}
/*
==========================================================================
Description:
IRQL = DISPATCH_LEVEL
==========================================================================
*/
VOID DisassocParmFill(
IN PRTMP_ADAPTER pAd,
IN OUT MLME_DISASSOC_REQ_STRUCT *DisassocReq,
IN PUCHAR pAddr,
IN USHORT Reason)
{
COPY_MAC_ADDR(DisassocReq->Addr, pAddr);
DisassocReq->Reason = Reason;
}
/*
========================================================================
Routine Description:
Check the out going frame, if this is an DHCP or ARP datagram
will be duplicate another frame at low data rate transmit.
Arguments:
pAd Pointer to our adapter
pPacket Pointer to outgoing Ndis frame
Return Value:
TRUE To be duplicate at Low data rate transmit. (1mb)
FALSE Do nothing.
IRQL = DISPATCH_LEVEL
Note:
MAC header + IP Header + UDP Header
14 Bytes 20 Bytes
UDP Header
00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|
Source Port
16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|
Destination Port
port 0x43 means Bootstrap Protocol, server.
Port 0x44 means Bootstrap Protocol, client.
========================================================================
*/
BOOLEAN RTMPCheckDHCPFrame(
IN PRTMP_ADAPTER pAd,
IN PNDIS_PACKET pPacket)
{
PACKET_INFO PacketInfo;
ULONG NumberOfBytesRead = 0;
ULONG CurrentOffset = 0;
PVOID pVirtualAddress = NULL;
UINT NdisBufferLength;
PUCHAR pSrc;
USHORT Protocol;
UCHAR ByteOffset36 = 0;
UCHAR ByteOffset38 = 0;
BOOLEAN ReadFirstParm = TRUE;
RTMP_QueryPacketInfo(pPacket, &PacketInfo, (PUCHAR *)&pVirtualAddress, &NdisBufferLength);
NumberOfBytesRead += NdisBufferLength;
pSrc = (PUCHAR) pVirtualAddress;
Protocol = *(pSrc + 12) * 256 + *(pSrc + 13);
//
// Check DHCP & BOOTP protocol
//
while (NumberOfBytesRead <= PacketInfo.TotalPacketLength)
{
if ((NumberOfBytesRead >= 35) && (ReadFirstParm == TRUE))
{
CurrentOffset = 35 - (NumberOfBytesRead - NdisBufferLength);
ByteOffset36 = *(pSrc + CurrentOffset);
ReadFirstParm = FALSE;
}
if (NumberOfBytesRead >= 37)
{
CurrentOffset = 37 - (NumberOfBytesRead - NdisBufferLength);
ByteOffset38 = *(pSrc + CurrentOffset);
//End of Read
break;
}
return FALSE;
}
// Check for DHCP & BOOTP protocol
if ((ByteOffset36 != 0x44) || (ByteOffset38 != 0x43))
{
//
// 2054 (hex 0806) for ARP datagrams
// if this packet is not ARP datagrams, then do nothing
// ARP datagrams will also be duplicate at 1mb broadcast frames
//
if (Protocol != 0x0806 )
return FALSE;
}
return TRUE;
}
BOOLEAN RTMPCheckEtherType(
IN PRTMP_ADAPTER pAd,
IN PNDIS_PACKET pPacket)
{
USHORT TypeLen;
UCHAR Byte0, Byte1;
PUCHAR pSrcBuf;
UINT32 pktLen;
UINT16 srcPort, dstPort;
BOOLEAN status = TRUE;
pSrcBuf = GET_OS_PKT_DATAPTR(pPacket);
pktLen = GET_OS_PKT_LEN(pPacket);
ASSERT(pSrcBuf);
RTMP_SET_PACKET_SPECIFIC(pPacket, 0);
// get Ethernet protocol field
TypeLen = (pSrcBuf[12] << 8) + pSrcBuf[13];
pSrcBuf += LENGTH_802_3; // Skip the Ethernet Header.
if (TypeLen <= 1500)
{ // 802.3, 802.3 LLC
/*
DestMAC(6) + SrcMAC(6) + Lenght(2) +
DSAP(1) + SSAP(1) + Control(1) +
if the DSAP = 0xAA, SSAP=0xAA, Contorl = 0x03, it has a 5-bytes SNAP header.
