| /*- |
| * Linux port done by David McCullough <david_mccullough@mcafee.com> |
| * Copyright (C) 2006-2010 David McCullough |
| * Copyright (C) 2004-2005 Intel Corporation. |
| * The license and original author are listed below. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. |
| * |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #if 0 |
| #include <sys/cdefs.h> |
| __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.27 2007/03/21 03:42:51 sam Exp $"); |
| #endif |
| |
| /* |
| * Cryptographic Subsystem. |
| * |
| * This code is derived from the Openbsd Cryptographic Framework (OCF) |
| * that has the copyright shown below. Very little of the original |
| * code remains. |
| */ |
| /*- |
| * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) |
| * |
| * This code was written by Angelos D. Keromytis in Athens, Greece, in |
| * February 2000. Network Security Technologies Inc. (NSTI) kindly |
| * supported the development of this code. |
| * |
| * Copyright (c) 2000, 2001 Angelos D. Keromytis |
| * |
| * Permission to use, copy, and modify this software with or without fee |
| * is hereby granted, provided that this entire notice is included in |
| * all source code copies of any software which is or includes a copy or |
| * modification of this software. |
| * |
| * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR |
| * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY |
| * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE |
| * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR |
| * PURPOSE. |
| * |
| __FBSDID("$FreeBSD: src/sys/opencrypto/crypto.c,v 1.16 2005/01/07 02:29:16 imp Exp $"); |
| */ |
| |
| |
| #include <linux/version.h> |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED) |
| #include <linux/config.h> |
| #endif |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <linux/wait.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4) |
| #include <linux/kthread.h> |
| #endif |
| #include <cryptodev.h> |
| |
| /* |
| * keep track of whether or not we have been initialised, a big |
| * issue if we are linked into the kernel and a driver gets started before |
| * us |
| */ |
| static int crypto_initted = 0; |
| |
| /* |
| * Crypto drivers register themselves by allocating a slot in the |
| * crypto_drivers table with crypto_get_driverid() and then registering |
| * each algorithm they support with crypto_register() and crypto_kregister(). |
| */ |
| |
| /* |
| * lock on driver table |
| * we track its state as spin_is_locked does not do anything on non-SMP boxes |
| */ |
| static spinlock_t crypto_drivers_lock; |
| static int crypto_drivers_locked; /* for non-SMP boxes */ |
| |
| #define CRYPTO_DRIVER_LOCK() \ |
| ({ \ |
| spin_lock_irqsave(&crypto_drivers_lock, d_flags); \ |
| crypto_drivers_locked = 1; \ |
| dprintk("%s,%d: DRIVER_LOCK()\n", __FILE__, __LINE__); \ |
| }) |
| #define CRYPTO_DRIVER_UNLOCK() \ |
| ({ \ |
| dprintk("%s,%d: DRIVER_UNLOCK()\n", __FILE__, __LINE__); \ |
| crypto_drivers_locked = 0; \ |
| spin_unlock_irqrestore(&crypto_drivers_lock, d_flags); \ |
| }) |
| #define CRYPTO_DRIVER_ASSERT() \ |
| ({ \ |
| if (!crypto_drivers_locked) { \ |
| dprintk("%s,%d: DRIVER_ASSERT!\n", __FILE__, __LINE__); \ |
| } \ |
| }) |
| |
| /* |
| * Crypto device/driver capabilities structure. |
| * |
| * Synchronization: |
| * (d) - protected by CRYPTO_DRIVER_LOCK() |
| * (q) - protected by CRYPTO_Q_LOCK() |
| * Not tagged fields are read-only. |
| */ |
| struct cryptocap { |
| device_t cc_dev; /* (d) device/driver */ |
| u_int32_t cc_sessions; /* (d) # of sessions */ |
| u_int32_t cc_koperations; /* (d) # os asym operations */ |
| /* |
| * Largest possible operator length (in bits) for each type of |
| * encryption algorithm. XXX not used |
| */ |
| u_int16_t cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1]; |
| u_int8_t cc_alg[CRYPTO_ALGORITHM_MAX + 1]; |
| u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; |
| |
| int cc_flags; /* (d) flags */ |
| #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ |
| int cc_qblocked; /* (q) symmetric q blocked */ |
| int cc_kqblocked; /* (q) asymmetric q blocked */ |
| |
| int cc_unqblocked; /* (q) symmetric q blocked */ |
| int cc_unkqblocked; /* (q) asymmetric q blocked */ |
| }; |
| static struct cryptocap *crypto_drivers = NULL; |
| static int crypto_drivers_num = 0; |
| |
| /* |
| * There are two queues for crypto requests; one for symmetric (e.g. |
| * cipher) operations and one for asymmetric (e.g. MOD)operations. |
| * A single mutex is used to lock access to both queues. We could |
| * have one per-queue but having one simplifies handling of block/unblock |
| * operations. |
| */ |
| static LIST_HEAD(crp_q); /* crypto request queue */ |
| static LIST_HEAD(crp_kq); /* asym request queue */ |
| |
| static spinlock_t crypto_q_lock; |
| |
| int crypto_all_qblocked = 0; /* protect with Q_LOCK */ |
| module_param(crypto_all_qblocked, int, 0444); |
| MODULE_PARM_DESC(crypto_all_qblocked, "Are all crypto queues blocked"); |
| |
| int crypto_all_kqblocked = 0; /* protect with Q_LOCK */ |
| module_param(crypto_all_kqblocked, int, 0444); |
| MODULE_PARM_DESC(crypto_all_kqblocked, "Are all asym crypto queues blocked"); |
| |
| #define CRYPTO_Q_LOCK() \ |
| ({ \ |
| spin_lock_irqsave(&crypto_q_lock, q_flags); \ |
| dprintk("%s,%d: Q_LOCK()\n", __FILE__, __LINE__); \ |
| }) |
| #define CRYPTO_Q_UNLOCK() \ |
| ({ \ |
| dprintk("%s,%d: Q_UNLOCK()\n", __FILE__, __LINE__); \ |
| spin_unlock_irqrestore(&crypto_q_lock, q_flags); \ |
| }) |
| |
| /* |
| * There are two queues for processing completed crypto requests; one |
| * for the symmetric and one for the asymmetric ops. We only need one |
| * but have two to avoid type futzing (cryptop vs. cryptkop). A single |
| * mutex is used to lock access to both queues. Note that this lock |
| * must be separate from the lock on request queues to insure driver |
| * callbacks don't generate lock order reversals. |
| */ |
| static LIST_HEAD(crp_ret_q); /* callback queues */ |
| static LIST_HEAD(crp_ret_kq); |
| |
| static spinlock_t crypto_ret_q_lock; |
| #define CRYPTO_RETQ_LOCK() \ |
| ({ \ |
| spin_lock_irqsave(&crypto_ret_q_lock, r_flags); \ |
| dprintk("%s,%d: RETQ_LOCK\n", __FILE__, __LINE__); \ |
