blob: 1924968ab24ff2498de722c80b72a51f80e97983 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et1310_mac.c - All code and routines pertaining to the MAC
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright © 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_debug.h"
#include "et131x_defs.h"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/crc32.h>
#include "et1310_phy.h"
#include "et1310_pm.h"
#include "et1310_jagcore.h"
#include "et1310_mac.h"
#include "et131x_adapter.h"
#include "et131x_initpci.h"
/* Data for debugging facilities */
#ifdef CONFIG_ET131X_DEBUG
extern dbg_info_t *et131x_dbginfo;
#endif /* CONFIG_ET131X_DEBUG */
/**
* ConfigMacRegs1 - Initialize the first part of MAC regs
* @pAdpater: pointer to our adapter structure
*/
void ConfigMACRegs1(struct et131x_adapter *pAdapter)
{
struct _MAC_t __iomem *pMac = &pAdapter->CSRAddress->mac;
MAC_STATION_ADDR1_t station1;
MAC_STATION_ADDR2_t station2;
MAC_IPG_t ipg;
MAC_HFDP_t hfdp;
MII_MGMT_CFG_t mii_mgmt_cfg;
DBG_ENTER(et131x_dbginfo);
/* First we need to reset everything. Write to MAC configuration
* register 1 to perform reset.
*/
writel(0xC00F0000, &pMac->cfg1.value);
/* Next lets configure the MAC Inter-packet gap register */
ipg.bits.non_B2B_ipg_1 = 0x38; // 58d
ipg.bits.non_B2B_ipg_2 = 0x58; // 88d
ipg.bits.min_ifg_enforce = 0x50; // 80d
ipg.bits.B2B_ipg = 0x60; // 96d
writel(ipg.value, &pMac->ipg.value);
/* Next lets configure the MAC Half Duplex register */
hfdp.bits.alt_beb_trunc = 0xA;
hfdp.bits.alt_beb_enable = 0x0;
hfdp.bits.bp_no_backoff = 0x0;
hfdp.bits.no_backoff = 0x0;
hfdp.bits.excess_defer = 0x1;
hfdp.bits.rexmit_max = 0xF;
hfdp.bits.coll_window = 0x37; // 55d
writel(hfdp.value, &pMac->hfdp.value);
/* Next lets configure the MAC Interface Control register */
writel(0, &pMac->if_ctrl.value);
/* Let's move on to setting up the mii managment configuration */
mii_mgmt_cfg.bits.reset_mii_mgmt = 0;
mii_mgmt_cfg.bits.scan_auto_incremt = 0;
mii_mgmt_cfg.bits.preamble_suppress = 0;
mii_mgmt_cfg.bits.mgmt_clk_reset = 0x7;
writel(mii_mgmt_cfg.value, &pMac->mii_mgmt_cfg.value);
/* Next lets configure the MAC Station Address register. These
* values are read from the EEPROM during initialization and stored
* in the adapter structure. We write what is stored in the adapter
* structure to the MAC Station Address registers high and low. This
* station address is used for generating and checking pause control
* packets.
*/
station2.bits.Octet1 = pAdapter->CurrentAddress[0];
station2.bits.Octet2 = pAdapter->CurrentAddress[1];
station1.bits.Octet3 = pAdapter->CurrentAddress[2];
station1.bits.Octet4 = pAdapter->CurrentAddress[3];
station1.bits.Octet5 = pAdapter->CurrentAddress[4];
station1.bits.Octet6 = pAdapter->CurrentAddress[5];
writel(station1.value, &pMac->station_addr_1.value);
writel(station2.value, &pMac->station_addr_2.value);
/* Max ethernet packet in bytes that will passed by the mac without
* being truncated. Allow the MAC to pass 4 more than our max packet
* size. This is 4 for the Ethernet CRC.
*
* Packets larger than (RegistryJumboPacket) that do not contain a
* VLAN ID will be dropped by the Rx function.
