blob: d624cbbadbd7e02a1d7c932942c0b5eb4db7c168 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et1310_phy.h - Defines, structs, enums, prototypes, etc. pertaining to the
* PHY.
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#ifndef _ET1310_PHY_H_
#define _ET1310_PHY_H_
#include "et1310_address_map.h"
#define TRUEPHY_SUCCESS 0
#define TRUEPHY_FAILURE 1
typedef void *TRUEPHY_HANDLE;
typedef void *TRUEPHY_PLATFORM_HANDLE;
typedef void *TRUEPHY_OSAL_HANDLE;
/* MI Register Addresses */
#define MI_CONTROL_REG 0
#define MI_STATUS_REG 1
#define MI_PHY_IDENTIFIER_1_REG 2
#define MI_PHY_IDENTIFIER_2_REG 3
#define MI_AUTONEG_ADVERTISEMENT_REG 4
#define MI_AUTONEG_LINK_PARTNER_ABILITY_REG 5
#define MI_AUTONEG_EXPANSION_REG 6
#define MI_AUTONEG_NEXT_PAGE_TRANSMIT_REG 7
#define MI_LINK_PARTNER_NEXT_PAGE_REG 8
#define MI_1000BASET_CONTROL_REG 9
#define MI_1000BASET_STATUS_REG 10
#define MI_RESERVED11_REG 11
#define MI_RESERVED12_REG 12
#define MI_RESERVED13_REG 13
#define MI_RESERVED14_REG 14
#define MI_EXTENDED_STATUS_REG 15
/* VMI Register Addresses */
#define VMI_RESERVED16_REG 16
#define VMI_RESERVED17_REG 17
#define VMI_RESERVED18_REG 18
#define VMI_LOOPBACK_CONTROL_REG 19
#define VMI_RESERVED20_REG 20
#define VMI_MI_CONTROL_REG 21
#define VMI_PHY_CONFIGURATION_REG 22
#define VMI_PHY_CONTROL_REG 23
#define VMI_INTERRUPT_MASK_REG 24
#define VMI_INTERRUPT_STATUS_REG 25
#define VMI_PHY_STATUS_REG 26
#define VMI_LED_CONTROL_1_REG 27
#define VMI_LED_CONTROL_2_REG 28
#define VMI_RESERVED29_REG 29
#define VMI_RESERVED30_REG 30
#define VMI_RESERVED31_REG 31
/* PHY Register Mapping(MI) Management Interface Regs */
typedef struct _MI_REGS_t {
u8 bmcr; // Basic mode control reg(Reg 0x00)
u8 bmsr; // Basic mode status reg(Reg 0x01)
u8 idr1; // Phy identifier reg 1(Reg 0x02)
u8 idr2; // Phy identifier reg 2(Reg 0x03)
u8 anar; // Auto-Negotiation advertisement(Reg 0x04)
u8 anlpar; // Auto-Negotiation link Partner Ability(Reg 0x05)
u8 aner; // Auto-Negotiation expansion reg(Reg 0x06)
u8 annptr; // Auto-Negotiation next page transmit reg(Reg 0x07)
u8 lpnpr; // link partner next page reg(Reg 0x08)
u8 gcr; // Gigabit basic mode control reg(Reg 0x09)
u8 gsr; // Gigabit basic mode status reg(Reg 0x0A)
u8 mi_res1[4]; // Future use by MI working group(Reg 0x0B - 0x0E)
u8 esr; // Extended status reg(Reg 0x0F)
u8 mi_res2[3]; // Future use by MI working group(Reg 0x10 - 0x12)
u8 loop_ctl; // Loopback Control Reg(Reg 0x13)
u8 mi_res3; // Future use by MI working group(Reg 0x14)
u8 mcr; // MI Control Reg(Reg 0x15)
u8 pcr; // Configuration Reg(Reg 0x16)
u8 phy_ctl; // PHY Control Reg(Reg 0x17)
u8 imr; // Interrupt Mask Reg(Reg 0x18)
u8 isr; // Interrupt Status Reg(Reg 0x19)
u8 psr; // PHY Status Reg(Reg 0x1A)
u8 lcr1; // LED Control 1 Reg(Reg 0x1B)
u8 lcr2; // LED Control 2 Reg(Reg 0x1C)
u8 mi_res4[3]; // Future use by MI working group(Reg 0x1D - 0x1F)
} MI_REGS_t, *PMI_REGS_t;
/* MI Register 0: Basic mode control register */