| }) |
| #define CRYPTO_RETQ_UNLOCK() \ |
| ({ \ |
| dprintk("%s,%d: RETQ_UNLOCK\n", __FILE__, __LINE__); \ |
| spin_unlock_irqrestore(&crypto_ret_q_lock, r_flags); \ |
| }) |
| #define CRYPTO_RETQ_EMPTY() (list_empty(&crp_ret_q) && list_empty(&crp_ret_kq)) |
| |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) |
| static kmem_cache_t *cryptop_zone; |
| static kmem_cache_t *cryptodesc_zone; |
| #else |
| static struct kmem_cache *cryptop_zone; |
| static struct kmem_cache *cryptodesc_zone; |
| #endif |
| |
| #define debug crypto_debug |
| int crypto_debug = 0; |
| module_param(crypto_debug, int, 0644); |
| MODULE_PARM_DESC(crypto_debug, "Enable debug"); |
| EXPORT_SYMBOL(crypto_debug); |
| |
| /* |
| * Maximum number of outstanding crypto requests before we start |
| * failing requests. We need this to prevent DOS when too many |
| * requests are arriving for us to keep up. Otherwise we will |
| * run the system out of memory. Since crypto is slow, we are |
| * usually the bottleneck that needs to say, enough is enough. |
| * |
| * We cannot print errors when this condition occurs, we are already too |
| * slow, printing anything will just kill us |
| */ |
| |
| static int crypto_q_cnt = 0; |
| module_param(crypto_q_cnt, int, 0444); |
| MODULE_PARM_DESC(crypto_q_cnt, |
| "Current number of outstanding crypto requests"); |
| |
| static int crypto_q_max = 1000; |
| module_param(crypto_q_max, int, 0644); |
| MODULE_PARM_DESC(crypto_q_max, |
| "Maximum number of outstanding crypto requests"); |
| |
| #define bootverbose crypto_verbose |
| static int crypto_verbose = 0; |
| module_param(crypto_verbose, int, 0644); |
| MODULE_PARM_DESC(crypto_verbose, |
| "Enable verbose crypto startup"); |
| |
| int crypto_usercrypto = 1; /* userland may do crypto reqs */ |
| module_param(crypto_usercrypto, int, 0644); |
| MODULE_PARM_DESC(crypto_usercrypto, |
| "Enable/disable user-mode access to crypto support"); |
| |
| int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ |
| module_param(crypto_userasymcrypto, int, 0644); |
| MODULE_PARM_DESC(crypto_userasymcrypto, |
| "Enable/disable user-mode access to asymmetric crypto support"); |
| |
| int crypto_devallowsoft = 0; /* only use hardware crypto */ |
| module_param(crypto_devallowsoft, int, 0644); |
| MODULE_PARM_DESC(crypto_devallowsoft, |
| "Enable/disable use of software crypto support"); |
| |
| /* |
| * This parameter controls the maximum number of crypto operations to |
| * do consecutively in the crypto kernel thread before scheduling to allow |
| * other processes to run. Without it, it is possible to get into a |
| * situation where the crypto thread never allows any other processes to run. |
| * Default to 1000 which should be less than one second. |
| */ |
| static int crypto_max_loopcount = 1000; |
| module_param(crypto_max_loopcount, int, 0644); |
| MODULE_PARM_DESC(crypto_max_loopcount, |
| "Maximum number of crypto ops to do before yielding to other processes"); |
| |
| #ifndef CONFIG_NR_CPUS |
| #define CONFIG_NR_CPUS 1 |
| #endif |
| |
| static struct task_struct *cryptoproc[CONFIG_NR_CPUS]; |
| static struct task_struct *cryptoretproc[CONFIG_NR_CPUS]; |
| static DECLARE_WAIT_QUEUE_HEAD(cryptoproc_wait); |
| static DECLARE_WAIT_QUEUE_HEAD(cryptoretproc_wait); |
| |
| static int crypto_proc(void *arg); |
| static int crypto_ret_proc(void *arg); |
| static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); |
| static int crypto_kinvoke(struct cryptkop *krp, int flags); |
| static void crypto_exit(void); |
| static int crypto_init(void); |
| |
| static struct cryptostats cryptostats; |
| |
| static struct cryptocap * |
| crypto_checkdriver(u_int32_t hid) |
| { |
| if (crypto_drivers == NULL) |
| return NULL; |
| return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); |
| } |
| |
| /* |
| * Compare a driver's list of supported algorithms against another |
| * list; return non-zero if all algorithms are supported. |
| */ |
| static int |
| driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri) |
| { |
| const struct cryptoini *cr; |
| |
| /* See if all the algorithms are supported. */ |
| for (cr = cri; cr; cr = cr->cri_next) |
| if (cap->cc_alg[cr->cri_alg] == 0) |
| return 0; |
| return 1; |
| } |
| |
| |
| /* |
| * Select a driver for a new session that supports the specified |
| * algorithms and, optionally, is constrained according to the flags. |
| * The algorithm we use here is pretty stupid; just use the |
| * first driver that supports all the algorithms we need. If there |
| * are multiple drivers we choose the driver with the fewest active |
| * sessions. We prefer hardware-backed drivers to software ones. |
| * |
| * XXX We need more smarts here (in real life too, but that's |
| * XXX another story altogether). |
| */ |
| static struct cryptocap * |
| crypto_select_driver(const struct cryptoini *cri, int flags) |
| { |
| struct cryptocap *cap, *best; |
| int match, hid; |
| |
| CRYPTO_DRIVER_ASSERT(); |
| |
| /* |
| * Look first for hardware crypto devices if permitted. |
| */ |
| if (flags & CRYPTOCAP_F_HARDWARE) |
| match = CRYPTOCAP_F_HARDWARE; |
| else |
| match = CRYPTOCAP_F_SOFTWARE; |
| best = NULL; |
| again: |
| for (hid = 0; hid < crypto_drivers_num; hid++) { |
| cap = &crypto_drivers[hid]; |
| /* |
| * If it's not initialized, is in the process of |
| * going away, or is not appropriate (hardware |
| * or software based on match), then skip. |
| */ |
| if (cap->cc_dev == NULL || |
| (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || |
| (cap->cc_flags & match) == 0) |
| continue; |
| |
| /* verify all the algorithms are supported. */ |
| if (driver_suitable(cap, cri)) { |
| if (best == NULL || |
| cap->cc_sessions < best->cc_sessions) |
| best = cap; |
| } |
| } |
| if (best != NULL) |
| return best; |
| if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { |
| /* sort of an Algol 68-style for loop */ |
| match = CRYPTOCAP_F_SOFTWARE; |
| goto again; |
| } |
| return best; |
| } |
| |
| /* |
| * Create a new session. The crid argument specifies a crypto |
| * driver to use or constraints on a driver to select (hardware |
| * only, software only, either). Whatever driver is selected |
| * must be capable of the requested crypto algorithms. |