*/
writel(pAdapter->RegistryJumboPacket + 4, &pMac->max_fm_len.value);
/* clear out MAC config reset */
writel(0, &pMac->cfg1.value);
DBG_LEAVE(et131x_dbginfo);
}
/**
* ConfigMacRegs2 - Initialize the second part of MAC regs
* @pAdpater: pointer to our adapter structure
*/
void ConfigMACRegs2(struct et131x_adapter *pAdapter)
{
int32_t delay = 0;
struct _MAC_t __iomem *pMac = &pAdapter->CSRAddress->mac;
MAC_CFG1_t cfg1;
MAC_CFG2_t cfg2;
MAC_IF_CTRL_t ifctrl;
TXMAC_CTL_t ctl;
DBG_ENTER(et131x_dbginfo);
ctl.value = readl(&pAdapter->CSRAddress->txmac.ctl.value);
cfg1.value = readl(&pMac->cfg1.value);
cfg2.value = readl(&pMac->cfg2.value);
ifctrl.value = readl(&pMac->if_ctrl.value);
if (pAdapter->uiLinkSpeed == TRUEPHY_SPEED_1000MBPS) {
cfg2.bits.if_mode = 0x2;
ifctrl.bits.phy_mode = 0x0;
} else {
cfg2.bits.if_mode = 0x1;
ifctrl.bits.phy_mode = 0x1;
}
/* We need to enable Rx/Tx */
cfg1.bits.rx_enable = 0x1;
cfg1.bits.tx_enable = 0x1;
/* Set up flow control */
cfg1.bits.tx_flow = 0x1;
if ((pAdapter->FlowControl == RxOnly) ||
(pAdapter->FlowControl == Both)) {
cfg1.bits.rx_flow = 0x1;
} else {
cfg1.bits.rx_flow = 0x0;
}
/* Initialize loop back to off */
cfg1.bits.loop_back = 0;
writel(cfg1.value, &pMac->cfg1.value);
/* Now we need to initialize the MAC Configuration 2 register */
cfg2.bits.preamble_len = 0x7;
cfg2.bits.huge_frame = 0x0;
/* LENGTH FIELD CHECKING bit4: Set this bit to cause the MAC to check
* the frame's length field to ensure it matches the actual data
* field length. Clear this bit if no length field checking is
* desired. Its default is 0.
*/
cfg2.bits.len_check = 0x1;
if (pAdapter->RegistryPhyLoopbk == false) {
cfg2.bits.pad_crc = 0x1;
cfg2.bits.crc_enable = 0x1;
} else {
cfg2.bits.pad_crc = 0;
cfg2.bits.crc_enable = 0;
}
/* 1 - full duplex, 0 - half-duplex */
cfg2.bits.full_duplex = pAdapter->uiDuplexMode;
ifctrl.bits.ghd_mode = !pAdapter->uiDuplexMode;
writel(ifctrl.value, &pMac->if_ctrl.value);
writel(cfg2.value, &pMac->cfg2.value);
do {
udelay(10);
delay++;
cfg1.value = readl(&pMac->cfg1.value);
} while ((!cfg1.bits.syncd_rx_en ||
!cfg1.bits.syncd_tx_en) &&
delay < 100);
if (delay == 100) {
DBG_ERROR(et131x_dbginfo,
"Syncd bits did not respond correctly cfg1 word 0x%08x\n",
cfg1.value);
}
DBG_TRACE(et131x_dbginfo,
"Speed %d, Dup %d, CFG1 0x%08x, CFG2 0x%08x, if_ctrl 0x%08x\n",
pAdapter->uiLinkSpeed, pAdapter->uiDuplexMode,
readl(&pMac->cfg1.value), readl(&pMac->cfg2.value),
readl(&pMac->if_ctrl.value));
/* Enable TXMAC */
ctl.bits.txmac_en = 0x1;
ctl.bits.fc_disable = 0x1;
writel(ctl.value, &pAdapter->CSRAddress->txmac.ctl.value);
/* Ready to start the RXDMA/TXDMA engine */
if (!MP_TEST_FLAG(pAdapter, fMP_ADAPTER_LOWER_POWER)) {
et131x_rx_dma_enable(pAdapter);
et131x_tx_dma_enable(pAdapter);
} else {
DBG_WARNING(et131x_dbginfo,
"Didn't enable Rx/Tx due to low-power mode\n");
}
DBG_LEAVE(et131x_dbginfo);
}
void ConfigRxMacRegs(struct et131x_adapter *pAdapter)
{
struct _RXMAC_t __iomem *pRxMac = &pAdapter->CSRAddress->rxmac;
RXMAC_WOL_SA_LO_t sa_lo;
RXMAC_WOL_SA_HI_t sa_hi;
RXMAC_PF_CTRL_t pf_ctrl = { 0 };
DBG_ENTER(et131x_dbginfo);
/* Disable the MAC while it is being configured (also disable WOL) */
writel(0x8, &pRxMac->ctrl.value);
/* Initialize WOL to disabled. */
writel(0, &pRxMac->crc0.value);
writel(0, &pRxMac->crc12.value);
writel(0, &pRxMac->crc34.value);
/* We need to set the WOL mask0 - mask4 next. We initialize it to
* its default Values of 0x00000000 because there are not WOL masks
* as of this time.
