| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _ASM_X86_I387_H |
| #define _ASM_X86_I387_H |
| |
| #ifndef __ASSEMBLY__ |
| |
| #include <linux/sched.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/regset.h> |
| #include <linux/hardirq.h> |
| #include <linux/slab.h> |
| #include <asm/asm.h> |
| #include <asm/cpufeature.h> |
| #include <asm/processor.h> |
| #include <asm/sigcontext.h> |
| #include <asm/user.h> |
| #include <asm/uaccess.h> |
| #include <asm/xsave.h> |
| |
| extern unsigned int sig_xstate_size; |
| extern void fpu_init(void); |
| extern void mxcsr_feature_mask_init(void); |
| extern int init_fpu(struct task_struct *child); |
| extern void math_state_restore(void); |
| extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); |
| |
| DECLARE_PER_CPU(struct task_struct *, fpu_owner_task); |
| |
| extern user_regset_active_fn fpregs_active, xfpregs_active; |
| extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, |
| xstateregs_get; |
| extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, |
| xstateregs_set; |
| |
| /* |
| * xstateregs_active == fpregs_active. Please refer to the comment |
| * at the definition of fpregs_active. |
| */ |
| #define xstateregs_active fpregs_active |
| |
| extern struct _fpx_sw_bytes fx_sw_reserved; |
| #ifdef CONFIG_IA32_EMULATION |
| extern unsigned int sig_xstate_ia32_size; |
| extern struct _fpx_sw_bytes fx_sw_reserved_ia32; |
| struct _fpstate_ia32; |
| struct _xstate_ia32; |
| extern int save_i387_xstate_ia32(void __user *buf); |
| extern int restore_i387_xstate_ia32(void __user *buf); |
| #endif |
| |
| #ifdef CONFIG_MATH_EMULATION |
| extern void finit_soft_fpu(struct i387_soft_struct *soft); |
| #else |
| static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} |
| #endif |
| |
| #define X87_FSW_ES (1 << 7) /* Exception Summary */ |
| |
| static __always_inline __pure bool use_xsaveopt(void) |
| { |
| return static_cpu_has(X86_FEATURE_XSAVEOPT); |
| } |
| |
| static __always_inline __pure bool use_xsave(void) |
| { |
| return static_cpu_has(X86_FEATURE_XSAVE); |
| } |
| |
| static __always_inline __pure bool use_fxsr(void) |
| { |
| return static_cpu_has(X86_FEATURE_FXSR); |
| } |
| |
| extern void __sanitize_i387_state(struct task_struct *); |
| |
| static inline void sanitize_i387_state(struct task_struct *tsk) |
| { |
| if (!use_xsaveopt()) |
| return; |
| __sanitize_i387_state(tsk); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| { |
| int err; |
| |
| /* See comment in fxsave() below. */ |
| #ifdef CONFIG_AS_FXSAVEQ |
| asm volatile("1: fxrstorq %[fx]\n\t" |
| "2:\n" |
| ".section .fixup,\"ax\"\n" |
| "3: movl $-1,%[err]\n" |
| " jmp 2b\n" |
| ".previous\n" |
| _ASM_EXTABLE(1b, 3b) |
| : [err] "=r" (err) |
| : [fx] "m" (*fx), "0" (0)); |
| #else |
| asm volatile("1: rex64/fxrstor (%[fx])\n\t" |
| "2:\n" |
| ".section .fixup,\"ax\"\n" |
| "3: movl $-1,%[err]\n" |
| " jmp 2b\n" |
| ".previous\n" |
| _ASM_EXTABLE(1b, 3b) |
| : [err] "=r" (err) |
| : [fx] "R" (fx), "m" (*fx), "0" (0)); |
| #endif |
| return err; |
| } |
| |
| static inline int fxsave_user(struct i387_fxsave_struct __user *fx) |
| { |
| int err; |
| |
| /* |
| * Clear the bytes not touched by the fxsave and reserved |
| * for the SW usage. |
| */ |
| err = __clear_user(&fx->sw_reserved, |
| sizeof(struct _fpx_sw_bytes)); |
| if (unlikely(err)) |
| return -EFAULT; |
| |
| /* See comment in fxsave() below. */ |
| #ifdef CONFIG_AS_FXSAVEQ |