| */ |
| int |
| crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid) |
| { |
| struct cryptocap *cap; |
| u_int32_t hid, lid; |
| int err; |
| unsigned long d_flags; |
| |
| CRYPTO_DRIVER_LOCK(); |
| if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| /* |
| * Use specified driver; verify it is capable. |
| */ |
| cap = crypto_checkdriver(crid); |
| if (cap != NULL && !driver_suitable(cap, cri)) |
| cap = NULL; |
| } else { |
| /* |
| * No requested driver; select based on crid flags. |
| */ |
| cap = crypto_select_driver(cri, crid); |
| /* |
| * if NULL then can't do everything in one session. |
| * XXX Fix this. We need to inject a "virtual" session |
| * XXX layer right about here. |
| */ |
| } |
| if (cap != NULL) { |
| /* Call the driver initialization routine. */ |
| hid = cap - crypto_drivers; |
| lid = hid; /* Pass the driver ID. */ |
| cap->cc_sessions++; |
| CRYPTO_DRIVER_UNLOCK(); |
| err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri); |
| CRYPTO_DRIVER_LOCK(); |
| if (err == 0) { |
| (*sid) = (cap->cc_flags & 0xff000000) |
| | (hid & 0x00ffffff); |
| (*sid) <<= 32; |
| (*sid) |= (lid & 0xffffffff); |
| } else |
| cap->cc_sessions--; |
| } else |
| err = EINVAL; |
| CRYPTO_DRIVER_UNLOCK(); |
| return err; |
| } |
| |
| static void |
| crypto_remove(struct cryptocap *cap) |
| { |
| CRYPTO_DRIVER_ASSERT(); |
| if (cap->cc_sessions == 0 && cap->cc_koperations == 0) |
| bzero(cap, sizeof(*cap)); |
| } |
| |
| /* |
| * Delete an existing session (or a reserved session on an unregistered |
| * driver). |
| */ |
| int |
| crypto_freesession(u_int64_t sid) |
| { |
| struct cryptocap *cap; |
| u_int32_t hid; |
| int err = 0; |
| unsigned long d_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| CRYPTO_DRIVER_LOCK(); |
| |
| if (crypto_drivers == NULL) { |
| err = EINVAL; |
| goto done; |
| } |
| |
| /* Determine two IDs. */ |
| hid = CRYPTO_SESID2HID(sid); |
| |
| if (hid >= crypto_drivers_num) { |
| dprintk("%s - INVALID DRIVER NUM %d\n", __FUNCTION__, hid); |
| err = ENOENT; |
| goto done; |
| } |
| cap = &crypto_drivers[hid]; |
| |
| if (cap->cc_dev) { |
| CRYPTO_DRIVER_UNLOCK(); |
| /* Call the driver cleanup routine, if available, unlocked. */ |
| err = CRYPTODEV_FREESESSION(cap->cc_dev, sid); |
| CRYPTO_DRIVER_LOCK(); |
| } |
| |
| if (cap->cc_sessions) |
| cap->cc_sessions--; |
| |
| if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) |
| crypto_remove(cap); |
| |
| done: |
| CRYPTO_DRIVER_UNLOCK(); |
| return err; |
| } |
| |
| /* |
| * Return an unused driver id. Used by drivers prior to registering |
| * support for the algorithms they handle. |
| */ |
| int32_t |
| crypto_get_driverid(device_t dev, int flags) |
| { |
| struct cryptocap *newdrv; |
| int i; |
| unsigned long d_flags; |
| |
| if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| printf("%s: no flags specified when registering driver\n", |
| device_get_nameunit(dev)); |
| return -1; |
| } |
| |
| CRYPTO_DRIVER_LOCK(); |
| |
| for (i = 0; i < crypto_drivers_num; i++) { |
| if (crypto_drivers[i].cc_dev == NULL && |
| (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) { |
| break; |
| } |
| } |
| |
| /* Out of entries, allocate some more. */ |
| if (i == crypto_drivers_num) { |
| /* Be careful about wrap-around. */ |
| if (2 * crypto_drivers_num <= crypto_drivers_num) { |
| CRYPTO_DRIVER_UNLOCK(); |
| printk("crypto: driver count wraparound!\n"); |
| return -1; |
| } |
| |
| newdrv = kmalloc(2 * crypto_drivers_num * sizeof(struct cryptocap), |
| GFP_KERNEL); |
| if (newdrv == NULL) { |
| CRYPTO_DRIVER_UNLOCK(); |
| printk("crypto: no space to expand driver table!\n"); |
| return -1; |
| } |
| |
| memcpy(newdrv, crypto_drivers, |
| crypto_drivers_num * sizeof(struct cryptocap)); |
| memset(&newdrv[crypto_drivers_num], 0, |
| crypto_drivers_num * sizeof(struct cryptocap)); |
| |
| crypto_drivers_num *= 2; |
| |
| kfree(crypto_drivers); |
| crypto_drivers = newdrv; |
| } |
| |
| /* NB: state is zero'd on free */ |
| crypto_drivers[i].cc_sessions = 1; /* Mark */ |
| crypto_drivers[i].cc_dev = dev; |
| crypto_drivers[i].cc_flags = flags; |
| if (bootverbose) |
| printf("crypto: assign %s driver id %u, flags %u\n", |
| device_get_nameunit(dev), i, flags); |
| |
| CRYPTO_DRIVER_UNLOCK(); |
| |
| return i; |
| } |
| |
| /* |
| * Lookup a driver by name. We match against the full device |
| * name and unit, and against just the name. The latter gives |
| * us a simple widlcarding by device name. On success return the |
| * driver/hardware identifier; otherwise return -1. |
| */ |
| int |
| crypto_find_driver(const char *match) |
| { |
| int i, len = strlen(match); |
| unsigned long d_flags; |
| |
| CRYPTO_DRIVER_LOCK(); |
| for (i = 0; i < crypto_drivers_num; i++) { |
| device_t dev = crypto_drivers[i].cc_dev; |
| if (dev == NULL || |
| (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP)) |
| continue; |
| if (strncmp(match, device_get_nameunit(dev), len) == 0 || |
| strncmp(match, device_get_name(dev), len) == 0) |
| break; |
| } |
| CRYPTO_DRIVER_UNLOCK(); |
| return i < crypto_drivers_num ? i : -1; |
| } |
| |
| /* |
| * Return the device_t for the specified driver or NULL |
| * if the driver identifier is invalid. |
| */ |
| device_t |
| crypto_find_device_byhid(int hid) |
| { |
| struct cryptocap *cap = crypto_checkdriver(hid); |
| return cap != NULL ? cap->cc_dev : NULL; |
| } |
| |
| /* |
| * Return the device/driver capabilities. |
| */ |
| int |
| crypto_getcaps(int hid) |
| { |
| struct cryptocap *cap = crypto_checkdriver(hid); |
| return cap != NULL ? cap->cc_flags : 0; |
| } |
| |
| /* |
| * Register support for a key-related algorithm. This routine |
| * is called once for each algorithm supported a driver. |
| */ |
| int |
| crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) |
| { |
| struct cryptocap *cap; |
| int err; |
| unsigned long d_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| CRYPTO_DRIVER_LOCK(); |
| |
| cap = crypto_checkdriver(driverid); |
| if (cap != NULL && |
| (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { |
| /* |
| * XXX Do some performance testing to determine placing. |
| * XXX We probably need an auxiliary data structure that |
| * XXX describes relative performances. |
| */ |