*/
writel(0, &pRxMac->mask0_word0);
writel(0, &pRxMac->mask0_word1);
writel(0, &pRxMac->mask0_word2);
writel(0, &pRxMac->mask0_word3);
writel(0, &pRxMac->mask1_word0);
writel(0, &pRxMac->mask1_word1);
writel(0, &pRxMac->mask1_word2);
writel(0, &pRxMac->mask1_word3);
writel(0, &pRxMac->mask2_word0);
writel(0, &pRxMac->mask2_word1);
writel(0, &pRxMac->mask2_word2);
writel(0, &pRxMac->mask2_word3);
writel(0, &pRxMac->mask3_word0);
writel(0, &pRxMac->mask3_word1);
writel(0, &pRxMac->mask3_word2);
writel(0, &pRxMac->mask3_word3);
writel(0, &pRxMac->mask4_word0);
writel(0, &pRxMac->mask4_word1);
writel(0, &pRxMac->mask4_word2);
writel(0, &pRxMac->mask4_word3);
/* Lets setup the WOL Source Address */
sa_lo.bits.sa3 = pAdapter->CurrentAddress[2];
sa_lo.bits.sa4 = pAdapter->CurrentAddress[3];
sa_lo.bits.sa5 = pAdapter->CurrentAddress[4];
sa_lo.bits.sa6 = pAdapter->CurrentAddress[5];
writel(sa_lo.value, &pRxMac->sa_lo.value);
sa_hi.bits.sa1 = pAdapter->CurrentAddress[0];
sa_hi.bits.sa2 = pAdapter->CurrentAddress[1];
writel(sa_hi.value, &pRxMac->sa_hi.value);
/* Disable all Packet Filtering */
writel(0, &pRxMac->pf_ctrl.value);
/* Let's initialize the Unicast Packet filtering address */
if (pAdapter->PacketFilter & ET131X_PACKET_TYPE_DIRECTED) {
SetupDeviceForUnicast(pAdapter);
pf_ctrl.bits.filter_uni_en = 1;
} else {
writel(0, &pRxMac->uni_pf_addr1.value);
writel(0, &pRxMac->uni_pf_addr2.value);
writel(0, &pRxMac->uni_pf_addr3.value);
}
/* Let's initialize the Multicast hash */
if (pAdapter->PacketFilter & ET131X_PACKET_TYPE_ALL_MULTICAST) {
pf_ctrl.bits.filter_multi_en = 0;
} else {
pf_ctrl.bits.filter_multi_en = 1;
SetupDeviceForMulticast(pAdapter);
}
/* Runt packet filtering. Didn't work in version A silicon. */
pf_ctrl.bits.min_pkt_size = NIC_MIN_PACKET_SIZE + 4;
pf_ctrl.bits.filter_frag_en = 1;
if (pAdapter->RegistryJumboPacket > 8192) {
RXMAC_MCIF_CTRL_MAX_SEG_t mcif_ctrl_max_seg;
/* In order to transmit jumbo packets greater than 8k, the
* FIFO between RxMAC and RxDMA needs to be reduced in size
* to (16k - Jumbo packet size). In order to implement this,
* we must use "cut through" mode in the RxMAC, which chops
* packets down into segments which are (max_size * 16). In
* this case we selected 256 bytes, since this is the size of
* the PCI-Express TLP's that the 1310 uses.