typedef union _MI_BMCR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 reset:1; // bit 15
u16 loopback:1; // bit 14
u16 speed_sel:1; // bit 13
u16 enable_autoneg:1; // bit 12
u16 power_down:1; // bit 11
u16 isolate:1; // bit 10
u16 restart_autoneg:1; // bit 9
u16 duplex_mode:1; // bit 8
u16 col_test:1; // bit 7
u16 speed_1000_sel:1; // bit 6
u16 res1:6; // bits 0-5
#else
u16 res1:6; // bits 0-5
u16 speed_1000_sel:1; // bit 6
u16 col_test:1; // bit 7
u16 duplex_mode:1; // bit 8
u16 restart_autoneg:1; // bit 9
u16 isolate:1; // bit 10
u16 power_down:1; // bit 11
u16 enable_autoneg:1; // bit 12
u16 speed_sel:1; // bit 13
u16 loopback:1; // bit 14
u16 reset:1; // bit 15
#endif
} bits;
} MI_BMCR_t, *PMI_BMCR_t;
/* MI Register 1: Basic mode status register */
typedef union _MI_BMSR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 link_100T4:1; // bit 15
u16 link_100fdx:1; // bit 14
u16 link_100hdx:1; // bit 13
u16 link_10fdx:1; // bit 12
u16 link_10hdx:1; // bit 11
u16 link_100T2fdx:1; // bit 10
u16 link_100T2hdx:1; // bit 9
u16 extend_status:1; // bit 8
u16 res1:1; // bit 7
u16 preamble_supress:1; // bit 6
u16 auto_neg_complete:1; // bit 5
u16 remote_fault:1; // bit 4
u16 auto_neg_able:1; // bit 3
u16 link_status:1; // bit 2
u16 jabber_detect:1; // bit 1
u16 ext_cap:1; // bit 0
#else
u16 ext_cap:1; // bit 0
u16 jabber_detect:1; // bit 1
u16 link_status:1; // bit 2
u16 auto_neg_able:1; // bit 3
u16 remote_fault:1; // bit 4
u16 auto_neg_complete:1; // bit 5
u16 preamble_supress:1; // bit 6
u16 res1:1; // bit 7
u16 extend_status:1; // bit 8
u16 link_100T2hdx:1; // bit 9
u16 link_100T2fdx:1; // bit 10
u16 link_10hdx:1; // bit 11
u16 link_10fdx:1; // bit 12
u16 link_100hdx:1; // bit 13
u16 link_100fdx:1; // bit 14
u16 link_100T4:1; // bit 15
#endif
} bits;
} MI_BMSR_t, *PMI_BMSR_t;
/* MI Register 2: Physical Identifier 1 */
typedef union _MI_IDR1_t {
u16 value;
struct {
u16 ieee_address:16; // 0x0282 default(bits 0-15)
} bits;
} MI_IDR1_t, *PMI_IDR1_t;
/* MI Register 3: Physical Identifier 2 */
typedef union _MI_IDR2_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 ieee_address:6; // 111100 default(bits 10-15)
u16 model_no:6; // 000001 default(bits 4-9)
u16 rev_no:4; // 0010 default(bits 0-3)
#else
u16 rev_no:4; // 0010 default(bits 0-3)
u16 model_no:6; // 000001 default(bits 4-9)
u16 ieee_address:6; // 111100 default(bits 10-15)
#endif
} bits;
} MI_IDR2_t, *PMI_IDR2_t;
/* MI Register 4: Auto-negotiation advertisement register */
typedef union _MI_ANAR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 np_indication:1; // bit 15
u16 res2:1; // bit 14
u16 remote_fault:1; // bit 13
u16 res1:1; // bit 12
u16 cap_asmpause:1; // bit 11
u16 cap_pause:1; // bit 10
u16 cap_100T4:1; // bit 9
u16 cap_100fdx:1; // bit 8
u16 cap_100hdx:1; // bit 7
u16 cap_10fdx:1; // bit 6
u16 cap_10hdx:1; // bit 5
u16 selector:5; // bits 0-4
#else
u16 selector:5; // bits 0-4
u16 cap_10hdx:1; // bit 5