| |
| cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; |
| if (bootverbose) |
| printf("crypto: %s registers key alg %u flags %u\n" |
| , device_get_nameunit(cap->cc_dev) |
| , kalg |
| , flags |
| ); |
| err = 0; |
| } else |
| err = EINVAL; |
| |
| CRYPTO_DRIVER_UNLOCK(); |
| return err; |
| } |
| |
| /* |
| * Register support for a non-key-related algorithm. This routine |
| * is called once for each such algorithm supported by a driver. |
| */ |
| int |
| crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, |
| u_int32_t flags) |
| { |
| struct cryptocap *cap; |
| int err; |
| unsigned long d_flags; |
| |
| dprintk("%s(id=0x%x, alg=%d, maxoplen=%d, flags=0x%x)\n", __FUNCTION__, |
| driverid, alg, maxoplen, flags); |
| |
| CRYPTO_DRIVER_LOCK(); |
| |
| cap = crypto_checkdriver(driverid); |
| /* NB: algorithms are in the range [1..max] */ |
| if (cap != NULL && |
| (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { |
| /* |
| * XXX Do some performance testing to determine placing. |
| * XXX We probably need an auxiliary data structure that |
| * XXX describes relative performances. |
| */ |
| |
| cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; |
| cap->cc_max_op_len[alg] = maxoplen; |
| if (bootverbose) |
| printf("crypto: %s registers alg %u flags %u maxoplen %u\n" |
| , device_get_nameunit(cap->cc_dev) |
| , alg |
| , flags |
| , maxoplen |
| ); |
| cap->cc_sessions = 0; /* Unmark */ |
| err = 0; |
| } else |
| err = EINVAL; |
| |
| CRYPTO_DRIVER_UNLOCK(); |
| return err; |
| } |
| |
| static void |
| driver_finis(struct cryptocap *cap) |
| { |
| u_int32_t ses, kops; |
| |
| CRYPTO_DRIVER_ASSERT(); |
| |
| ses = cap->cc_sessions; |
| kops = cap->cc_koperations; |
| bzero(cap, sizeof(*cap)); |
| if (ses != 0 || kops != 0) { |
| /* |
| * If there are pending sessions, |
| * just mark as invalid. |
| */ |
| cap->cc_flags |= CRYPTOCAP_F_CLEANUP; |
| cap->cc_sessions = ses; |
| cap->cc_koperations = kops; |
| } |
| } |
| |
| /* |
| * Unregister a crypto driver. If there are pending sessions using it, |
| * leave enough information around so that subsequent calls using those |
| * sessions will correctly detect the driver has been unregistered and |
| * reroute requests. |
| */ |
| int |
| crypto_unregister(u_int32_t driverid, int alg) |
| { |
| struct cryptocap *cap; |
| int i, err; |
| unsigned long d_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| CRYPTO_DRIVER_LOCK(); |
| |
| cap = crypto_checkdriver(driverid); |
| if (cap != NULL && |
| (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && |
| cap->cc_alg[alg] != 0) { |
| cap->cc_alg[alg] = 0; |
| cap->cc_max_op_len[alg] = 0; |
| |
| /* Was this the last algorithm ? */ |
| for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) |
| if (cap->cc_alg[i] != 0) |
| break; |
| |
| if (i == CRYPTO_ALGORITHM_MAX + 1) |
| driver_finis(cap); |
| err = 0; |
| } else |
| err = EINVAL; |
| CRYPTO_DRIVER_UNLOCK(); |
| return err; |
| } |
| |
| /* |
| * Unregister all algorithms associated with a crypto driver. |
| * If there are pending sessions using it, leave enough information |
| * around so that subsequent calls using those sessions will |
| * correctly detect the driver has been unregistered and reroute |
| * requests. |
| */ |
| int |
| crypto_unregister_all(u_int32_t driverid) |
| { |
| struct cryptocap *cap; |
| int err; |
| unsigned long d_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| CRYPTO_DRIVER_LOCK(); |
| cap = crypto_checkdriver(driverid); |
| if (cap != NULL) { |
| driver_finis(cap); |
| err = 0; |
| } else |
| err = EINVAL; |
| CRYPTO_DRIVER_UNLOCK(); |
| |
| return err; |
| } |
| |
| /* |
| * Clear blockage on a driver. The what parameter indicates whether |
| * the driver is now ready for cryptop's and/or cryptokop's. |
| */ |
| int |
| crypto_unblock(u_int32_t driverid, int what) |
| { |
| struct cryptocap *cap; |
| int err; |
| unsigned long q_flags; |
| |
| CRYPTO_Q_LOCK(); |
| cap = crypto_checkdriver(driverid); |
| if (cap != NULL) { |
| if (what & CRYPTO_SYMQ) { |
| cap->cc_qblocked = 0; |
| cap->cc_unqblocked = 0; |
| crypto_all_qblocked = 0; |
| } |
| if (what & CRYPTO_ASYMQ) { |
| cap->cc_kqblocked = 0; |
| cap->cc_unkqblocked = 0; |
| crypto_all_kqblocked = 0; |
| } |
| wake_up_interruptible(&cryptoproc_wait); |
| err = 0; |
| } else |
| err = EINVAL; |
| CRYPTO_Q_UNLOCK(); //DAVIDM should this be a driver lock |
| |
| return err; |
| } |
| |
| /* |
| * Add a crypto request to a queue, to be processed by the kernel thread. |
| */ |
| int |
| crypto_dispatch(struct cryptop *crp) |
| { |
| struct cryptocap *cap; |
| int result = -1; |
| unsigned long q_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| |
| cryptostats.cs_ops++; |
| |
| CRYPTO_Q_LOCK(); |
| if (crypto_q_cnt >= crypto_q_max) { |
| cryptostats.cs_drops++; |
| CRYPTO_Q_UNLOCK(); |
| return ENOMEM; |
| } |
| crypto_q_cnt++; |
| |
| /* make sure we are starting a fresh run on this crp. */ |
| crp->crp_flags &= ~CRYPTO_F_DONE; |
| crp->crp_etype = 0; |
| |
| /* |
| * Caller marked the request to be processed immediately; dispatch |
| * it directly to the driver unless the driver is currently blocked. |
| */ |
| if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { |
| int hid = CRYPTO_SESID2HID(crp->crp_sid); |
| cap = crypto_checkdriver(hid); |
| /* Driver cannot disappear when there is an active session. */ |
| KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__)); |
| if (!cap->cc_qblocked) { |
| crypto_all_qblocked = 0; |
| crypto_drivers[hid].cc_unqblocked = 1; |
| CRYPTO_Q_UNLOCK(); |
| result = crypto_invoke(cap, crp, 0); |
| CRYPTO_Q_LOCK(); |
| if (result == ERESTART) |
| if (crypto_drivers[hid].cc_unqblocked) |
| crypto_drivers[hid].cc_qblocked = 1; |
| crypto_drivers[hid].cc_unqblocked = 0; |
| } |
| } |
| if (result == ERESTART) { |
| /* |
| * The driver ran out of resources, mark the |
| * driver ``blocked'' for cryptop's and put |
| * the request back in the queue. It would |
| * best to put the request back where we got |
| * it but that's hard so for now we put it |
| * at the front. This should be ok; putting |
| * it at the end does not work. |
| */ |
| list_add(&crp->crp_next, &crp_q); |
| cryptostats.cs_blocks++; |
| result = 0; |