=> + SNAP (5, OriginationID(3) + etherType(2))
*/
if (pSrcBuf[0] == 0xAA && pSrcBuf[1] == 0xAA && pSrcBuf[2] == 0x03)
{
Sniff2BytesFromNdisBuffer(pSrcBuf, 6, &Byte0, &Byte1);
RTMP_SET_PACKET_LLCSNAP(pPacket, 1);
TypeLen = (USHORT)((Byte0 << 8) + Byte1);
pSrcBuf += 8; // Skip this LLC/SNAP header
}
else
{
//It just has 3-byte LLC header, maybe a legacy ether type frame. we didn't handle it.
}
}
// If it's a VLAN packet, get the real Type/Length field.
if (TypeLen == 0x8100)
{
/* 0x8100 means VLAN packets */
/* Dest. MAC Address (6-bytes) +
Source MAC Address (6-bytes) +
Length/Type = 802.1Q Tag Type (2-byte) +
Tag Control Information (2-bytes) +
Length / Type (2-bytes) +
data payload (0-n bytes) +
Pad (0-p bytes) +
Frame Check Sequence (4-bytes) */
RTMP_SET_PACKET_VLAN(pPacket, 1);
Sniff2BytesFromNdisBuffer(pSrcBuf, 2, &Byte0, &Byte1);
TypeLen = (USHORT)((Byte0 << 8) + Byte1);
pSrcBuf += 4; // Skip the VLAN Header.
}
switch (TypeLen)
{
case 0x0800:
{
ASSERT((pktLen > 34));
if (*(pSrcBuf + 9) == 0x11)
{ // udp packet
ASSERT((pktLen > 34)); // 14 for ethernet header, 20 for IP header
pSrcBuf += 20; // Skip the IP header
srcPort = OS_NTOHS(*((UINT16 *)pSrcBuf));
dstPort = OS_NTOHS(*((UINT16 *)(pSrcBuf +2)));
if ((srcPort==0x44 && dstPort==0x43) || (srcPort==0x43 && dstPort==0x44))
{ //It's a BOOTP/DHCP packet
RTMP_SET_PACKET_DHCP(pPacket, 1);
}
}
}
break;
case 0x0806:
{
//ARP Packet.
RTMP_SET_PACKET_DHCP(pPacket, 1);
}
break;
case 0x888e:
{
// EAPOL Packet.
RTMP_SET_PACKET_EAPOL(pPacket, 1);
}
break;
default:
status = FALSE;
break;
}
return status;
}
VOID Update_Rssi_Sample(
IN PRTMP_ADAPTER pAd,
IN RSSI_SAMPLE *pRssi,
IN PRXWI_STRUC pRxWI)
{
CHAR rssi0 = pRxWI->RSSI0;
CHAR rssi1 = pRxWI->RSSI1;
CHAR rssi2 = pRxWI->RSSI2;
if (rssi0 != 0)
{
pRssi->LastRssi0 = ConvertToRssi(pAd, (CHAR)rssi0, RSSI_0);
pRssi->AvgRssi0X8 = (pRssi->AvgRssi0X8 - pRssi->AvgRssi0) + pRssi->LastRssi0;
pRssi->AvgRssi0 = pRssi->AvgRssi0X8 >> 3;
}
if (rssi1 != 0)
{
pRssi->LastRssi1 = ConvertToRssi(pAd, (CHAR)rssi1, RSSI_1);
pRssi->AvgRssi1X8 = (pRssi->AvgRssi1X8 - pRssi->AvgRssi1) + pRssi->LastRssi1;
pRssi->AvgRssi1 = pRssi->AvgRssi1X8 >> 3;
}
if (rssi2 != 0)
{
pRssi->LastRssi2 = ConvertToRssi(pAd, (CHAR)rssi2, RSSI_2);
pRssi->AvgRssi2X8 = (pRssi->AvgRssi2X8 - pRssi->AvgRssi2) + pRssi->LastRssi2;
pRssi->AvgRssi2 = pRssi->AvgRssi2X8 >> 3;
}
}
// Normal legacy Rx packet indication
VOID Indicate_Legacy_Packet(
IN PRTMP_ADAPTER pAd,
IN RX_BLK *pRxBlk,
IN UCHAR FromWhichBSSID)
{
PNDIS_PACKET pRxPacket = pRxBlk->pRxPacket;
UCHAR Header802_3[LENGTH_802_3];
// 1. get 802.3 Header
// 2. remove LLC
// a. pointer pRxBlk->pData to payload
// b. modify pRxBlk->DataSize