u16 cap_10fdx:1; // bit 6
u16 cap_100hdx:1; // bit 7
u16 cap_100fdx:1; // bit 8
u16 cap_100T4:1; // bit 9
u16 cap_pause:1; // bit 10
u16 cap_asmpause:1; // bit 11
u16 res1:1; // bit 12
u16 remote_fault:1; // bit 13
u16 res2:1; // bit 14
u16 np_indication:1; // bit 15
#endif
} bits;
} MI_ANAR_t, *PMI_ANAR_t;
/* MI Register 5: Auto-negotiation link partner advertisement register */
typedef struct _MI_ANLPAR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 np_indication:1; // bit 15
u16 acknowledge:1; // bit 14
u16 remote_fault:1; // bit 13
u16 res1:1; // bit 12
u16 cap_asmpause:1; // bit 11
u16 cap_pause:1; // bit 10
u16 cap_100T4:1; // bit 9
u16 cap_100fdx:1; // bit 8
u16 cap_100hdx:1; // bit 7
u16 cap_10fdx:1; // bit 6
u16 cap_10hdx:1; // bit 5
u16 selector:5; // bits 0-4
#else
u16 selector:5; // bits 0-4
u16 cap_10hdx:1; // bit 5
u16 cap_10fdx:1; // bit 6
u16 cap_100hdx:1; // bit 7
u16 cap_100fdx:1; // bit 8
u16 cap_100T4:1; // bit 9
u16 cap_pause:1; // bit 10
u16 cap_asmpause:1; // bit 11
u16 res1:1; // bit 12
u16 remote_fault:1; // bit 13
u16 acknowledge:1; // bit 14
u16 np_indication:1; // bit 15
#endif
} bits;
} MI_ANLPAR_t, *PMI_ANLPAR_t;
/* MI Register 6: Auto-negotiation expansion register */
typedef union _MI_ANER_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res:11; // bits 5-15
u16 pdf:1; // bit 4
u16 lp_np_able:1; // bit 3
u16 np_able:1; // bit 2
u16 page_rx:1; // bit 1
u16 lp_an_able:1; // bit 0
#else
u16 lp_an_able:1; // bit 0
u16 page_rx:1; // bit 1
u16 np_able:1; // bit 2
u16 lp_np_able:1; // bit 3
u16 pdf:1; // bit 4
u16 res:11; // bits 5-15
#endif
} bits;
} MI_ANER_t, *PMI_ANER_t;
/* MI Register 7: Auto-negotiation next page transmit reg(0x07) */
typedef union _MI_ANNPTR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 np:1; // bit 15
u16 res1:1; // bit 14
u16 msg_page:1; // bit 13
u16 ack2:1; // bit 12
u16 toggle:1; // bit 11
u16 msg:11; // bits 0-10
#else
u16 msg:11; // bits 0-10
u16 toggle:1; // bit 11
u16 ack2:1; // bit 12
u16 msg_page:1; // bit 13
u16 res1:1; // bit 14
u16 np:1; // bit 15
#endif
} bits;
} MI_ANNPTR_t, *PMI_ANNPTR_t;
/* MI Register 8: Link Partner Next Page Reg(0x08) */
typedef union _MI_LPNPR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 np:1; // bit 15
u16 ack:1; // bit 14
u16 msg_page:1; // bit 13
u16 ack2:1; // bit 12
u16 toggle:1; // bit 11
u16 msg:11; // bits 0-10
#else
u16 msg:11; // bits 0-10
u16 toggle:1; // bit 11
u16 ack2:1; // bit 12
u16 msg_page:1; // bit 13
u16 ack:1; // bit 14
u16 np:1; // bit 15
#endif
} bits;
} MI_LPNPR_t, *PMI_LPNPR_t;
/* MI Register 9: 1000BaseT Control Reg(0x09) */
typedef union _MI_GCR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 test_mode:3; // bits 13-15
u16 ms_config_en:1; // bit 12
u16 ms_value:1; // bit 11
u16 port_type:1; // bit 10
u16 link_1000fdx:1; // bit 9
u16 link_1000hdx:1; // bit 8
u16 res:8; // bit 0-7
#else
u16 res:8; // bit 0-7
u16 link_1000hdx:1; // bit 8
u16 link_1000fdx:1; // bit 9