*/
mcif_ctrl_max_seg.bits.seg_en = 0x1;
mcif_ctrl_max_seg.bits.fc_en = 0x0;
mcif_ctrl_max_seg.bits.max_size = 0x10;
writel(mcif_ctrl_max_seg.value,
&pRxMac->mcif_ctrl_max_seg.value);
} else {
writel(0, &pRxMac->mcif_ctrl_max_seg.value);
}
/* Initialize the MCIF water marks */
writel(0, &pRxMac->mcif_water_mark.value);
/* Initialize the MIF control */
writel(0, &pRxMac->mif_ctrl.value);
/* Initialize the Space Available Register */
writel(0, &pRxMac->space_avail.value);
/* Initialize the the mif_ctrl register
* bit 3: Receive code error. One or more nibbles were signaled as
* errors during the reception of the packet. Clear this
* bit in Gigabit, set it in 100Mbit. This was derived
* experimentally at UNH.
* bit 4: Receive CRC error. The packet's CRC did not match the
* internally generated CRC.
* bit 5: Receive length check error. Indicates that frame length
* field value in the packet does not match the actual data
* byte length and is not a type field.
* bit 16: Receive frame truncated.
* bit 17: Drop packet enable
*/
if (pAdapter->uiLinkSpeed == TRUEPHY_SPEED_100MBPS) {
writel(0x30038, &pRxMac->mif_ctrl.value);
} else {
writel(0x30030, &pRxMac->mif_ctrl.value);
}
/* Finally we initialize RxMac to be enabled & WOL disabled. Packet
* filter is always enabled since it is where the runt packets are
* supposed to be dropped. For version A silicon, runt packet
* dropping doesn't work, so it is disabled in the pf_ctrl register,
* but we still leave the packet filter on.
*/
writel(pf_ctrl.value, &pRxMac->pf_ctrl.value);
writel(0x9, &pRxMac->ctrl.value);
DBG_LEAVE(et131x_dbginfo);
}
void ConfigTxMacRegs(struct et131x_adapter *pAdapter)
{
struct _TXMAC_t __iomem *pTxMac = &pAdapter->CSRAddress->txmac;
TXMAC_CF_PARAM_t Local;
DBG_ENTER(et131x_dbginfo);
/* We need to update the Control Frame Parameters
* cfpt - control frame pause timer set to 64 (0x40)
* cfep - control frame extended pause timer set to 0x0
*/
if (pAdapter->FlowControl == None) {
writel(0, &pTxMac->cf_param.value);
} else {
Local.bits.cfpt = 0x40;
Local.bits.cfep = 0x0;
writel(Local.value, &pTxMac->cf_param.value);
}
DBG_LEAVE(et131x_dbginfo);
}
void ConfigMacStatRegs(struct et131x_adapter *pAdapter)
{
struct _MAC_STAT_t __iomem *pDevMacStat =
&pAdapter->CSRAddress->macStat;
DBG_ENTER(et131x_dbginfo);
/* Next we need to initialize all the MAC_STAT registers to zero on
* the device.
*/
writel(0, &pDevMacStat->RFcs);
writel(0, &pDevMacStat->RAln);
writel(0, &pDevMacStat->RFlr);
writel(0, &pDevMacStat->RDrp);
writel(0, &pDevMacStat->RCde);
writel(0, &pDevMacStat->ROvr);
writel(0, &pDevMacStat->RFrg);
writel(0, &pDevMacStat->TScl);
writel(0, &pDevMacStat->TDfr);
writel(0, &pDevMacStat->TMcl);
writel(0, &pDevMacStat->TLcl);
writel(0, &pDevMacStat->TNcl);
writel(0, &pDevMacStat->TOvr);
writel(0, &pDevMacStat->TUnd);
/* Unmask any counters that we want to track the overflow of.
* Initially this will be all counters. It may become clear later
* that we do not need to track all counters.
