blob: 7599e2625c7d021a9db22afbd5b4904e6b701b1d [file] [log] [blame]
* linux/arch/arm/mm/fault-armv.c
* Copyright (C) 1995 Linus Torvalds
* Modifications for ARM processor (c) 1995-2002 Russell King
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/gfp.h>
#include <asm/bugs.h>
#include <asm/cacheflush.h>
#include <asm/cachetype.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include "mm.h"
static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
#if __LINUX_ARM_ARCH__ < 6
* We take the easy way out of this problem - we make the
* PTE uncacheable. However, we leave the write buffer on.
* Note that the pte lock held when calling update_mmu_cache must also
* guard the pte (somewhere else in the same mm) that we modify here.
* Therefore those configurations which might call adjust_pte (those
* without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
unsigned long pfn, pte_t *ptep)
pte_t entry = *ptep;
int ret;
* If this page is present, it's actually being shared.
ret = pte_present(entry);
* If this page isn't present, or is already setup to
* fault (ie, is old), we can safely ignore any issues.
if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
flush_cache_page(vma, address, pfn);
outer_flush_range((pfn << PAGE_SHIFT),
pte_val(entry) &= ~L_PTE_MT_MASK;
pte_val(entry) |= shared_pte_mask;
set_pte_at(vma->vm_mm, address, ptep, entry);
flush_tlb_page(vma, address);
return ret;
* If we are using split PTE locks, then we need to take the page
* lock here. Otherwise we are using shared mm->page_table_lock
* which is already locked, thus cannot take it.
static inline void do_pte_lock(spinlock_t *ptl)
* Use nested version here to indicate that we are already
* holding one similar spinlock.
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
static inline void do_pte_unlock(spinlock_t *ptl)
#else /* !USE_SPLIT_PTLOCKS */
static inline void do_pte_lock(spinlock_t *ptl) {}
static inline void do_pte_unlock(spinlock_t *ptl) {}
#endif /* USE_SPLIT_PTLOCKS */
static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
unsigned long pfn)
spinlock_t *ptl;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret;
pgd = pgd_offset(vma->vm_mm, address);
if (pgd_none_or_clear_bad(pgd))
return 0;
pud = pud_offset(pgd, address);
if (pud_none_or_clear_bad(pud))
return 0;
pmd = pmd_offset(pud, address);
if (pmd_none_or_clear_bad(pmd))
return 0;
* This is called while another page table is mapped, so we
* must use the nested version. This also means we need to
* open-code the spin-locking.
ptl = pte_lockptr(vma->vm_mm, pmd);
pte = pte_offset_map(pmd, address);
ret = do_adjust_pte(vma, address, pfn, pte);
return ret;
static void
make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep, unsigned long pfn)
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *mpnt;
struct prio_tree_iter iter;
unsigned long offset;
pgoff_t pgoff;
int aliases = 0;
pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
* If we have any shared mappings that are in the same mm
* space, then we need to handle them specially to maintain
* cache coherency.
vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
* If this VMA is not in our MM, we can ignore it.
* Note that we intentionally mask out the VMA
* that we are fixing up.
if (mpnt->vm_mm != mm || mpnt == vma)
if (!(mpnt->vm_flags & VM_MAYSHARE))
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
if (aliases)
do_adjust_pte(vma, addr, pfn, ptep);
* Take care of architecture specific things when placing a new PTE into
* a page table, or changing an existing PTE. Basically, there are two
* things that we need to take care of:
* 1. If PG_dcache_clean is not set for the page, we need to ensure
* that any cache entries for the kernels virtual memory
* range are written back to the page.
* 2. If we have multiple shared mappings of the same space in
* an object, we need to deal with the cache aliasing issues.
* Note that the pte lock will be held.
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
unsigned long pfn = pte_pfn(*ptep);
struct address_space *mapping;
struct page *page;
if (!pfn_valid(pfn))
* The zero page is never written to, so never has any dirty
* cache lines, and therefore never needs to be flushed.
page = pfn_to_page(pfn);
if (page == ZERO_PAGE(0))
mapping = page_mapping(page);
if (!test_and_set_bit(PG_dcache_clean, &page->flags))
__flush_dcache_page(mapping, page);
if (mapping) {
if (cache_is_vivt())
make_coherent(mapping, vma, addr, ptep, pfn);
else if (vma->vm_flags & VM_EXEC)
#endif /* __LINUX_ARM_ARCH__ < 6 */
* Check whether the write buffer has physical address aliasing
* issues. If it has, we need to avoid them for the case where
* we have several shared mappings of the same object in user
* space.
static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
register unsigned long zero = 0, one = 1, val;
*p1 = one;
*p2 = zero;
val = *p1;
return val != zero;
void __init check_writebuffer_bugs(void)
struct page *page;
const char *reason;
unsigned long v = 1;
printk(KERN_INFO "CPU: Testing write buffer coherency: ");
page = alloc_page(GFP_KERNEL);
if (page) {
unsigned long *p1, *p2;
pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
p1 = vmap(&page, 1, VM_IOREMAP, prot);
p2 = vmap(&page, 1, VM_IOREMAP, prot);
if (p1 && p2) {
v = check_writebuffer(p1, p2);
reason = "enabling work-around";
} else {
reason = "unable to map memory\n";
} else {
reason = "unable to grab page\n";
if (v) {
printk("failed, %s\n", reason);
shared_pte_mask = L_PTE_MT_UNCACHED;
} else {