blob: ea3559f0b3f2cbac7e0373f51df471c133c23479 [file] [log] [blame]
#ifndef _LINUX_TIME_H
#define _LINUX_TIME_H
#include <linux/types.h>
#ifdef __KERNEL__
# include <linux/cache.h>
# include <linux/seqlock.h>
# include <linux/math64.h>
struct timespec {
__kernel_time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
struct timeval {
__kernel_time_t tv_sec; /* seconds */
__kernel_suseconds_t tv_usec; /* microseconds */
struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of dst correction */
#ifdef __KERNEL__
extern struct timezone sys_tz;
/* Parameters used to convert the timespec values: */
#define MSEC_PER_SEC 1000L
#define USEC_PER_MSEC 1000L
#define NSEC_PER_USEC 1000L
#define NSEC_PER_MSEC 1000000L
#define USEC_PER_SEC 1000000L
#define NSEC_PER_SEC 1000000000L
#define FSEC_PER_SEC 1000000000000000L
#define TIME_T_MAX (time_t)((1UL << ((sizeof(time_t) << 3) - 1)) - 1)
static inline int timespec_equal(const struct timespec *a,
const struct timespec *b)
return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec);
* lhs < rhs: return <0
* lhs == rhs: return 0
* lhs > rhs: return >0
static inline int timespec_compare(const struct timespec *lhs, const struct timespec *rhs)
if (lhs->tv_sec < rhs->tv_sec)
return -1;
if (lhs->tv_sec > rhs->tv_sec)
return 1;
return lhs->tv_nsec - rhs->tv_nsec;
static inline int timeval_compare(const struct timeval *lhs, const struct timeval *rhs)
if (lhs->tv_sec < rhs->tv_sec)
return -1;
if (lhs->tv_sec > rhs->tv_sec)
return 1;
return lhs->tv_usec - rhs->tv_usec;
extern unsigned long mktime(const unsigned int year, const unsigned int mon,
const unsigned int day, const unsigned int hour,
const unsigned int min, const unsigned int sec);
extern void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec);
extern struct timespec timespec_add_safe(const struct timespec lhs,
const struct timespec rhs);
* sub = lhs - rhs, in normalized form
static inline struct timespec timespec_sub(struct timespec lhs,
struct timespec rhs)
struct timespec ts_delta;
set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
lhs.tv_nsec - rhs.tv_nsec);
return ts_delta;
* Returns true if the timespec is norm, false if denorm:
#define timespec_valid(ts) \
(((ts)->tv_sec >= 0) && (((unsigned long) (ts)->tv_nsec) < NSEC_PER_SEC))
extern struct timespec xtime;
extern struct timespec wall_to_monotonic;
extern seqlock_t xtime_lock;
extern void read_persistent_clock(struct timespec *ts);
extern void read_boot_clock(struct timespec *ts);
extern int update_persistent_clock(struct timespec now);
extern int no_sync_cmos_clock __read_mostly;
void timekeeping_init(void);
extern int timekeeping_suspended;
unsigned long get_seconds(void);
struct timespec current_kernel_time(void);
struct timespec __current_kernel_time(void); /* does not hold xtime_lock */
struct timespec get_monotonic_coarse(void);
#define CURRENT_TIME (current_kernel_time())
#define CURRENT_TIME_SEC ((struct timespec) { get_seconds(), 0 })
/* Some architectures do not supply their own clocksource.
* This is mainly the case in architectures that get their
* inter-tick times by reading the counter on their interval
* timer. Since these timers wrap every tick, they're not really
* useful as clocksources. Wrapping them to act like one is possible
* but not very efficient. So we provide a callout these arches
* can implement for use with the jiffies clocksource to provide
* finer then tick granular time.