*/
{
MAC_STAT_REG_1_t Carry1M = { 0xffffffff };
Carry1M.bits.rdrp = 0;
Carry1M.bits.rjbr = 1;
Carry1M.bits.rfrg = 0;
Carry1M.bits.rovr = 0;
Carry1M.bits.rund = 1;
Carry1M.bits.rcse = 1;
Carry1M.bits.rcde = 0;
Carry1M.bits.rflr = 0;
Carry1M.bits.raln = 0;
Carry1M.bits.rxuo = 1;
Carry1M.bits.rxpf = 1;
Carry1M.bits.rxcf = 1;
Carry1M.bits.rbca = 1;
Carry1M.bits.rmca = 1;
Carry1M.bits.rfcs = 0;
Carry1M.bits.rpkt = 1;
Carry1M.bits.rbyt = 1;
Carry1M.bits.trmgv = 1;
Carry1M.bits.trmax = 1;
Carry1M.bits.tr1k = 1;
Carry1M.bits.tr511 = 1;
Carry1M.bits.tr255 = 1;
Carry1M.bits.tr127 = 1;
Carry1M.bits.tr64 = 1;
writel(Carry1M.value, &pDevMacStat->Carry1M.value);
}
{
MAC_STAT_REG_2_t Carry2M = { 0xffffffff };
Carry2M.bits.tdrp = 1;
Carry2M.bits.tpfh = 1;
Carry2M.bits.tncl = 0;
Carry2M.bits.txcl = 1;
Carry2M.bits.tlcl = 0;
Carry2M.bits.tmcl = 0;
Carry2M.bits.tscl = 0;
Carry2M.bits.tedf = 1;
Carry2M.bits.tdfr = 0;
Carry2M.bits.txpf = 1;
Carry2M.bits.tbca = 1;
Carry2M.bits.tmca = 1;
Carry2M.bits.tpkt = 1;
Carry2M.bits.tbyt = 1;
Carry2M.bits.tfrg = 1;
Carry2M.bits.tund = 0;
Carry2M.bits.tovr = 0;
Carry2M.bits.txcf = 1;
Carry2M.bits.tfcs = 1;
Carry2M.bits.tjbr = 1;
writel(Carry2M.value, &pDevMacStat->Carry2M.value);
}
DBG_LEAVE(et131x_dbginfo);
}
void ConfigFlowControl(struct et131x_adapter * pAdapter)
{
if (pAdapter->uiDuplexMode == 0) {
pAdapter->FlowControl = None;
} else {
char RemotePause, RemoteAsyncPause;
ET1310_PhyAccessMiBit(pAdapter,
TRUEPHY_BIT_READ, 5, 10, &RemotePause);
ET1310_PhyAccessMiBit(pAdapter,
TRUEPHY_BIT_READ, 5, 11,
&RemoteAsyncPause);
if ((RemotePause == TRUEPHY_BIT_SET) &&
(RemoteAsyncPause == TRUEPHY_BIT_SET)) {
pAdapter->FlowControl = pAdapter->RegistryFlowControl;
} else if ((RemotePause == TRUEPHY_BIT_SET) &&
(RemoteAsyncPause == TRUEPHY_BIT_CLEAR)) {
if (pAdapter->RegistryFlowControl == Both) {
pAdapter->FlowControl = Both;
} else {
pAdapter->FlowControl = None;
}
} else if ((RemotePause == TRUEPHY_BIT_CLEAR) &&
(RemoteAsyncPause == TRUEPHY_BIT_CLEAR)) {
pAdapter->FlowControl = None;
} else {/* if (RemotePause == TRUEPHY_CLEAR_BIT &&
RemoteAsyncPause == TRUEPHY_SET_BIT) */
if (pAdapter->RegistryFlowControl == Both) {
pAdapter->FlowControl = RxOnly;
} else {
pAdapter->FlowControl = None;
}
}
}
}
/**
* UpdateMacStatHostCounters - Update the local copy of the statistics
* @pAdapter: pointer to the adapter structure
*/
void UpdateMacStatHostCounters(struct et131x_adapter *pAdapter)
{
struct _ce_stats_t *stats = &pAdapter->Stats;
struct _MAC_STAT_t __iomem *pDevMacStat =
&pAdapter->CSRAddress->macStat;
stats->collisions += readl(&pDevMacStat->TNcl);
stats->first_collision += readl(&pDevMacStat->TScl);
stats->tx_deferred += readl(&pDevMacStat->TDfr);
stats->excessive_collisions += readl(&pDevMacStat->TMcl);
stats->late_collisions += readl(&pDevMacStat->TLcl);
stats->tx_uflo += readl(&pDevMacStat->TUnd);
stats->max_pkt_error += readl(&pDevMacStat->TOvr);
stats->alignment_err += readl(&pDevMacStat->RAln);
stats->crc_err += readl(&pDevMacStat->RCde);