u16 port_type:1; // bit 10
u16 ms_value:1; // bit 11
u16 ms_config_en:1; // bit 12
u16 test_mode:3; // bits 13-15
#endif
} bits;
} MI_GCR_t, *PMI_GCR_t;
/* MI Register 10: 1000BaseT Status Reg(0x0A) */
typedef union _MI_GSR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 ms_config_fault:1; // bit 15
u16 ms_resolve:1; // bit 14
u16 local_rx_status:1; // bit 13
u16 remote_rx_status:1; // bit 12
u16 link_1000fdx:1; // bit 11
u16 link_1000hdx:1; // bit 10
u16 res:2; // bits 8-9
u16 idle_err_cnt:8; // bits 0-7
#else
u16 idle_err_cnt:8; // bits 0-7
u16 res:2; // bits 8-9
u16 link_1000hdx:1; // bit 10
u16 link_1000fdx:1; // bit 11
u16 remote_rx_status:1; // bit 12
u16 local_rx_status:1; // bit 13
u16 ms_resolve:1; // bit 14
u16 ms_config_fault:1; // bit 15
#endif
} bits;
} MI_GSR_t, *PMI_GSR_t;
/* MI Register 11 - 14: Reserved Regs(0x0B - 0x0E) */
typedef union _MI_RES_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res15:1; // bit 15
u16 res14:1; // bit 14
u16 res13:1; // bit 13
u16 res12:1; // bit 12
u16 res11:1; // bit 11
u16 res10:1; // bit 10
u16 res9:1; // bit 9
u16 res8:1; // bit 8
u16 res7:1; // bit 7
u16 res6:1; // bit 6
u16 res5:1; // bit 5
u16 res4:1; // bit 4
u16 res3:1; // bit 3
u16 res2:1; // bit 2
u16 res1:1; // bit 1
u16 res0:1; // bit 0
#else
u16 res0:1; // bit 0
u16 res1:1; // bit 1
u16 res2:1; // bit 2
u16 res3:1; // bit 3
u16 res4:1; // bit 4
u16 res5:1; // bit 5
u16 res6:1; // bit 6
u16 res7:1; // bit 7
u16 res8:1; // bit 8
u16 res9:1; // bit 9
u16 res10:1; // bit 10
u16 res11:1; // bit 11
u16 res12:1; // bit 12
u16 res13:1; // bit 13
u16 res14:1; // bit 14
u16 res15:1; // bit 15
#endif
} bits;
} MI_RES_t, *PMI_RES_t;
/* MI Register 15: Extended status Reg(0x0F) */
typedef union _MI_ESR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 link_1000Xfdx:1; // bit 15
u16 link_1000Xhdx:1; // bit 14
u16 link_1000fdx:1; // bit 13
u16 link_1000hdx:1; // bit 12
u16 res:12; // bit 0-11
#else
u16 res:12; // bit 0-11
u16 link_1000hdx:1; // bit 12
u16 link_1000fdx:1; // bit 13
u16 link_1000Xhdx:1; // bit 14
u16 link_1000Xfdx:1; // bit 15
#endif
} bits;
} MI_ESR_t, *PMI_ESR_t;
/* MI Register 16 - 18: Reserved Reg(0x10-0x12) */
/* MI Register 19: Loopback Control Reg(0x13) */
typedef union _MI_LCR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 mii_en:1; // bit 15
u16 pcs_en:1; // bit 14
u16 pmd_en:1; // bit 13
u16 all_digital_en:1; // bit 12
u16 replica_en:1; // bit 11
u16 line_driver_en:1; // bit 10
u16 res:10; // bit 0-9
#else
u16 res:10; // bit 0-9
u16 line_driver_en:1; // bit 10
u16 replica_en:1; // bit 11
u16 all_digital_en:1; // bit 12
u16 pmd_en:1; // bit 13
u16 pcs_en:1; // bit 14
u16 mii_en:1; // bit 15
#endif
} bits;
} MI_LCR_t, *PMI_LCR_t;
/* MI Register 20: Reserved Reg(0x14) */
/* MI Register 21: Management Interface Control Reg(0x15) */
typedef union _MI_MICR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:5; // bits 11-15
u16 mi_error_count:7; // bits 4-10