RTMP_802_11_REMOVE_LLC_AND_CONVERT_TO_802_3(pRxBlk, Header802_3);
if (pRxBlk->DataSize > MAX_RX_PKT_LEN)
{
// release packet
RELEASE_NDIS_PACKET(pAd, pRxPacket, NDIS_STATUS_FAILURE);
return;
}
STATS_INC_RX_PACKETS(pAd, FromWhichBSSID);
#ifdef RT2870
if (pAd->CommonCfg.bDisableReordering == 0)
{
PBA_REC_ENTRY pBAEntry;
ULONG Now32;
UCHAR Wcid = pRxBlk->pRxWI->WirelessCliID;
UCHAR TID = pRxBlk->pRxWI->TID;
USHORT Idx;
#define REORDERING_PACKET_TIMEOUT ((100 * HZ)/1000) // system ticks -- 100 ms
if (Wcid < MAX_LEN_OF_MAC_TABLE)
{
Idx = pAd->MacTab.Content[Wcid].BARecWcidArray[TID];
if (Idx != 0)
{
pBAEntry = &pAd->BATable.BARecEntry[Idx];
// update last rx time
NdisGetSystemUpTime(&Now32);
if ((pBAEntry->list.qlen > 0) &&
RTMP_TIME_AFTER((unsigned long)Now32, (unsigned long)(pBAEntry->LastIndSeqAtTimer+(REORDERING_PACKET_TIMEOUT)))
)
{
printk("Indicate_Legacy_Packet():flush reordering_timeout_mpdus! RxWI->Flags=%d, pRxWI.TID=%d, RxD->AMPDU=%d!\n", pRxBlk->Flags, pRxBlk->pRxWI->TID, pRxBlk->RxD.AMPDU);
hex_dump("Dump the legacy Packet:", GET_OS_PKT_DATAPTR(pRxBlk->pRxPacket), 64);
ba_flush_reordering_timeout_mpdus(pAd, pBAEntry, Now32);
}
}
}
}
#endif // RT2870 //
wlan_802_11_to_802_3_packet(pAd, pRxBlk, Header802_3, FromWhichBSSID);
//
// pass this 802.3 packet to upper layer or forward this packet to WM directly
//
ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pRxPacket, FromWhichBSSID);
}
// Normal, AMPDU or AMSDU
VOID CmmRxnonRalinkFrameIndicate(
IN PRTMP_ADAPTER pAd,
IN RX_BLK *pRxBlk,
IN UCHAR FromWhichBSSID)
{
if (RX_BLK_TEST_FLAG(pRxBlk, fRX_AMPDU) && (pAd->CommonCfg.bDisableReordering == 0))
{
Indicate_AMPDU_Packet(pAd, pRxBlk, FromWhichBSSID);
}
else
{
if (RX_BLK_TEST_FLAG(pRxBlk, fRX_AMSDU))
{
// handle A-MSDU
Indicate_AMSDU_Packet(pAd, pRxBlk, FromWhichBSSID);
}
else
{
Indicate_Legacy_Packet(pAd, pRxBlk, FromWhichBSSID);
}
}
}
VOID CmmRxRalinkFrameIndicate(
IN PRTMP_ADAPTER pAd,
IN MAC_TABLE_ENTRY *pEntry,
IN RX_BLK *pRxBlk,
IN UCHAR FromWhichBSSID)
{
UCHAR Header802_3[LENGTH_802_3];
UINT16 Msdu2Size;
UINT16 Payload1Size, Payload2Size;
PUCHAR pData2;
PNDIS_PACKET pPacket2 = NULL;
Msdu2Size = *(pRxBlk->pData) + (*(pRxBlk->pData+1) << 8);
if ((Msdu2Size <= 1536) && (Msdu2Size < pRxBlk->DataSize))
{
/* skip two byte MSDU2 len */
pRxBlk->pData += 2;
pRxBlk->DataSize -= 2;
}
else
{
// release packet
RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE);
return;
}
// get 802.3 Header and remove LLC
RTMP_802_11_REMOVE_LLC_AND_CONVERT_TO_802_3(pRxBlk, Header802_3);
ASSERT(pRxBlk->pRxPacket);
// Ralink Aggregation frame
pAd->RalinkCounters.OneSecRxAggregationCount ++;
