blob: 00afad174a6262605d30a7b89938fc81fbed9f81 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et131x_isr.c - File which contains the ISR, ISR handler, and related routines
* for processing interrupts from the device.
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_debug.h"
#include "et131x_defs.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include "et1310_phy.h"
#include "et1310_pm.h"
#include "et1310_jagcore.h"
#include "et1310_mac.h"
#include "et131x_adapter.h"
/* Data for debugging facilities */
#ifdef CONFIG_ET131X_DEBUG
extern dbg_info_t *et131x_dbginfo;
#endif /* CONFIG_ET131X_DEBUG */
/**
* et131x_isr - The Interrupt Service Routine for the driver.
* @irq: the IRQ on which the interrupt was received.
* @dev_id: device-specific info (here a pointer to a net_device struct)
*
* Returns a value indicating if the interrupt was handled.
*/
irqreturn_t et131x_isr(int irq, void *dev_id)
{
bool handled = true;
struct net_device *netdev = (struct net_device *)dev_id;
struct et131x_adapter *adapter = NULL;
INTERRUPT_t status;
if (netdev == NULL || !netif_device_present(netdev)) {
DBG_WARNING(et131x_dbginfo,
"No net_device struct or device not present\n");
handled = false;
goto out;
}
adapter = netdev_priv(netdev);
/* If the adapter is in low power state, then it should not
* recognize any interrupt
*/
/* Disable Device Interrupts */
et131x_disable_interrupts(adapter);
/* Get a copy of the value in the interrupt status register
* so we can process the interrupting section
*/
status.value = readl(&adapter->CSRAddress->global.int_status.value);
if (adapter->FlowControl == TxOnly ||
adapter->FlowControl == Both) {
status.value &= ~INT_MASK_ENABLE;
} else {
status.value &= ~INT_MASK_ENABLE_NO_FLOW;
}
/* Make sure this is our interrupt */
if (!status.value) {
#ifdef CONFIG_ET131X_DEBUG
adapter->Stats.UnhandledInterruptsPerSec++;
#endif
handled = false;
DBG_VERBOSE(et131x_dbginfo, "NOT OUR INTERRUPT\n");
et131x_enable_interrupts(adapter);
goto out;
}
/* This is our interrupt, so process accordingly */
#ifdef CONFIG_ET131X_DEBUG
if (status.bits.rxdma_xfr_done) {
adapter->Stats.RxDmaInterruptsPerSec++;
}
if (status.bits.txdma_isr) {
adapter->Stats.TxDmaInterruptsPerSec++;
}
#endif
if (status.bits.watchdog_interrupt) {
PMP_TCB pMpTcb = adapter->TxRing.CurrSendHead;
if (pMpTcb) {
if (++pMpTcb->PacketStaleCount > 1) {
status.bits.txdma_isr = 1;
}
}
if (adapter->RxRing.UnfinishedReceives) {
status.bits.rxdma_xfr_done = 1;
} else if (pMpTcb == NULL) {
writel(0, &adapter->CSRAddress->global.watchdog_timer);
}
status.bits.watchdog_interrupt = 0;
#ifdef CONFIG_ET131X_DEBUG
adapter->Stats.WatchDogInterruptsPerSec++;
#endif
}
if (status.value == 0) {
/* This interrupt has in some way been "handled" by
* the ISR. Either it was a spurious Rx interrupt, or
* it was a Tx interrupt that has been filtered by
* the ISR.
*/
et131x_enable_interrupts(adapter);
goto out;
}
/* We need to save the interrupt status value for use in our
* DPC. We will clear the software copy of that in that
* routine.
*/
adapter->Stats.InterruptStatus = status;
/* Schedule the ISR handler as a bottom-half task in the
* kernel's tq_immediate queue, and mark the queue for
* execution
*/
schedule_work(&adapter->task);
out:
return IRQ_RETVAL(handled);
}
/**
* et131x_isr_handler - The ISR handler
* @p_adapter, a pointer to the device's private adapter structure
*
* scheduled to run in a deferred context by the ISR. This is where the ISR's
* work actually gets done.
*/
void et131x_isr_handler(struct work_struct *work)
{
struct et131x_adapter *pAdapter =
container_of(work, struct et131x_adapter, task);
INTERRUPT_t GlobStatus = pAdapter->Stats.InterruptStatus;
ADDRESS_MAP_t __iomem *iomem = pAdapter->CSRAddress;
/*
* These first two are by far the most common. Once handled, we clear
* their two bits in the status word. If the word is now zero, we
* exit.