u16 res2:1; // bit 3
u16 ignore_10g_fr:1; // bit 2
u16 res3:1; // bit 1
u16 preamble_supress_en:1; // bit 0
#else
u16 preamble_supress_en:1; // bit 0
u16 res3:1; // bit 1
u16 ignore_10g_fr:1; // bit 2
u16 res2:1; // bit 3
u16 mi_error_count:7; // bits 4-10
u16 res1:5; // bits 11-15
#endif
} bits;
} MI_MICR_t, *PMI_MICR_t;
/* MI Register 22: PHY Configuration Reg(0x16) */
typedef union _MI_PHY_CONFIG_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 crs_tx_en:1; // bit 15
u16 res1:1; // bit 14
u16 tx_fifo_depth:2; // bits 12-13
u16 speed_downshift:2; // bits 10-11
u16 pbi_detect:1; // bit 9
u16 tbi_rate:1; // bit 8
u16 alternate_np:1; // bit 7
u16 group_mdio_en:1; // bit 6
u16 tx_clock_en:1; // bit 5
u16 sys_clock_en:1; // bit 4
u16 res2:1; // bit 3
u16 mac_if_mode:3; // bits 0-2
#else
u16 mac_if_mode:3; // bits 0-2
u16 res2:1; // bit 3
u16 sys_clock_en:1; // bit 4
u16 tx_clock_en:1; // bit 5
u16 group_mdio_en:1; // bit 6
u16 alternate_np:1; // bit 7
u16 tbi_rate:1; // bit 8
u16 pbi_detect:1; // bit 9
u16 speed_downshift:2; // bits 10-11
u16 tx_fifo_depth:2; // bits 12-13
u16 res1:1; // bit 14
u16 crs_tx_en:1; // bit 15
#endif
} bits;
} MI_PHY_CONFIG_t, *PMI_PHY_CONFIG_t;
/* MI Register 23: PHY CONTROL Reg(0x17) */
typedef union _MI_PHY_CONTROL_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:1; // bit 15
u16 tdr_en:1; // bit 14
u16 res2:1; // bit 13
u16 downshift_attempts:2; // bits 11-12
u16 res3:5; // bit 6-10
u16 jabber_10baseT:1; // bit 5
u16 sqe_10baseT:1; // bit 4
u16 tp_loopback_10baseT:1; // bit 3
u16 preamble_gen_en:1; // bit 2
u16 res4:1; // bit 1
u16 force_int:1; // bit 0
#else
u16 force_int:1; // bit 0
u16 res4:1; // bit 1
u16 preamble_gen_en:1; // bit 2
u16 tp_loopback_10baseT:1; // bit 3
u16 sqe_10baseT:1; // bit 4
u16 jabber_10baseT:1; // bit 5
u16 res3:5; // bit 6-10
u16 downshift_attempts:2; // bits 11-12
u16 res2:1; // bit 13
u16 tdr_en:1; // bit 14
u16 res1:1; // bit 15
#endif
} bits;
} MI_PHY_CONTROL_t, *PMI_PHY_CONTROL_t;
/* MI Register 24: Interrupt Mask Reg(0x18) */
typedef union _MI_IMR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:6; // bits 10-15
u16 mdio_sync_lost:1; // bit 9
u16 autoneg_status:1; // bit 8
u16 hi_bit_err:1; // bit 7
u16 np_rx:1; // bit 6
u16 err_counter_full:1; // bit 5
u16 fifo_over_underflow:1; // bit 4
u16 rx_status:1; // bit 3
u16 link_status:1; // bit 2
u16 automatic_speed:1; // bit 1
u16 int_en:1; // bit 0
#else
u16 int_en:1; // bit 0
u16 automatic_speed:1; // bit 1
u16 link_status:1; // bit 2
u16 rx_status:1; // bit 3
u16 fifo_over_underflow:1; // bit 4
u16 err_counter_full:1; // bit 5
u16 np_rx:1; // bit 6
u16 hi_bit_err:1; // bit 7
u16 autoneg_status:1; // bit 8
u16 mdio_sync_lost:1; // bit 9
u16 res1:6; // bits 10-15
#endif
} bits;
} MI_IMR_t, *PMI_IMR_t;
/* MI Register 25: Interrupt Status Reg(0x19) */
typedef union _MI_ISR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:6; // bits 10-15
u16 mdio_sync_lost:1; // bit 9