| } else if (result == -1) { |
| TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); |
| result = 0; |
| } |
| wake_up_interruptible(&cryptoproc_wait); |
| CRYPTO_Q_UNLOCK(); |
| return result; |
| } |
| |
| /* |
| * Add an asymetric crypto request to a queue, |
| * to be processed by the kernel thread. |
| */ |
| int |
| crypto_kdispatch(struct cryptkop *krp) |
| { |
| int error; |
| unsigned long q_flags; |
| |
| cryptostats.cs_kops++; |
| |
| error = crypto_kinvoke(krp, krp->krp_crid); |
| if (error == ERESTART) { |
| CRYPTO_Q_LOCK(); |
| TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); |
| wake_up_interruptible(&cryptoproc_wait); |
| CRYPTO_Q_UNLOCK(); |
| error = 0; |
| } |
| return error; |
| } |
| |
| /* |
| * Verify a driver is suitable for the specified operation. |
| */ |
| static __inline int |
| kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) |
| { |
| return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; |
| } |
| |
| /* |
| * Select a driver for an asym operation. The driver must |
| * support the necessary algorithm. The caller can constrain |
| * which device is selected with the flags parameter. The |
| * algorithm we use here is pretty stupid; just use the first |
| * driver that supports the algorithms we need. If there are |
| * multiple suitable drivers we choose the driver with the |
| * fewest active operations. We prefer hardware-backed |
| * drivers to software ones when either may be used. |
| */ |
| static struct cryptocap * |
| crypto_select_kdriver(const struct cryptkop *krp, int flags) |
| { |
| struct cryptocap *cap, *best, *blocked; |
| int match, hid; |
| |
| CRYPTO_DRIVER_ASSERT(); |
| |
| /* |
| * Look first for hardware crypto devices if permitted. |
| */ |
| if (flags & CRYPTOCAP_F_HARDWARE) |
| match = CRYPTOCAP_F_HARDWARE; |
| else |
| match = CRYPTOCAP_F_SOFTWARE; |
| best = NULL; |
| blocked = NULL; |
| again: |
| for (hid = 0; hid < crypto_drivers_num; hid++) { |
| cap = &crypto_drivers[hid]; |
| /* |
| * If it's not initialized, is in the process of |
| * going away, or is not appropriate (hardware |
| * or software based on match), then skip. |
| */ |
| if (cap->cc_dev == NULL || |
| (cap->cc_flags & CRYPTOCAP_F_CLEANUP) || |
| (cap->cc_flags & match) == 0) |
| continue; |
| |
| /* verify all the algorithms are supported. */ |
| if (kdriver_suitable(cap, krp)) { |
| if (best == NULL || |
| cap->cc_koperations < best->cc_koperations) |
| best = cap; |
| } |
| } |
| if (best != NULL) |
| return best; |
| if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { |
| /* sort of an Algol 68-style for loop */ |
| match = CRYPTOCAP_F_SOFTWARE; |
| goto again; |
| } |
| return best; |
| } |
| |
| /* |
| * Dispatch an assymetric crypto request. |
| */ |
| static int |
| crypto_kinvoke(struct cryptkop *krp, int crid) |
| { |
| struct cryptocap *cap = NULL; |
| int error; |
| unsigned long d_flags; |
| |
| KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); |
| KASSERT(krp->krp_callback != NULL, |
| ("%s: krp->crp_callback == NULL", __func__)); |
| |
| CRYPTO_DRIVER_LOCK(); |
| if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { |
| cap = crypto_checkdriver(crid); |
| if (cap != NULL) { |
| /* |
| * Driver present, it must support the necessary |
| * algorithm and, if s/w drivers are excluded, |
| * it must be registered as hardware-backed. |
| */ |
| if (!kdriver_suitable(cap, krp) || |
| (!crypto_devallowsoft && |
| (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) |
| cap = NULL; |
| } |
| } else { |
| /* |
| * No requested driver; select based on crid flags. |
| */ |
| if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ |
| crid &= ~CRYPTOCAP_F_SOFTWARE; |
| cap = crypto_select_kdriver(krp, crid); |
| } |
| if (cap != NULL && !cap->cc_kqblocked) { |
| krp->krp_hid = cap - crypto_drivers; |
| cap->cc_koperations++; |
| CRYPTO_DRIVER_UNLOCK(); |
| error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); |
| CRYPTO_DRIVER_LOCK(); |
| if (error == ERESTART) { |
| cap->cc_koperations--; |
| CRYPTO_DRIVER_UNLOCK(); |
| return (error); |
| } |
| /* return the actual device used */ |
| krp->krp_crid = krp->krp_hid; |
| } else { |
| /* |
| * NB: cap is !NULL if device is blocked; in |
| * that case return ERESTART so the operation |
| * is resubmitted if possible. |
| */ |
| error = (cap == NULL) ? ENODEV : ERESTART; |
| } |
| CRYPTO_DRIVER_UNLOCK(); |
| |
| if (error) { |
| krp->krp_status = error; |
| crypto_kdone(krp); |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Dispatch a crypto request to the appropriate crypto devices. |
| */ |
| static int |
| crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) |
| { |
| KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); |
| KASSERT(crp->crp_callback != NULL, |
| ("%s: crp->crp_callback == NULL", __func__)); |
| KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__)); |
| |
| dprintk("%s()\n", __FUNCTION__); |
| |
| #ifdef CRYPTO_TIMING |
| if (crypto_timing) |
| crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); |
| #endif |
| if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { |
| struct cryptodesc *crd; |
| u_int64_t nid; |
| |
| /* |
| * Driver has unregistered; migrate the session and return |
| * an error to the caller so they'll resubmit the op. |
| * |
| * XXX: What if there are more already queued requests for this |
| * session? |
| */ |
| crypto_freesession(crp->crp_sid); |
| |
| for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) |
| crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); |
| |
| /* XXX propagate flags from initial session? */ |
| if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), |
| CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) |
| crp->crp_sid = nid; |
| |
| crp->crp_etype = EAGAIN; |
| crypto_done(crp); |
| return 0; |
| } else { |
| /* |
| * Invoke the driver to process the request. |
| */ |
| return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); |
| } |
| } |
| |
| /* |
| * Release a set of crypto descriptors. |
| */ |
| void |
| crypto_freereq(struct cryptop *crp) |
| { |
| struct cryptodesc *crd; |
| |
| if (crp == NULL) |
| return; |
| |
| #ifdef DIAGNOSTIC |
| { |
| struct cryptop *crp2; |
| unsigned long q_flags; |
| |