*/
/* Handle all the completed Transmit interrupts */
if (GlobStatus.bits.txdma_isr) {
DBG_TX(et131x_dbginfo, "TXDMA_ISR interrupt\n");
et131x_handle_send_interrupt(pAdapter);
}
/* Handle all the completed Receives interrupts */
if (GlobStatus.bits.rxdma_xfr_done) {
DBG_RX(et131x_dbginfo, "RXDMA_XFR_DONE interrupt\n");
et131x_handle_recv_interrupt(pAdapter);
}
GlobStatus.value &= 0xffffffd7;
if (GlobStatus.value) {
/* Handle the TXDMA Error interrupt */
if (GlobStatus.bits.txdma_err) {
TXDMA_ERROR_t TxDmaErr;
/* Following read also clears the register (COR) */
TxDmaErr.value = readl(&iomem->txdma.TxDmaError.value);
DBG_WARNING(et131x_dbginfo,
"TXDMA_ERR interrupt, error = %d\n",
TxDmaErr.value);
}
/* Handle Free Buffer Ring 0 and 1 Low interrupt */
if (GlobStatus.bits.rxdma_fb_ring0_low ||
GlobStatus.bits.rxdma_fb_ring1_low) {
/*
* This indicates the number of unused buffers in
* RXDMA free buffer ring 0 is <= the limit you
* programmed. Free buffer resources need to be
* returned. Free buffers are consumed as packets
* are passed from the network to the host. The host
* becomes aware of the packets from the contents of
* the packet status ring. This ring is queried when
* the packet done interrupt occurs. Packets are then
* passed to the OS. When the OS is done with the
* packets the resources can be returned to the
* ET1310 for re-use. This interrupt is one method of
* returning resources.
*/
DBG_WARNING(et131x_dbginfo,
"RXDMA_FB_RING0_LOW or "
"RXDMA_FB_RING1_LOW interrupt\n");
/* If the user has flow control on, then we will
* send a pause packet, otherwise just exit
*/
if (pAdapter->FlowControl == TxOnly ||
pAdapter->FlowControl == Both) {
PM_CSR_t pm_csr;
/* Tell the device to send a pause packet via
* the back pressure register
*/
pm_csr.value = readl(&iomem->global.pm_csr.value);
if (pm_csr.bits.pm_phy_sw_coma == 0) {
TXMAC_BP_CTRL_t bp_ctrl = { 0 };
bp_ctrl.bits.bp_req = 1;
bp_ctrl.bits.bp_xonxoff = 1;
writel(bp_ctrl.value,
&iomem->txmac.bp_ctrl.value);
}
}
}
/* Handle Packet Status Ring Low Interrupt */
if (GlobStatus.bits.rxdma_pkt_stat_ring_low) {
DBG_WARNING(et131x_dbginfo,
"RXDMA_PKT_STAT_RING_LOW interrupt\n");
/*
* Same idea as with the two Free Buffer Rings.
* Packets going from the network to the host each
* consume a free buffer resource and a packet status
* resource. These resoures are passed to the OS.
* When the OS is done with the resources, they need
* to be returned to the ET1310. This is one method
* of returning the resources.
*/
}
/* Handle RXDMA Error Interrupt */
if (GlobStatus.bits.rxdma_err) {
/*
* The rxdma_error interrupt is sent when a time-out
* on a request issued by the JAGCore has occurred or
* a completion is returned with an un-successful
* status. In both cases the request is considered
* complete. The JAGCore will automatically re-try the
* request in question. Normally information on events
* like these are sent to the host using the "Advanced
* Error Reporting" capability. This interrupt is
* another way of getting similar information. The
* only thing required is to clear the interrupt by
* reading the ISR in the global resources. The
* JAGCore will do a re-try on the request. Normally
* you should never see this interrupt. If you start
* to see this interrupt occurring frequently then
* something bad has occurred. A reset might be the
* thing to do.
*/
// TRAP();
pAdapter->TxMacTest.value =
readl(&iomem->txmac.tx_test.value);
DBG_WARNING(et131x_dbginfo,
"RxDMA_ERR interrupt, error %x\n",
pAdapter->TxMacTest.value);
}
/* Handle the Wake on LAN Event */
if (GlobStatus.bits.wake_on_lan) {
/*
* This is a secondary interrupt for wake on LAN.
* The driver should never see this, if it does,
* something serious is wrong. We will TRAP the
* message when we are in DBG mode, otherwise we
* will ignore it.