Payload1Size = pRxBlk->DataSize - Msdu2Size;
Payload2Size = Msdu2Size - LENGTH_802_3;
pData2 = pRxBlk->pData + Payload1Size + LENGTH_802_3;
pPacket2 = duplicate_pkt(pAd, (pData2-LENGTH_802_3), LENGTH_802_3, pData2, Payload2Size, FromWhichBSSID);
if (!pPacket2)
{
// release packet
RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE);
return;
}
// update payload size of 1st packet
pRxBlk->DataSize = Payload1Size;
wlan_802_11_to_802_3_packet(pAd, pRxBlk, Header802_3, FromWhichBSSID);
ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pRxBlk->pRxPacket, FromWhichBSSID);
if (pPacket2)
{
ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pPacket2, FromWhichBSSID);
}
}
#define RESET_FRAGFRAME(_fragFrame) \
{ \
_fragFrame.RxSize = 0; \
_fragFrame.Sequence = 0; \
_fragFrame.LastFrag = 0; \
_fragFrame.Flags = 0; \
}
PNDIS_PACKET RTMPDeFragmentDataFrame(
IN PRTMP_ADAPTER pAd,
IN RX_BLK *pRxBlk)
{
PHEADER_802_11 pHeader = pRxBlk->pHeader;
PNDIS_PACKET pRxPacket = pRxBlk->pRxPacket;
UCHAR *pData = pRxBlk->pData;
USHORT DataSize = pRxBlk->DataSize;
PNDIS_PACKET pRetPacket = NULL;
UCHAR *pFragBuffer = NULL;
BOOLEAN bReassDone = FALSE;
UCHAR HeaderRoom = 0;
ASSERT(pHeader);
HeaderRoom = pData - (UCHAR *)pHeader;
// Re-assemble the fragmented packets
if (pHeader->Frag == 0) // Frag. Number is 0 : First frag or only one pkt
{
// the first pkt of fragment, record it.
if (pHeader->FC.MoreFrag)
{
ASSERT(pAd->FragFrame.pFragPacket);
pFragBuffer = GET_OS_PKT_DATAPTR(pAd->FragFrame.pFragPacket);
pAd->FragFrame.RxSize = DataSize + HeaderRoom;
NdisMoveMemory(pFragBuffer, pHeader, pAd->FragFrame.RxSize);
pAd->FragFrame.Sequence = pHeader->Sequence;
pAd->FragFrame.LastFrag = pHeader->Frag; // Should be 0
ASSERT(pAd->FragFrame.LastFrag == 0);
goto done; // end of processing this frame
}
}
else //Middle & End of fragment
{
if ((pHeader->Sequence != pAd->FragFrame.Sequence) ||
(pHeader->Frag != (pAd->FragFrame.LastFrag + 1)))
{
// Fragment is not the same sequence or out of fragment number order
// Reset Fragment control blk
RESET_FRAGFRAME(pAd->FragFrame);
DBGPRINT(RT_DEBUG_ERROR, ("Fragment is not the same sequence or out of fragment number order.\n"));
goto done; // give up this frame
}
else if ((pAd->FragFrame.RxSize + DataSize) > MAX_FRAME_SIZE)
{
// Fragment frame is too large, it exeeds the maximum frame size.
// Reset Fragment control blk
RESET_FRAGFRAME(pAd->FragFrame);
DBGPRINT(RT_DEBUG_ERROR, ("Fragment frame is too large, it exeeds the maximum frame size.\n"));
goto done; // give up this frame
}
//
// Broadcom AP(BCM94704AGR) will send out LLC in fragment's packet, LLC only can accpet at first fragment.
// In this case, we will dropt it.