| CRYPTO_Q_LOCK(); |
| TAILQ_FOREACH(crp2, &crp_q, crp_next) { |
| KASSERT(crp2 != crp, |
| ("Freeing cryptop from the crypto queue (%p).", |
| crp)); |
| } |
| CRYPTO_Q_UNLOCK(); |
| CRYPTO_RETQ_LOCK(); |
| TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) { |
| KASSERT(crp2 != crp, |
| ("Freeing cryptop from the return queue (%p).", |
| crp)); |
| } |
| CRYPTO_RETQ_UNLOCK(); |
| } |
| #endif |
| |
| while ((crd = crp->crp_desc) != NULL) { |
| crp->crp_desc = crd->crd_next; |
| kmem_cache_free(cryptodesc_zone, crd); |
| } |
| kmem_cache_free(cryptop_zone, crp); |
| } |
| |
| /* |
| * Acquire a set of crypto descriptors. |
| */ |
| struct cryptop * |
| crypto_getreq(int num) |
| { |
| struct cryptodesc *crd; |
| struct cryptop *crp; |
| |
| crp = kmem_cache_alloc(cryptop_zone, SLAB_ATOMIC); |
| if (crp != NULL) { |
| memset(crp, 0, sizeof(*crp)); |
| INIT_LIST_HEAD(&crp->crp_next); |
| init_waitqueue_head(&crp->crp_waitq); |
| while (num--) { |
| crd = kmem_cache_alloc(cryptodesc_zone, SLAB_ATOMIC); |
| if (crd == NULL) { |
| crypto_freereq(crp); |
| return NULL; |
| } |
| memset(crd, 0, sizeof(*crd)); |
| crd->crd_next = crp->crp_desc; |
| crp->crp_desc = crd; |
| } |
| } |
| return crp; |
| } |
| |
| /* |
| * Invoke the callback on behalf of the driver. |
| */ |
| void |
| crypto_done(struct cryptop *crp) |
| { |
| unsigned long q_flags; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| if ((crp->crp_flags & CRYPTO_F_DONE) == 0) { |
| crp->crp_flags |= CRYPTO_F_DONE; |
| CRYPTO_Q_LOCK(); |
| crypto_q_cnt--; |
| CRYPTO_Q_UNLOCK(); |
| } else |
| printk("crypto: crypto_done op already done, flags 0x%x", |
| crp->crp_flags); |
| if (crp->crp_etype != 0) |
| cryptostats.cs_errs++; |
| /* |
| * CBIMM means unconditionally do the callback immediately; |
| * CBIFSYNC means do the callback immediately only if the |
| * operation was done synchronously. Both are used to avoid |
| * doing extraneous context switches; the latter is mostly |
| * used with the software crypto driver. |
| */ |
| if ((crp->crp_flags & CRYPTO_F_CBIMM) || |
| ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && |
| (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) { |
| /* |
| * Do the callback directly. This is ok when the |
| * callback routine does very little (e.g. the |
| * /dev/crypto callback method just does a wakeup). |
| */ |
| crp->crp_callback(crp); |
| } else { |
| unsigned long r_flags; |
| /* |
| * Normal case; queue the callback for the thread. |
| */ |
| CRYPTO_RETQ_LOCK(); |
| wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ |
| TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); |
| CRYPTO_RETQ_UNLOCK(); |
| } |
| } |
| |
| /* |
| * Invoke the callback on behalf of the driver. |
| */ |
| void |
| crypto_kdone(struct cryptkop *krp) |
| { |
| struct cryptocap *cap; |
| unsigned long d_flags; |
| |
| if ((krp->krp_flags & CRYPTO_KF_DONE) != 0) |
| printk("crypto: crypto_kdone op already done, flags 0x%x", |
| krp->krp_flags); |
| krp->krp_flags |= CRYPTO_KF_DONE; |
| if (krp->krp_status != 0) |
| cryptostats.cs_kerrs++; |
| |
| CRYPTO_DRIVER_LOCK(); |
| /* XXX: What if driver is loaded in the meantime? */ |
| if (krp->krp_hid < crypto_drivers_num) { |
| cap = &crypto_drivers[krp->krp_hid]; |
| cap->cc_koperations--; |
| KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0")); |
| if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) |
| crypto_remove(cap); |
| } |
| CRYPTO_DRIVER_UNLOCK(); |
| |
| /* |
| * CBIMM means unconditionally do the callback immediately; |
| * This is used to avoid doing extraneous context switches |
| */ |
| if ((krp->krp_flags & CRYPTO_KF_CBIMM)) { |
| /* |
| * Do the callback directly. This is ok when the |
| * callback routine does very little (e.g. the |
| * /dev/crypto callback method just does a wakeup). |
| */ |
| krp->krp_callback(krp); |
| } else { |
| unsigned long r_flags; |
| /* |
| * Normal case; queue the callback for the thread. |
| */ |
| CRYPTO_RETQ_LOCK(); |
| wake_up_interruptible(&cryptoretproc_wait);/* shared wait channel */ |
| TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); |
| CRYPTO_RETQ_UNLOCK(); |
| } |
| } |
| |
| int |
| crypto_getfeat(int *featp) |
| { |
| int hid, kalg, feat = 0; |
| unsigned long d_flags; |
| |
| CRYPTO_DRIVER_LOCK(); |
| for (hid = 0; hid < crypto_drivers_num; hid++) { |
| const struct cryptocap *cap = &crypto_drivers[hid]; |
| |
| if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && |
| !crypto_devallowsoft) { |
| continue; |
| } |
| for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) |
| if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) |
| feat |= 1 << kalg; |
| } |
| CRYPTO_DRIVER_UNLOCK(); |
| *featp = feat; |
| return (0); |
| } |
| |
| /* |
| * Crypto thread, dispatches crypto requests. |
| */ |
| static int |
| crypto_proc(void *arg) |
| { |
| struct cryptop *crp, *submit; |
| struct cryptkop *krp, *krpp; |
| struct cryptocap *cap; |
| u_int32_t hid; |
| int result, hint; |
| unsigned long q_flags; |
| int loopcount = 0; |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| CRYPTO_Q_LOCK(); |
| for (;;) { |
| /* |
| * we need to make sure we don't get into a busy loop with nothing |
| * to do, the two crypto_all_*blocked vars help us find out when |
| * we are all full and can do nothing on any driver or Q. If so we |
| * wait for an unblock. |
| */ |
| crypto_all_qblocked = !list_empty(&crp_q); |
| |
| /* |
| * Find the first element in the queue that can be |
| * processed and look-ahead to see if multiple ops |
| * are ready for the same driver. |
| */ |
| submit = NULL; |
| hint = 0; |
| list_for_each_entry(crp, &crp_q, crp_next) { |
| hid = CRYPTO_SESID2HID(crp->crp_sid); |
| cap = crypto_checkdriver(hid); |
| /* |
| * Driver cannot disappear when there is an active |
| * session. |
| */ |
| KASSERT(cap != NULL, ("%s:%u Driver disappeared.", |
| __func__, __LINE__)); |
| if (cap == NULL || cap->cc_dev == NULL) { |
| /* Op needs to be migrated, process it. */ |
| if (submit == NULL) |
| submit = crp; |
| break; |
| } |
| if (!cap->cc_qblocked) { |
| if (submit != NULL) { |
| /* |
| * We stop on finding another op, |
| * regardless whether its for the same |
| * driver or not. We could keep |