stats->norcvbuf += readl(&pDevMacStat->RDrp);
stats->rx_ov_flow += readl(&pDevMacStat->ROvr);
stats->code_violations += readl(&pDevMacStat->RFcs);
stats->length_err += readl(&pDevMacStat->RFlr);
stats->other_errors += readl(&pDevMacStat->RFrg);
}
/**
* HandleMacStatInterrupt
* @pAdapter: pointer to the adapter structure
*
* One of the MACSTAT counters has wrapped. Update the local copy of
* the statistics held in the adapter structure, checking the "wrap"
* bit for each counter.
*/
void HandleMacStatInterrupt(struct et131x_adapter *pAdapter)
{
MAC_STAT_REG_1_t Carry1;
MAC_STAT_REG_2_t Carry2;
DBG_ENTER(et131x_dbginfo);
/* Read the interrupt bits from the register(s). These are Clear On
* Write.
*/
Carry1.value = readl(&pAdapter->CSRAddress->macStat.Carry1.value);
Carry2.value = readl(&pAdapter->CSRAddress->macStat.Carry2.value);
writel(Carry1.value, &pAdapter->CSRAddress->macStat.Carry1.value);
writel(Carry2.value, &pAdapter->CSRAddress->macStat.Carry2.value);
/* We need to do update the host copy of all the MAC_STAT counters.
* For each counter, check it's overflow bit. If the overflow bit is
* set, then increment the host version of the count by one complete
* revolution of the counter. This routine is called when the counter
* block indicates that one of the counters has wrapped.
*/
if (Carry1.bits.rfcs) {
pAdapter->Stats.code_violations += COUNTER_WRAP_16_BIT;
}
if (Carry1.bits.raln) {
pAdapter->Stats.alignment_err += COUNTER_WRAP_12_BIT;
}
if (Carry1.bits.rflr) {
pAdapter->Stats.length_err += COUNTER_WRAP_16_BIT;
}
if (Carry1.bits.rfrg) {
pAdapter->Stats.other_errors += COUNTER_WRAP_16_BIT;
}
if (Carry1.bits.rcde) {
pAdapter->Stats.crc_err += COUNTER_WRAP_16_BIT;
}
if (Carry1.bits.rovr) {
pAdapter->Stats.rx_ov_flow += COUNTER_WRAP_16_BIT;
}
if (Carry1.bits.rdrp) {
pAdapter->Stats.norcvbuf += COUNTER_WRAP_16_BIT;
}
if (Carry2.bits.tovr) {
pAdapter->Stats.max_pkt_error += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tund) {
pAdapter->Stats.tx_uflo += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tscl) {
pAdapter->Stats.first_collision += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tdfr) {
pAdapter->Stats.tx_deferred += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tmcl) {
pAdapter->Stats.excessive_collisions += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tlcl) {
pAdapter->Stats.late_collisions += COUNTER_WRAP_12_BIT;
}
if (Carry2.bits.tncl) {
pAdapter->Stats.collisions += COUNTER_WRAP_12_BIT;
}
DBG_LEAVE(et131x_dbginfo);
}
void SetupDeviceForMulticast(struct et131x_adapter *pAdapter)
{
struct _RXMAC_t __iomem *rxmac = &pAdapter->CSRAddress->rxmac;
uint32_t nIndex;
uint32_t result;
uint32_t hash1 = 0;
uint32_t hash2 = 0;
uint32_t hash3 = 0;
uint32_t hash4 = 0;
PM_CSR_t pm_csr;
DBG_ENTER(et131x_dbginfo);
/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
* the multi-cast LIST. If it is NOT specified, (and "ALL" is not
* specified) then we should pass NO multi-cast addresses to the
* driver.