u16 autoneg_status:1; // bit 8
u16 hi_bit_err:1; // bit 7
u16 np_rx:1; // bit 6
u16 err_counter_full:1; // bit 5
u16 fifo_over_underflow:1; // bit 4
u16 rx_status:1; // bit 3
u16 link_status:1; // bit 2
u16 automatic_speed:1; // bit 1
u16 int_en:1; // bit 0
#else
u16 int_en:1; // bit 0
u16 automatic_speed:1; // bit 1
u16 link_status:1; // bit 2
u16 rx_status:1; // bit 3
u16 fifo_over_underflow:1; // bit 4
u16 err_counter_full:1; // bit 5
u16 np_rx:1; // bit 6
u16 hi_bit_err:1; // bit 7
u16 autoneg_status:1; // bit 8
u16 mdio_sync_lost:1; // bit 9
u16 res1:6; // bits 10-15
#endif
} bits;
} MI_ISR_t, *PMI_ISR_t;
/* MI Register 26: PHY Status Reg(0x1A) */
typedef union _MI_PSR_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:1; // bit 15
u16 autoneg_fault:2; // bit 13-14
u16 autoneg_status:1; // bit 12
u16 mdi_x_status:1; // bit 11
u16 polarity_status:1; // bit 10
u16 speed_status:2; // bits 8-9
u16 duplex_status:1; // bit 7
u16 link_status:1; // bit 6
u16 tx_status:1; // bit 5
u16 rx_status:1; // bit 4
u16 collision_status:1; // bit 3
u16 autoneg_en:1; // bit 2
u16 pause_en:1; // bit 1
u16 asymmetric_dir:1; // bit 0
#else
u16 asymmetric_dir:1; // bit 0
u16 pause_en:1; // bit 1
u16 autoneg_en:1; // bit 2
u16 collision_status:1; // bit 3
u16 rx_status:1; // bit 4
u16 tx_status:1; // bit 5
u16 link_status:1; // bit 6
u16 duplex_status:1; // bit 7
u16 speed_status:2; // bits 8-9
u16 polarity_status:1; // bit 10
u16 mdi_x_status:1; // bit 11
u16 autoneg_status:1; // bit 12
u16 autoneg_fault:2; // bit 13-14
u16 res1:1; // bit 15
#endif
} bits;
} MI_PSR_t, *PMI_PSR_t;
/* MI Register 27: LED Control Reg 1(0x1B) */
typedef union _MI_LCR1_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 res1:2; // bits 14-15
u16 led_dup_indicate:2; // bits 12-13
u16 led_10baseT:2; // bits 10-11
u16 led_collision:2; // bits 8-9
u16 res2:2; // bits 6-7
u16 res3:2; // bits 4-5
u16 pulse_dur:2; // bits 2-3
u16 pulse_stretch1:1; // bit 1
u16 pulse_stretch0:1; // bit 0
#else
u16 pulse_stretch0:1; // bit 0
u16 pulse_stretch1:1; // bit 1
u16 pulse_dur:2; // bits 2-3
u16 res3:2; // bits 4-5
u16 res2:2; // bits 6-7
u16 led_collision:2; // bits 8-9
u16 led_10baseT:2; // bits 10-11
u16 led_dup_indicate:2; // bits 12-13
u16 res1:2; // bits 14-15
#endif
} bits;
} MI_LCR1_t, *PMI_LCR1_t;
/* MI Register 28: LED Control Reg 2(0x1C) */
typedef union _MI_LCR2_t {
u16 value;
struct {
#ifdef _BIT_FIELDS_HTOL
u16 led_link:4; // bits 12-15
u16 led_tx_rx:4; // bits 8-11
u16 led_100BaseTX:4; // bits 4-7
u16 led_1000BaseT:4; // bits 0-3
#else
u16 led_1000BaseT:4; // bits 0-3
u16 led_100BaseTX:4; // bits 4-7
u16 led_tx_rx:4; // bits 8-11
u16 led_link:4; // bits 12-15
#endif
} bits;
} MI_LCR2_t, *PMI_LCR2_t;
/* MI Register 29 - 31: Reserved Reg(0x1D - 0x1E) */
/* TruePHY headers */
typedef struct _TRUEPHY_ACCESS_MI_REGS_ {
TRUEPHY_HANDLE hTruePhy;
int32_t nPhyId;
u8 bReadWrite;
u8 *pbyRegs;
u8 *pwData;
int32_t nRegCount;