| * searching the queue but it might be |
| * better to just use a per-driver |
| * queue instead. |
| */ |
| if (CRYPTO_SESID2HID(submit->crp_sid) == hid) |
| hint = CRYPTO_HINT_MORE; |
| break; |
| } else { |
| submit = crp; |
| if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) |
| break; |
| /* keep scanning for more are q'd */ |
| } |
| } |
| } |
| if (submit != NULL) { |
| hid = CRYPTO_SESID2HID(submit->crp_sid); |
| crypto_all_qblocked = 0; |
| list_del(&submit->crp_next); |
| crypto_drivers[hid].cc_unqblocked = 1; |
| cap = crypto_checkdriver(hid); |
| CRYPTO_Q_UNLOCK(); |
| KASSERT(cap != NULL, ("%s:%u Driver disappeared.", |
| __func__, __LINE__)); |
| result = crypto_invoke(cap, submit, hint); |
| CRYPTO_Q_LOCK(); |
| if (result == ERESTART) { |
| /* |
| * The driver ran out of resources, mark the |
| * driver ``blocked'' for cryptop's and put |
| * the request back in the queue. It would |
| * best to put the request back where we got |
| * it but that's hard so for now we put it |
| * at the front. This should be ok; putting |
| * it at the end does not work. |
| */ |
| /* XXX validate sid again? */ |
| list_add(&submit->crp_next, &crp_q); |
| cryptostats.cs_blocks++; |
| if (crypto_drivers[hid].cc_unqblocked) |
| crypto_drivers[hid].cc_qblocked=0; |
| crypto_drivers[hid].cc_unqblocked=0; |
| } |
| crypto_drivers[hid].cc_unqblocked = 0; |
| } |
| |
| crypto_all_kqblocked = !list_empty(&crp_kq); |
| |
| /* As above, but for key ops */ |
| krp = NULL; |
| list_for_each_entry(krpp, &crp_kq, krp_next) { |
| cap = crypto_checkdriver(krpp->krp_hid); |
| if (cap == NULL || cap->cc_dev == NULL) { |
| /* |
| * Operation needs to be migrated, invalidate |
| * the assigned device so it will reselect a |
| * new one below. Propagate the original |
| * crid selection flags if supplied. |
| */ |
| krp->krp_hid = krp->krp_crid & |
| (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE); |
| if (krp->krp_hid == 0) |
| krp->krp_hid = |
| CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE; |
| break; |
| } |
| if (!cap->cc_kqblocked) { |
| krp = krpp; |
| break; |
| } |
| } |
| if (krp != NULL) { |
| crypto_all_kqblocked = 0; |
| list_del(&krp->krp_next); |
| crypto_drivers[krp->krp_hid].cc_kqblocked = 1; |
| CRYPTO_Q_UNLOCK(); |
| result = crypto_kinvoke(krp, krp->krp_hid); |
| CRYPTO_Q_LOCK(); |
| if (result == ERESTART) { |
| /* |
| * The driver ran out of resources, mark the |
| * driver ``blocked'' for cryptkop's and put |
| * the request back in the queue. It would |
| * best to put the request back where we got |
| * it but that's hard so for now we put it |
| * at the front. This should be ok; putting |
| * it at the end does not work. |
| */ |
| /* XXX validate sid again? */ |
| list_add(&krp->krp_next, &crp_kq); |
| cryptostats.cs_kblocks++; |
| } else |
| crypto_drivers[krp->krp_hid].cc_kqblocked = 0; |
| } |
| |
| if (submit == NULL && krp == NULL) { |
| /* |
| * Nothing more to be processed. Sleep until we're |
| * woken because there are more ops to process. |
| * This happens either by submission or by a driver |
| * becoming unblocked and notifying us through |
| * crypto_unblock. Note that when we wakeup we |
| * start processing each queue again from the |
| * front. It's not clear that it's important to |
| * preserve this ordering since ops may finish |
| * out of order if dispatched to different devices |
| * and some become blocked while others do not. |
| */ |
| dprintk("%s - sleeping (qe=%d qb=%d kqe=%d kqb=%d)\n", |
| __FUNCTION__, |
| list_empty(&crp_q), crypto_all_qblocked, |
| list_empty(&crp_kq), crypto_all_kqblocked); |
| loopcount = 0; |
| CRYPTO_Q_UNLOCK(); |
| wait_event_interruptible(cryptoproc_wait, |
| !(list_empty(&crp_q) || crypto_all_qblocked) || |
| !(list_empty(&crp_kq) || crypto_all_kqblocked) || |
| kthread_should_stop()); |
| if (signal_pending (current)) { |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| spin_lock_irq(¤t->sigmask_lock); |
| #endif |
| flush_signals(current); |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| spin_unlock_irq(¤t->sigmask_lock); |
| #endif |
| } |
| CRYPTO_Q_LOCK(); |
| dprintk("%s - awake\n", __FUNCTION__); |
| if (kthread_should_stop()) |
| break; |
| cryptostats.cs_intrs++; |
| } else if (loopcount > crypto_max_loopcount) { |
| /* |
| * Give other processes a chance to run if we've |
| * been using the CPU exclusively for a while. |
| */ |
| loopcount = 0; |
| CRYPTO_Q_UNLOCK(); |
| schedule(); |
| CRYPTO_Q_LOCK(); |
| } |
| loopcount++; |
| } |
| CRYPTO_Q_UNLOCK(); |
| return 0; |
| } |
| |
| /* |
| * Crypto returns thread, does callbacks for processed crypto requests. |
| * Callbacks are done here, rather than in the crypto drivers, because |
| * callbacks typically are expensive and would slow interrupt handling. |
| */ |
| static int |
| crypto_ret_proc(void *arg) |
| { |
| struct cryptop *crpt; |
| struct cryptkop *krpt; |
| unsigned long r_flags; |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| CRYPTO_RETQ_LOCK(); |
| for (;;) { |
| /* Harvest return q's for completed ops */ |
| crpt = NULL; |
| if (!list_empty(&crp_ret_q)) |
| crpt = list_entry(crp_ret_q.next, typeof(*crpt), crp_next); |
| if (crpt != NULL) |
| list_del(&crpt->crp_next); |
| |
| krpt = NULL; |
| if (!list_empty(&crp_ret_kq)) |
| krpt = list_entry(crp_ret_kq.next, typeof(*krpt), krp_next); |
| if (krpt != NULL) |
| list_del(&krpt->krp_next); |
| |
| if (crpt != NULL || krpt != NULL) { |
| CRYPTO_RETQ_UNLOCK(); |
| /* |
| * Run callbacks unlocked. |
| */ |
| if (crpt != NULL) |
| crpt->crp_callback(crpt); |
| if (krpt != NULL) |
| krpt->krp_callback(krpt); |
| CRYPTO_RETQ_LOCK(); |
| } else { |
| /* |
| * Nothing more to be processed. Sleep until we're |
| * woken because there are more returns to process. |
| */ |
| dprintk("%s - sleeping\n", __FUNCTION__); |
| CRYPTO_RETQ_UNLOCK(); |
| wait_event_interruptible(cryptoretproc_wait, |
| !list_empty(&crp_ret_q) || |
| !list_empty(&crp_ret_kq) || |
| kthread_should_stop()); |
| if (signal_pending (current)) { |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| spin_lock_irq(¤t->sigmask_lock); |
| #endif |
| flush_signals(current); |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) |
| spin_unlock_irq(¤t->sigmask_lock); |