*/
if (pAdapter->PacketFilter & ET131X_PACKET_TYPE_MULTICAST) {
DBG_VERBOSE(et131x_dbginfo,
"MULTICAST flag is set, MCCount: %d\n",
pAdapter->MCAddressCount);
/* Loop through our multicast array and set up the device */
for (nIndex = 0; nIndex < pAdapter->MCAddressCount; nIndex++) {
DBG_VERBOSE(et131x_dbginfo,
"MCList[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
nIndex,
pAdapter->MCList[nIndex][0],
pAdapter->MCList[nIndex][1],
pAdapter->MCList[nIndex][2],
pAdapter->MCList[nIndex][3],
pAdapter->MCList[nIndex][4],
pAdapter->MCList[nIndex][5]);
result = ether_crc(6, pAdapter->MCList[nIndex]);
result = (result & 0x3F800000) >> 23;
if (result < 32) {
hash1 |= (1 << result);
} else if ((31 < result) && (result < 64)) {
result -= 32;
hash2 |= (1 << result);
} else if ((63 < result) && (result < 96)) {
result -= 64;
hash3 |= (1 << result);
} else {
result -= 96;
hash4 |= (1 << result);
}
}
}
/* Write out the new hash to the device */
pm_csr.value = readl(&pAdapter->CSRAddress->global.pm_csr.value);
if (pm_csr.bits.pm_phy_sw_coma == 0) {
writel(hash1, &rxmac->multi_hash1);
writel(hash2, &rxmac->multi_hash2);
writel(hash3, &rxmac->multi_hash3);
writel(hash4, &rxmac->multi_hash4);
}
DBG_LEAVE(et131x_dbginfo);
}
void SetupDeviceForUnicast(struct et131x_adapter *pAdapter)
{
struct _RXMAC_t __iomem *rxmac = &pAdapter->CSRAddress->rxmac;
RXMAC_UNI_PF_ADDR1_t uni_pf1;
RXMAC_UNI_PF_ADDR2_t uni_pf2;
RXMAC_UNI_PF_ADDR3_t uni_pf3;
PM_CSR_t pm_csr;
DBG_ENTER(et131x_dbginfo);
/* Set up unicast packet filter reg 3 to be the first two octets of
* the MAC address for both address
*
* Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
* MAC address for second address
*
* Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
* MAC address for first address
*/
uni_pf3.bits.addr1_1 = pAdapter->CurrentAddress[0];
uni_pf3.bits.addr1_2 = pAdapter->CurrentAddress[1];
uni_pf3.bits.addr2_1 = pAdapter->CurrentAddress[0];
uni_pf3.bits.addr2_2 = pAdapter->CurrentAddress[1];
uni_pf2.bits.addr2_3 = pAdapter->CurrentAddress[2];
uni_pf2.bits.addr2_4 = pAdapter->CurrentAddress[3];
uni_pf2.bits.addr2_5 = pAdapter->CurrentAddress[4];
uni_pf2.bits.addr2_6 = pAdapter->CurrentAddress[5];
uni_pf1.bits.addr1_3 = pAdapter->CurrentAddress[2];
uni_pf1.bits.addr1_4 = pAdapter->CurrentAddress[3];
uni_pf1.bits.addr1_5 = pAdapter->CurrentAddress[4];
uni_pf1.bits.addr1_6 = pAdapter->CurrentAddress[5];
pm_csr.value = readl(&pAdapter->CSRAddress->global.pm_csr.value);
if (pm_csr.bits.pm_phy_sw_coma == 0) {
writel(uni_pf1.value, &rxmac->uni_pf_addr1.value);
writel(uni_pf2.value, &rxmac->uni_pf_addr2.value);
writel(uni_pf3.value, &rxmac->uni_pf_addr3.value);
}
DBG_LEAVE(et131x_dbginfo);
}