| asm volatile("1: fxsaveq %[fx]\n\t" |
| "2:\n" |
| ".section .fixup,\"ax\"\n" |
| "3: movl $-1,%[err]\n" |
| " jmp 2b\n" |
| ".previous\n" |
| _ASM_EXTABLE(1b, 3b) |
| : [err] "=r" (err), [fx] "=m" (*fx) |
| : "0" (0)); |
| #else |
| asm volatile("1: rex64/fxsave (%[fx])\n\t" |
| "2:\n" |
| ".section .fixup,\"ax\"\n" |
| "3: movl $-1,%[err]\n" |
| " jmp 2b\n" |
| ".previous\n" |
| _ASM_EXTABLE(1b, 3b) |
| : [err] "=r" (err), "=m" (*fx) |
| : [fx] "R" (fx), "0" (0)); |
| #endif |
| if (unlikely(err) && |
| __clear_user(fx, sizeof(struct i387_fxsave_struct))) |
| err = -EFAULT; |
| /* No need to clear here because the caller clears USED_MATH */ |
| return err; |
| } |
| |
| static inline void fpu_fxsave(struct fpu *fpu) |
| { |
| /* Using "rex64; fxsave %0" is broken because, if the memory operand |
| uses any extended registers for addressing, a second REX prefix |
| will be generated (to the assembler, rex64 followed by semicolon |
| is a separate instruction), and hence the 64-bitness is lost. */ |
| |
| #ifdef CONFIG_AS_FXSAVEQ |
| /* Using "fxsaveq %0" would be the ideal choice, but is only supported |
| starting with gas 2.16. */ |
| __asm__ __volatile__("fxsaveq %0" |
| : "=m" (fpu->state->fxsave)); |
| #else |
| /* Using, as a workaround, the properly prefixed form below isn't |
| accepted by any binutils version so far released, complaining that |
| the same type of prefix is used twice if an extended register is |
| needed for addressing (fix submitted to mainline 2005-11-21). |
| asm volatile("rex64/fxsave %0" |
| : "=m" (fpu->state->fxsave)); |
| This, however, we can work around by forcing the compiler to select |
| an addressing mode that doesn't require extended registers. */ |
| asm volatile("rex64/fxsave (%[fx])" |
| : "=m" (fpu->state->fxsave) |
| : [fx] "R" (&fpu->state->fxsave)); |
| #endif |
| } |
| |
| #else /* CONFIG_X86_32 */ |
| |
| /* perform fxrstor iff the processor has extended states, otherwise frstor */ |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| { |
| /* |
| * The "nop" is needed to make the instructions the same |
| * length. |
| */ |
| alternative_input( |
| "nop ; frstor %1", |
| "fxrstor %1", |
| X86_FEATURE_FXSR, |
| "m" (*fx)); |
| |
| return 0; |
| } |
| |
| static inline void fpu_fxsave(struct fpu *fpu) |
| { |
| asm volatile("fxsave %[fx]" |
| : [fx] "=m" (fpu->state->fxsave)); |
| } |
| |
| #endif /* CONFIG_X86_64 */ |
| |
| /* |
| * These must be called with preempt disabled. Returns |
| * 'true' if the FPU state is still intact. |
| */ |
| static inline int fpu_save_init(struct fpu *fpu) |
| { |
| if (use_xsave()) { |
| fpu_xsave(fpu); |
| |
| /* |
| * xsave header may indicate the init state of the FP. |
| */ |
| if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP)) |
| return 1; |
| } else if (use_fxsr()) { |
| fpu_fxsave(fpu); |
| } else { |
| asm volatile("fnsave %[fx]; fwait" |
| : [fx] "=m" (fpu->state->fsave)); |
| return 0; |
| } |
| |
| /* |
| * If exceptions are pending, we need to clear them so |
| * that we don't randomly get exceptions later. |
| * |
| * FIXME! Is this perhaps only true for the old-style |
| * irq13 case? Maybe we could leave the x87 state |
| * intact otherwise? |
| */ |
| if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) { |
| asm volatile("fnclex"); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static inline int __save_init_fpu(struct task_struct *tsk) |
| { |
| return fpu_save_init(&tsk->thread.fpu); |
| } |
| |