| #endif |
| } |
| CRYPTO_RETQ_LOCK(); |
| dprintk("%s - awake\n", __FUNCTION__); |
| if (kthread_should_stop()) { |
| dprintk("%s - EXITING!\n", __FUNCTION__); |
| break; |
| } |
| cryptostats.cs_rets++; |
| } |
| } |
| CRYPTO_RETQ_UNLOCK(); |
| return 0; |
| } |
| |
| |
| #if 0 /* should put this into /proc or something */ |
| static void |
| db_show_drivers(void) |
| { |
| int hid; |
| |
| db_printf("%12s %4s %4s %8s %2s %2s\n" |
| , "Device" |
| , "Ses" |
| , "Kops" |
| , "Flags" |
| , "QB" |
| , "KB" |
| ); |
| for (hid = 0; hid < crypto_drivers_num; hid++) { |
| const struct cryptocap *cap = &crypto_drivers[hid]; |
| if (cap->cc_dev == NULL) |
| continue; |
| db_printf("%-12s %4u %4u %08x %2u %2u\n" |
| , device_get_nameunit(cap->cc_dev) |
| , cap->cc_sessions |
| , cap->cc_koperations |
| , cap->cc_flags |
| , cap->cc_qblocked |
| , cap->cc_kqblocked |
| ); |
| } |
| } |
| |
| DB_SHOW_COMMAND(crypto, db_show_crypto) |
| { |
| struct cryptop *crp; |
| |
| db_show_drivers(); |
| db_printf("\n"); |
| |
| db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", |
| "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", |
| "Desc", "Callback"); |
| TAILQ_FOREACH(crp, &crp_q, crp_next) { |
| db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" |
| , (int) CRYPTO_SESID2HID(crp->crp_sid) |
| , (int) CRYPTO_SESID2CAPS(crp->crp_sid) |
| , crp->crp_ilen, crp->crp_olen |
| , crp->crp_etype |
| , crp->crp_flags |
| , crp->crp_desc |
| , crp->crp_callback |
| ); |
| } |
| if (!TAILQ_EMPTY(&crp_ret_q)) { |
| db_printf("\n%4s %4s %4s %8s\n", |
| "HID", "Etype", "Flags", "Callback"); |
| TAILQ_FOREACH(crp, &crp_ret_q, crp_next) { |
| db_printf("%4u %4u %04x %8p\n" |
| , (int) CRYPTO_SESID2HID(crp->crp_sid) |
| , crp->crp_etype |
| , crp->crp_flags |
| , crp->crp_callback |
| ); |
| } |
| } |
| } |
| |
| DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) |
| { |
| struct cryptkop *krp; |
| |
| db_show_drivers(); |
| db_printf("\n"); |
| |
| db_printf("%4s %5s %4s %4s %8s %4s %8s\n", |
| "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); |
| TAILQ_FOREACH(krp, &crp_kq, krp_next) { |
| db_printf("%4u %5u %4u %4u %08x %4u %8p\n" |
| , krp->krp_op |
| , krp->krp_status |
| , krp->krp_iparams, krp->krp_oparams |
| , krp->krp_crid, krp->krp_hid |
| , krp->krp_callback |
| ); |
| } |
| if (!TAILQ_EMPTY(&crp_ret_q)) { |
| db_printf("%4s %5s %8s %4s %8s\n", |
| "Op", "Status", "CRID", "HID", "Callback"); |
| TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) { |
| db_printf("%4u %5u %08x %4u %8p\n" |
| , krp->krp_op |
| , krp->krp_status |
| , krp->krp_crid, krp->krp_hid |
| , krp->krp_callback |
| ); |
| } |
| } |
| } |
| #endif |
| |
| |
| static int |
| crypto_init(void) |
| { |
| int error; |
| unsigned long cpu; |
| |
| dprintk("%s(%p)\n", __FUNCTION__, (void *) crypto_init); |
| |
| if (crypto_initted) |
| return 0; |
| crypto_initted = 1; |
| |
| spin_lock_init(&crypto_drivers_lock); |
| spin_lock_init(&crypto_q_lock); |
| spin_lock_init(&crypto_ret_q_lock); |
| |
| cryptop_zone = kmem_cache_create("cryptop", sizeof(struct cryptop), |
| 0, SLAB_HWCACHE_ALIGN, NULL |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) |
| , NULL |
| #endif |
| ); |
| |
| cryptodesc_zone = kmem_cache_create("cryptodesc", sizeof(struct cryptodesc), |
| 0, SLAB_HWCACHE_ALIGN, NULL |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) |
| , NULL |
| #endif |
| ); |
| |
| if (cryptodesc_zone == NULL || cryptop_zone == NULL) { |
| printk("crypto: crypto_init cannot setup crypto zones\n"); |
| error = ENOMEM; |
| goto bad; |
| } |
| |
| crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; |
| crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap), |
| GFP_KERNEL); |
| if (crypto_drivers == NULL) { |
| printk("crypto: crypto_init cannot setup crypto drivers\n"); |
| error = ENOMEM; |
| goto bad; |
| } |
| |
| memset(crypto_drivers, 0, crypto_drivers_num * sizeof(struct cryptocap)); |
| |
| ocf_for_each_cpu(cpu) { |
| cryptoproc[cpu] = kthread_create(crypto_proc, (void *) cpu, |
| "ocf_%d", (int) cpu); |
| if (IS_ERR(cryptoproc[cpu])) { |
| error = PTR_ERR(cryptoproc[cpu]); |
| printk("crypto: crypto_init cannot start crypto thread; error %d", |
| error); |
| goto bad; |
| } |
| kthread_bind(cryptoproc[cpu], cpu); |
| wake_up_process(cryptoproc[cpu]); |
| |
| cryptoretproc[cpu] = kthread_create(crypto_ret_proc, (void *) cpu, |
| "ocf_ret_%d", (int) cpu); |
| if (IS_ERR(cryptoretproc[cpu])) { |
| error = PTR_ERR(cryptoretproc[cpu]); |
| printk("crypto: crypto_init cannot start cryptoret thread; error %d", |
| error); |
| goto bad; |
| } |
| kthread_bind(cryptoretproc[cpu], cpu); |
| wake_up_process(cryptoretproc[cpu]); |
| } |
| |
| return 0; |
| bad: |
| crypto_exit(); |
| return error; |
| } |
| |
| |
| static void |
| crypto_exit(void) |
| { |
| int cpu; |
| |
| dprintk("%s()\n", __FUNCTION__); |
| |
| /* |
| * Terminate any crypto threads. |
| */ |
| ocf_for_each_cpu(cpu) { |
| kthread_stop(cryptoproc[cpu]); |
| kthread_stop(cryptoretproc[cpu]); |
| } |
| |
| /* |
| * Reclaim dynamically allocated resources. |
| */ |
| if (crypto_drivers != NULL) |
| kfree(crypto_drivers); |
| |
| if (cryptodesc_zone != NULL) |
| kmem_cache_destroy(cryptodesc_zone); |
| if (cryptop_zone != NULL) |
| kmem_cache_destroy(cryptop_zone); |
| } |
| |
| |
| EXPORT_SYMBOL(crypto_newsession); |
| EXPORT_SYMBOL(crypto_freesession); |
| EXPORT_SYMBOL(crypto_get_driverid); |
| EXPORT_SYMBOL(crypto_kregister); |
| EXPORT_SYMBOL(crypto_register); |
| EXPORT_SYMBOL(crypto_unregister); |
| EXPORT_SYMBOL(crypto_unregister_all); |
| EXPORT_SYMBOL(crypto_unblock); |
| EXPORT_SYMBOL(crypto_dispatch); |
| EXPORT_SYMBOL(crypto_kdispatch); |
| EXPORT_SYMBOL(crypto_freereq); |
| EXPORT_SYMBOL(crypto_getreq); |
| EXPORT_SYMBOL(crypto_done); |
| EXPORT_SYMBOL(crypto_kdone); |
| EXPORT_SYMBOL(crypto_getfeat); |
| EXPORT_SYMBOL(crypto_userasymcrypto); |
| EXPORT_SYMBOL(crypto_getcaps); |
| EXPORT_SYMBOL(crypto_find_driver); |
| EXPORT_SYMBOL(crypto_find_device_byhid); |
| |
| module_init(crypto_init); |
| module_exit(crypto_exit); |
| |
| MODULE_LICENSE("BSD"); |
| MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>"); |
| MODULE_DESCRIPTION("OCF (OpenBSD Cryptographic Framework)"); |