*/
DBG_ERROR(et131x_dbginfo, "WAKE_ON_LAN interrupt\n");
}
/* Handle the PHY interrupt */
if (GlobStatus.bits.phy_interrupt) {
PM_CSR_t pm_csr;
MI_BMSR_t BmsrInts, BmsrData;
MI_ISR_t myIsr;
DBG_VERBOSE(et131x_dbginfo, "PHY interrupt\n");
/* If we are in coma mode when we get this interrupt,
* we need to disable it.
*/
pm_csr.value = readl(&iomem->global.pm_csr.value);
if (pm_csr.bits.pm_phy_sw_coma == 1) {
/*
* Check to see if we are in coma mode and if
* so, disable it because we will not be able
* to read PHY values until we are out.
*/
DBG_VERBOSE(et131x_dbginfo,
"Device is in COMA mode, "
"need to wake up\n");
DisablePhyComa(pAdapter);
}
/* Read the PHY ISR to clear the reason for the
* interrupt.
*/
MiRead(pAdapter, (uint8_t) offsetof(MI_REGS_t, isr),
&myIsr.value);
if (!pAdapter->ReplicaPhyLoopbk) {
MiRead(pAdapter,
(uint8_t) offsetof(MI_REGS_t, bmsr),
&BmsrData.value);
BmsrInts.value =
pAdapter->Bmsr.value ^ BmsrData.value;
pAdapter->Bmsr.value = BmsrData.value;
DBG_VERBOSE(et131x_dbginfo,
"Bmsr.value = 0x%04x,"
"Bmsr_ints.value = 0x%04x\n",
BmsrData.value, BmsrInts.value);
/* Do all the cable in / cable out stuff */
et131x_Mii_check(pAdapter, BmsrData, BmsrInts);
}
}
/* Let's move on to the TxMac */
if (GlobStatus.bits.txmac_interrupt) {
pAdapter->TxRing.TxMacErr.value =
readl(&iomem->txmac.err.value);
/*
* When any of the errors occur and TXMAC generates
* an interrupt to report these errors, it usually
* means that TXMAC has detected an error in the data
* stream retrieved from the on-chip Tx Q. All of
* these errors are catastrophic and TXMAC won't be
* able to recover data when these errors occur. In
* a nutshell, the whole Tx path will have to be reset
* and re-configured afterwards.
*/
DBG_WARNING(et131x_dbginfo,
"TXMAC interrupt, error 0x%08x\n",
pAdapter->TxRing.TxMacErr.value);
/* If we are debugging, we want to see this error,
* otherwise we just want the device to be reset and
* continue
*/
//DBG_TRAP();
}
/* Handle RXMAC Interrupt */
if (GlobStatus.bits.rxmac_interrupt) {
/*
* These interrupts are catastrophic to the device,
* what we need to do is disable the interrupts and
* set the flag to cause us to reset so we can solve
* this issue.
*/
// MP_SET_FLAG( pAdapter, fMP_ADAPTER_HARDWARE_ERROR );
DBG_WARNING(et131x_dbginfo,
"RXMAC interrupt, error 0x%08x. Requesting reset\n",
readl(&iomem->rxmac.err_reg.value));
DBG_WARNING(et131x_dbginfo,
"Enable 0x%08x, Diag 0x%08x\n",
readl(&iomem->rxmac.ctrl.value),
readl(&iomem->rxmac.rxq_diag.value));
/*
* If we are debugging, we want to see this error,
* otherwise we just want the device to be reset and
* continue
*/
// TRAP();
}
/* Handle MAC_STAT Interrupt */
if (GlobStatus.bits.mac_stat_interrupt) {
/*
* This means at least one of the un-masked counters
* in the MAC_STAT block has rolled over. Use this
* to maintain the top, software managed bits of the
* counter(s).
*/
DBG_VERBOSE(et131x_dbginfo, "MAC_STAT interrupt\n");
HandleMacStatInterrupt(pAdapter);
}
/* Handle SLV Timeout Interrupt */
if (GlobStatus.bits.slv_timeout) {
/*
* This means a timeout has occured on a read or
* write request to one of the JAGCore registers. The
* Global Resources block has terminated the request
* and on a read request, returned a "fake" value.
* The most likely reasons are: Bad Address or the
* addressed module is in a power-down state and
* can't respond.
*/
DBG_VERBOSE(et131x_dbginfo, "SLV_TIMEOUT interrupt\n");
}
}
if (pAdapter->PoMgmt.PowerState == NdisDeviceStateD0) {
et131x_enable_interrupts(pAdapter);
}
}