| static inline int fpu_fxrstor_checking(struct fpu *fpu) |
| { |
| return fxrstor_checking(&fpu->state->fxsave); |
| } |
| |
| static inline int fpu_restore_checking(struct fpu *fpu) |
| { |
| if (use_xsave()) |
| return fpu_xrstor_checking(fpu); |
| else |
| return fpu_fxrstor_checking(fpu); |
| } |
| |
| static inline int restore_fpu_checking(struct task_struct *tsk) |
| { |
| /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception |
| is pending. Clear the x87 state here by setting it to fixed |
| values. "m" is a random variable that should be in L1 */ |
| alternative_input( |
| ASM_NOP8 ASM_NOP2, |
| "emms\n\t" /* clear stack tags */ |
| "fildl %P[addr]", /* set F?P to defined value */ |
| X86_FEATURE_FXSAVE_LEAK, |
| [addr] "m" (tsk->thread.fpu.has_fpu)); |
| |
| return fpu_restore_checking(&tsk->thread.fpu); |
| } |
| |
| /* |
| * Software FPU state helpers. Careful: these need to |
| * be preemption protection *and* they need to be |
| * properly paired with the CR0.TS changes! |
| */ |
| static inline int __thread_has_fpu(struct task_struct *tsk) |
| { |
| return tsk->thread.fpu.has_fpu; |
| } |
| |
| /* Must be paired with an 'stts' after! */ |
| static inline void __thread_clear_has_fpu(struct task_struct *tsk) |
| { |
| tsk->thread.fpu.has_fpu = 0; |
| percpu_write(fpu_owner_task, NULL); |
| } |
| |
| /* Must be paired with a 'clts' before! */ |
| static inline void __thread_set_has_fpu(struct task_struct *tsk) |
| { |
| tsk->thread.fpu.has_fpu = 1; |
| percpu_write(fpu_owner_task, tsk); |
| } |
| |
| /* |
| * Encapsulate the CR0.TS handling together with the |
| * software flag. |
| * |
| * These generally need preemption protection to work, |
| * do try to avoid using these on their own. |
| */ |
| static inline void __thread_fpu_end(struct task_struct *tsk) |
| { |
| __thread_clear_has_fpu(tsk); |
| stts(); |
| } |
| |
| static inline void __thread_fpu_begin(struct task_struct *tsk) |
| { |
| clts(); |
| __thread_set_has_fpu(tsk); |
| } |
| |
| /* |
| * FPU state switching for scheduling. |
| * |
| * This is a two-stage process: |
| * |
| * - switch_fpu_prepare() saves the old state and |
| * sets the new state of the CR0.TS bit. This is |
| * done within the context of the old process. |
| * |
| * - switch_fpu_finish() restores the new state as |
| * necessary. |
| */ |
| typedef struct { int preload; } fpu_switch_t; |
| |
| /* |
| * FIXME! We could do a totally lazy restore, but we need to |
| * add a per-cpu "this was the task that last touched the FPU |
| * on this CPU" variable, and the task needs to have a "I last |
| * touched the FPU on this CPU" and check them. |
| * |
| * We don't do that yet, so "fpu_lazy_restore()" always returns |
| * false, but some day.. |
| */ |
| static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu) |
| { |
| return new == percpu_read_stable(fpu_owner_task) && |
| cpu == new->thread.fpu.last_cpu; |
| } |
| |
| static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu) |
| { |
| fpu_switch_t fpu; |
| |
| fpu.preload = tsk_used_math(new) && new->fpu_counter > 5; |
| if (__thread_has_fpu(old)) { |
| if (!__save_init_fpu(old)) |
| cpu = ~0; |
| old->thread.fpu.last_cpu = cpu; |
| old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */ |
| |
| /* Don't change CR0.TS if we just switch! */ |
| if (fpu.preload) { |
| new->fpu_counter++; |
| __thread_set_has_fpu(new); |
| prefetch(new->thread.fpu.state); |
| } else |
| stts(); |
| } else { |