} TRUEPHY_ACCESS_MI_REGS, *PTRUEPHY_ACCESS_MI_REGS;
/* TruePHY headers */
typedef struct _TAG_TPAL_ACCESS_MI_REGS_ {
u32 nPhyId;
u8 bReadWrite;
u32 nRegCount;
u16 Data[4096];
u8 Regs[4096];
} TPAL_ACCESS_MI_REGS, *PTPAL_ACCESS_MI_REGS;
typedef TRUEPHY_HANDLE TPAL_HANDLE;
/* Forward declaration of the private adapter structure */
struct et131x_adapter;
/* OS Specific Functions*/
void TPAL_SetPhy10HalfDuplex(struct et131x_adapter *adapter);
void TPAL_SetPhy10FullDuplex(struct et131x_adapter *adapter);
void TPAL_SetPhy10Force(struct et131x_adapter *pAdapter);
void TPAL_SetPhy100HalfDuplex(struct et131x_adapter *adapter);
void TPAL_SetPhy100FullDuplex(struct et131x_adapter *adapter);
void TPAL_SetPhy100Force(struct et131x_adapter *pAdapter);
void TPAL_SetPhy1000FullDuplex(struct et131x_adapter *adapter);
void TPAL_SetPhyAutoNeg(struct et131x_adapter *adapter);
/* Prototypes for ET1310_phy.c */
int et131x_xcvr_find(struct et131x_adapter *adapter);
int et131x_setphy_normal(struct et131x_adapter *adapter);
int32_t PhyMiRead(struct et131x_adapter *adapter,
u8 xcvrAddr, u8 xcvrReg, u16 *value);
/* static inline function does not work because et131x_adapter is not always
* defined
*/
#define MiRead(adapter, xcvrReg, value) \
PhyMiRead((adapter), (adapter)->Stats.xcvr_addr, (xcvrReg), (value))
int32_t MiWrite(struct et131x_adapter *adapter,
u8 xcvReg, u16 value);
void et131x_Mii_check(struct et131x_adapter *pAdapter,
MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints);
/* This last is not strictly required (the driver could call the TPAL
* version instead), but this sets the adapter up correctly, and calls the
* access routine indirectly. This protects the driver from changes in TPAL.
*/
void SetPhy_10BaseTHalfDuplex(struct et131x_adapter *adapter);
/* Defines for PHY access routines */
// Define bit operation flags
#define TRUEPHY_BIT_CLEAR 0
#define TRUEPHY_BIT_SET 1
#define TRUEPHY_BIT_READ 2
// Define read/write operation flags
#ifndef TRUEPHY_READ
#define TRUEPHY_READ 0
#define TRUEPHY_WRITE 1
#define TRUEPHY_MASK 2
#endif
// Define speeds
#define TRUEPHY_SPEED_10MBPS 0
#define TRUEPHY_SPEED_100MBPS 1
#define TRUEPHY_SPEED_1000MBPS 2
// Define duplex modes
#define TRUEPHY_DUPLEX_HALF 0
#define TRUEPHY_DUPLEX_FULL 1
// Define master/slave configuration values
#define TRUEPHY_CFG_SLAVE 0
#define TRUEPHY_CFG_MASTER 1
// Define MDI/MDI-X settings
#define TRUEPHY_MDI 0
#define TRUEPHY_MDIX 1
#define TRUEPHY_AUTO_MDI_MDIX 2
// Define 10Base-T link polarities
#define TRUEPHY_POLARITY_NORMAL 0
#define TRUEPHY_POLARITY_INVERTED 1
// Define auto-negotiation results
#define TRUEPHY_ANEG_NOT_COMPLETE 0
#define TRUEPHY_ANEG_COMPLETE 1
#define TRUEPHY_ANEG_DISABLED 2
/* Define duplex advertisment flags */
#define TRUEPHY_ADV_DUPLEX_NONE 0x00
#define TRUEPHY_ADV_DUPLEX_FULL 0x01
#define TRUEPHY_ADV_DUPLEX_HALF 0x02
#define TRUEPHY_ADV_DUPLEX_BOTH \
(TRUEPHY_ADV_DUPLEX_FULL | TRUEPHY_ADV_DUPLEX_HALF)