//
if (NdisEqualMemory(pData, SNAP_802_1H, sizeof(SNAP_802_1H)))
{
DBGPRINT(RT_DEBUG_ERROR, ("Find another LLC at Middle or End fragment(SN=%d, Frag=%d)\n", pHeader->Sequence, pHeader->Frag));
goto done; // give up this frame
}
pFragBuffer = GET_OS_PKT_DATAPTR(pAd->FragFrame.pFragPacket);
// concatenate this fragment into the re-assembly buffer
NdisMoveMemory((pFragBuffer + pAd->FragFrame.RxSize), pData, DataSize);
pAd->FragFrame.RxSize += DataSize;
pAd->FragFrame.LastFrag = pHeader->Frag; // Update fragment number
// Last fragment
if (pHeader->FC.MoreFrag == FALSE)
{
bReassDone = TRUE;
}
}
done:
// always release rx fragmented packet
RELEASE_NDIS_PACKET(pAd, pRxPacket, NDIS_STATUS_FAILURE);
// return defragmented packet if packet is reassembled completely
// otherwise return NULL
if (bReassDone)
{
PNDIS_PACKET pNewFragPacket;
// allocate a new packet buffer for fragment
pNewFragPacket = RTMP_AllocateFragPacketBuffer(pAd, RX_BUFFER_NORMSIZE);
if (pNewFragPacket)
{
// update RxBlk
pRetPacket = pAd->FragFrame.pFragPacket;
pAd->FragFrame.pFragPacket = pNewFragPacket;
pRxBlk->pHeader = (PHEADER_802_11) GET_OS_PKT_DATAPTR(pRetPacket);
pRxBlk->pData = (UCHAR *)pRxBlk->pHeader + HeaderRoom;
pRxBlk->DataSize = pAd->FragFrame.RxSize - HeaderRoom;
pRxBlk->pRxPacket = pRetPacket;
}
else
{
RESET_FRAGFRAME(pAd->FragFrame);
}
}
return pRetPacket;
}
VOID Indicate_AMSDU_Packet(
IN PRTMP_ADAPTER pAd,
IN RX_BLK *pRxBlk,
IN UCHAR FromWhichBSSID)
{
UINT nMSDU;
update_os_packet_info(pAd, pRxBlk, FromWhichBSSID);
RTMP_SET_PACKET_IF(pRxBlk->pRxPacket, FromWhichBSSID);
nMSDU = deaggregate_AMSDU_announce(pAd, pRxBlk->pRxPacket, pRxBlk->pData, pRxBlk->DataSize);
}
VOID Indicate_EAPOL_Packet(
IN PRTMP_ADAPTER pAd,
IN RX_BLK *pRxBlk,
IN UCHAR FromWhichBSSID)
{
MAC_TABLE_ENTRY *pEntry = NULL;
{
pEntry = &pAd->MacTab.Content[BSSID_WCID];
STARxEAPOLFrameIndicate(pAd, pEntry, pRxBlk, FromWhichBSSID);
return;
}
if (pEntry == NULL)
{
DBGPRINT(RT_DEBUG_WARN, ("Indicate_EAPOL_Packet: drop and release the invalid packet.\n"));
// release packet
RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE);
return;
}
}
#define BCN_TBTT_OFFSET 64 //defer 64 us
VOID ReSyncBeaconTime(
IN PRTMP_ADAPTER pAd)
{
UINT32 Offset;
Offset = (pAd->TbttTickCount) % (BCN_TBTT_OFFSET);
pAd->TbttTickCount++;
//
// The updated BeaconInterval Value will affect Beacon Interval after two TBTT
// beacasue the original BeaconInterval had been loaded into next TBTT_TIMER
//
if (Offset == (BCN_TBTT_OFFSET-2))
{
BCN_TIME_CFG_STRUC csr;
RTMP_IO_READ32(pAd, BCN_TIME_CFG, &csr.word);
csr.field.BeaconInterval = (pAd->CommonCfg.BeaconPeriod << 4) - 1 ; // ASIC register in units of 1/16 TU = 64us
RTMP_IO_WRITE32(pAd, BCN_TIME_CFG, csr.word);
}
else
{
if (Offset == (BCN_TBTT_OFFSET-1))
{
BCN_TIME_CFG_STRUC csr;
RTMP_IO_READ32(pAd, BCN_TIME_CFG, &csr.word);
csr.field.BeaconInterval = (pAd->CommonCfg.BeaconPeriod) << 4; // ASIC register in units of 1/16 TU
RTMP_IO_WRITE32(pAd, BCN_TIME_CFG, csr.word);
}
}
}