| old->fpu_counter = 0; |
| old->thread.fpu.last_cpu = ~0; |
| if (fpu.preload) { |
| new->fpu_counter++; |
| if (fpu_lazy_restore(new, cpu)) |
| fpu.preload = 0; |
| else |
| prefetch(new->thread.fpu.state); |
| __thread_fpu_begin(new); |
| } |
| } |
| return fpu; |
| } |
| |
| /* |
| * By the time this gets called, we've already cleared CR0.TS and |
| * given the process the FPU if we are going to preload the FPU |
| * state - all we need to do is to conditionally restore the register |
| * state itself. |
| */ |
| static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu) |
| { |
| if (fpu.preload) { |
| if (unlikely(restore_fpu_checking(new))) |
| __thread_fpu_end(new); |
| } |
| } |
| |
| /* |
| * Signal frame handlers... |
| */ |
| extern int save_i387_xstate(void __user *buf); |
| extern int restore_i387_xstate(void __user *buf); |
| |
| static inline void __clear_fpu(struct task_struct *tsk) |
| { |
| if (__thread_has_fpu(tsk)) { |
| /* Ignore delayed exceptions from user space */ |
| asm volatile("1: fwait\n" |
| "2:\n" |
| _ASM_EXTABLE(1b, 2b)); |
| __thread_fpu_end(tsk); |
| } |
| } |
| |
| /* |
| * Were we in an interrupt that interrupted kernel mode? |
| * |
| * We can do a kernel_fpu_begin/end() pair *ONLY* if that |
| * pair does nothing at all: the thread must not have fpu (so |
| * that we don't try to save the FPU state), and TS must |
| * be set (so that the clts/stts pair does nothing that is |
| * visible in the interrupted kernel thread). |
| */ |
| static inline bool interrupted_kernel_fpu_idle(void) |
| { |
| return !__thread_has_fpu(current) && |
| (read_cr0() & X86_CR0_TS); |
| } |
| |
| /* |
| * Were we in user mode (or vm86 mode) when we were |
| * interrupted? |
| * |
| * Doing kernel_fpu_begin/end() is ok if we are running |
| * in an interrupt context from user mode - we'll just |
| * save the FPU state as required. |
| */ |
| static inline bool interrupted_user_mode(void) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| return regs && user_mode_vm(regs); |
| } |
| |
| /* |
| * Can we use the FPU in kernel mode with the |
| * whole "kernel_fpu_begin/end()" sequence? |
| * |
| * It's always ok in process context (ie "not interrupt") |
| * but it is sometimes ok even from an irq. |
| */ |
| static inline bool irq_fpu_usable(void) |
| { |
| return !in_interrupt() || |
| interrupted_user_mode() || |
| interrupted_kernel_fpu_idle(); |
| } |
| |
| static inline void kernel_fpu_begin(void) |
| { |
| struct task_struct *me = current; |
| |
| WARN_ON_ONCE(!irq_fpu_usable()); |
| preempt_disable(); |
| if (__thread_has_fpu(me)) { |
| __save_init_fpu(me); |
| __thread_clear_has_fpu(me); |
| /* We do 'stts()' in kernel_fpu_end() */ |
| } else { |
| percpu_write(fpu_owner_task, NULL); |
| clts(); |
| } |
| } |
| |
| static inline void kernel_fpu_end(void) |
| { |
| stts(); |
| preempt_enable(); |
| } |
| |
| /* |
| * Some instructions like VIA's padlock instructions generate a spurious |
| * DNA fault but don't modify SSE registers. And these instructions |
| * get used from interrupt context as well. To prevent these kernel instructions |
| * in interrupt context interacting wrongly with other user/kernel fpu usage, we |
| * should use them only in the context of irq_ts_save/restore() |
| */ |
| static inline int irq_ts_save(void) |
| { |
| /* |
| * If in process context and not atomic, we can take a spurious DNA fault. |
| * Otherwise, doing clts() in process context requires disabling preemption |