#define PHY_CONTROL 0x00 //#define TRU_MI_CONTROL_REGISTER 0
#define PHY_STATUS 0x01 //#define TRU_MI_STATUS_REGISTER 1
#define PHY_ID_1 0x02 //#define TRU_MI_PHY_IDENTIFIER_1_REGISTER 2
#define PHY_ID_2 0x03 //#define TRU_MI_PHY_IDENTIFIER_2_REGISTER 3
#define PHY_AUTO_ADVERTISEMENT 0x04 //#define TRU_MI_ADVERTISEMENT_REGISTER 4
#define PHY_AUTO_LINK_PARTNER 0x05 //#define TRU_MI_LINK_PARTNER_ABILITY_REGISTER 5
#define PHY_AUTO_EXPANSION 0x06 //#define TRU_MI_EXPANSION_REGISTER 6
#define PHY_AUTO_NEXT_PAGE_TX 0x07 //#define TRU_MI_NEXT_PAGE_TRANSMIT_REGISTER 7
#define PHY_LINK_PARTNER_NEXT_PAGE 0x08 //#define TRU_MI_LINK_PARTNER_NEXT_PAGE_REGISTER 8
#define PHY_1000_CONTROL 0x09 //#define TRU_MI_1000BASET_CONTROL_REGISTER 9
#define PHY_1000_STATUS 0x0A //#define TRU_MI_1000BASET_STATUS_REGISTER 10
#define PHY_EXTENDED_STATUS 0x0F //#define TRU_MI_EXTENDED_STATUS_REGISTER 15
// some defines for modem registers that seem to be 'reserved'
#define PHY_INDEX_REG 0x10
#define PHY_DATA_REG 0x11
#define PHY_MPHY_CONTROL_REG 0x12 //#define TRU_VMI_MPHY_CONTROL_REGISTER 18
#define PHY_LOOPBACK_CONTROL 0x13 //#define TRU_VMI_LOOPBACK_CONTROL_1_REGISTER 19
//#define TRU_VMI_LOOPBACK_CONTROL_2_REGISTER 20
#define PHY_REGISTER_MGMT_CONTROL 0x15 //#define TRU_VMI_MI_SEQ_CONTROL_REGISTER 21
#define PHY_CONFIG 0x16 //#define TRU_VMI_CONFIGURATION_REGISTER 22
#define PHY_PHY_CONTROL 0x17 //#define TRU_VMI_PHY_CONTROL_REGISTER 23
#define PHY_INTERRUPT_MASK 0x18 //#define TRU_VMI_INTERRUPT_MASK_REGISTER 24
#define PHY_INTERRUPT_STATUS 0x19 //#define TRU_VMI_INTERRUPT_STATUS_REGISTER 25
#define PHY_PHY_STATUS 0x1A //#define TRU_VMI_PHY_STATUS_REGISTER 26
#define PHY_LED_1 0x1B //#define TRU_VMI_LED_CONTROL_1_REGISTER 27
#define PHY_LED_2 0x1C //#define TRU_VMI_LED_CONTROL_2_REGISTER 28
//#define TRU_VMI_LINK_CONTROL_REGISTER 29
//#define TRU_VMI_TIMING_CONTROL_REGISTER
/* Prototypes for PHY access routines */
void ET1310_PhyInit(struct et131x_adapter *adapter);
void ET1310_PhyReset(struct et131x_adapter *adapter);
void ET1310_PhyPowerDown(struct et131x_adapter *adapter, bool down);
void ET1310_PhyAutoNeg(struct et131x_adapter *adapter, bool enable);
void ET1310_PhyDuplexMode(struct et131x_adapter *adapter, u16 duplex);
void ET1310_PhySpeedSelect(struct et131x_adapter *adapter, u16 speed);
void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *adapter,
u16 duplex);
void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *adapter,
u16 duplex);
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *adapter,
u16 duplex);
void ET1310_PhyLinkStatus(struct et131x_adapter *adapter,
u8 *ucLinkStatus,
u32 *uiAutoNeg,
u32 *uiLinkSpeed,
u32 *uiDuplexMode,
u32 *uiMdiMdix,
u32 *uiMasterSlave, u32 *uiPolarity);
void ET1310_PhyAndOrReg(struct et131x_adapter *adapter,
u16 regnum, u16 andMask, u16 orMask);
void ET1310_PhyAccessMiBit(struct et131x_adapter *adapter,
u16 action,
u16 regnum, u16 bitnum, u8 *value);
#endif /* _ET1310_PHY_H_ */