extern u32 arch_gettimeoffset(void);
static inline u32 arch_gettimeoffset(void) { return 0; }
extern void do_gettimeofday(struct timeval *tv);
extern int do_settimeofday(struct timespec *tv);
extern int do_sys_settimeofday(struct timespec *tv, struct timezone *tz);
#define do_posix_clock_monotonic_gettime(ts) ktime_get_ts(ts)
extern long do_utimes(int dfd, char __user *filename, struct timespec *times, int flags);
struct itimerval;
extern int do_setitimer(int which, struct itimerval *value,
struct itimerval *ovalue);
extern unsigned int alarm_setitimer(unsigned int seconds);
extern int do_getitimer(int which, struct itimerval *value);
extern void getnstimeofday(struct timespec *tv);
extern void getrawmonotonic(struct timespec *ts);
extern void getboottime(struct timespec *ts);
extern void monotonic_to_bootbased(struct timespec *ts);
extern struct timespec timespec_trunc(struct timespec t, unsigned gran);
extern int timekeeping_valid_for_hres(void);
extern u64 timekeeping_max_deferment(void);
extern void update_wall_time(void);
extern void timekeeping_leap_insert(int leapsecond);
struct tms;
extern void do_sys_times(struct tms *);
* Similar to the struct tm in userspace <time.h>, but it needs to be here so
* that the kernel source is self contained.
struct tm {
* the number of seconds after the minute, normally in the range
* 0 to 59, but can be up to 60 to allow for leap seconds
int tm_sec;
/* the number of minutes after the hour, in the range 0 to 59*/
int tm_min;
/* the number of hours past midnight, in the range 0 to 23 */
int tm_hour;
/* the day of the month, in the range 1 to 31 */
int tm_mday;
/* the number of months since January, in the range 0 to 11 */
int tm_mon;
/* the number of years since 1900 */
long tm_year;
/* the number of days since Sunday, in the range 0 to 6 */
int tm_wday;
/* the number of days since January 1, in the range 0 to 365 */
int tm_yday;
void time_to_tm(time_t totalsecs, int offset, struct tm *result);
* timespec_to_ns - Convert timespec to nanoseconds
* @ts: pointer to the timespec variable to be converted
* Returns the scalar nanosecond representation of the timespec
* parameter.
static inline s64 timespec_to_ns(const struct timespec *ts)
return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec;
* timeval_to_ns - Convert timeval to nanoseconds
* @ts: pointer to the timeval variable to be converted
* Returns the scalar nanosecond representation of the timeval
* parameter.
static inline s64 timeval_to_ns(const struct timeval *tv)
return ((s64) tv->tv_sec * NSEC_PER_SEC) +
tv->tv_usec * NSEC_PER_USEC;
* ns_to_timespec - Convert nanoseconds to timespec
* @nsec: the nanoseconds value to be converted
* Returns the timespec representation of the nsec parameter.
extern struct timespec ns_to_timespec(const s64 nsec);
* ns_to_timeval - Convert nanoseconds to timeval
* @nsec: the nanoseconds value to be converted
* Returns the timeval representation of the nsec parameter.
extern struct timeval ns_to_timeval(const s64 nsec);
* timespec_add_ns - Adds nanoseconds to a timespec
* @a: pointer to timespec to be incremented
* @ns: unsigned nanoseconds value to be added
* This must always be inlined because its used from the x86-64 vdso,
* which cannot call other kernel functions.
static __always_inline void timespec_add_ns(struct timespec *a, u64 ns)
a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns);
a->tv_nsec = ns;
#endif /* __KERNEL__ */
#define FD_SET(fd,fdsetp) __FD_SET(fd,fdsetp)
#define FD_CLR(fd,fdsetp) __FD_CLR(fd,fdsetp)
#define FD_ISSET(fd,fdsetp) __FD_ISSET(fd,fdsetp)
#define FD_ZERO(fdsetp) __FD_ZERO(fdsetp)
* Names of the interval timers, and structure
* defining a timer setting:
#define ITIMER_REAL 0
#define ITIMER_PROF 2
struct itimerspec {
struct timespec it_interval; /* timer period */
struct timespec it_value; /* timer expiration */
struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
* The IDs of the various system clocks (for POSIX.1b interval timers):
* The IDs of various hardware clocks:
#define CLOCK_SGI_CYCLE 10
#define MAX_CLOCKS 16
* The various flags for setting POSIX.1b interval timers:
#define TIMER_ABSTIME 0x01