| * or some heavy lifting like kernel_fpu_begin() |
| */ |
| if (!in_atomic()) |
| return 0; |
| |
| if (read_cr0() & X86_CR0_TS) { |
| clts(); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static inline void irq_ts_restore(int TS_state) |
| { |
| if (TS_state) |
| stts(); |
| } |
| |
| /* |
| * The question "does this thread have fpu access?" |
| * is slightly racy, since preemption could come in |
| * and revoke it immediately after the test. |
| * |
| * However, even in that very unlikely scenario, |
| * we can just assume we have FPU access - typically |
| * to save the FP state - we'll just take a #NM |
| * fault and get the FPU access back. |
| * |
| * The actual user_fpu_begin/end() functions |
| * need to be preemption-safe, though. |
| * |
| * NOTE! user_fpu_end() must be used only after you |
| * have saved the FP state, and user_fpu_begin() must |
| * be used only immediately before restoring it. |
| * These functions do not do any save/restore on |
| * their own. |
| */ |
| static inline int user_has_fpu(void) |
| { |
| return __thread_has_fpu(current); |
| } |
| |
| static inline void user_fpu_end(void) |
| { |
| preempt_disable(); |
| __thread_fpu_end(current); |
| preempt_enable(); |
| } |
| |
| static inline void user_fpu_begin(void) |
| { |
| preempt_disable(); |
| if (!user_has_fpu()) |
| __thread_fpu_begin(current); |
| preempt_enable(); |
| } |
| |
| /* |
| * These disable preemption on their own and are safe |
| */ |
| static inline void save_init_fpu(struct task_struct *tsk) |
| { |
| WARN_ON_ONCE(!__thread_has_fpu(tsk)); |
| preempt_disable(); |
| __save_init_fpu(tsk); |
| __thread_fpu_end(tsk); |
| preempt_enable(); |
| } |
| |
| static inline void unlazy_fpu(struct task_struct *tsk) |
| { |
| preempt_disable(); |
| if (__thread_has_fpu(tsk)) { |
| __save_init_fpu(tsk); |
| __thread_fpu_end(tsk); |
| } else |
| tsk->fpu_counter = 0; |
| preempt_enable(); |
| } |
| |
| static inline void clear_fpu(struct task_struct *tsk) |
| { |
| preempt_disable(); |
| __clear_fpu(tsk); |
| preempt_enable(); |
| } |
| |
| /* |
| * i387 state interaction |
| */ |
| static inline unsigned short get_fpu_cwd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state->fxsave.cwd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state->fsave.cwd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_swd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state->fxsave.swd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state->fsave.swd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) |
| { |
| if (cpu_has_xmm) { |
| return tsk->thread.fpu.state->fxsave.mxcsr; |
| } else { |
| return MXCSR_DEFAULT; |
| } |
| } |
| |
| static bool fpu_allocated(struct fpu *fpu) |
| { |
| return fpu->state != NULL; |
| } |
| |
| static inline int fpu_alloc(struct fpu *fpu) |
| { |
| if (fpu_allocated(fpu)) |
| return 0; |
| fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL); |
| if (!fpu->state) |
| return -ENOMEM; |
| WARN_ON((unsigned long)fpu->state & 15); |
| return 0; |
| } |
| |
| static inline void fpu_free(struct fpu *fpu) |
| { |
| if (fpu->state) { |
| kmem_cache_free(task_xstate_cachep, fpu->state); |
| fpu->state = NULL; |
| } |
| } |
| |
| static inline void fpu_copy(struct fpu *dst, struct fpu *src) |
| { |
| memcpy(dst->state, src->state, xstate_size); |
| } |
| |
| extern void fpu_finit(struct fpu *fpu); |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_X86_I387_H */ |