blob: 1d87a564162b4b98c730a7b0f2d1da9e2cacd7d6 [file] [log] [blame]
/*
* Copyright (c) 2007-2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* */
/* Module Name : cagg.h */
/* */
/* Abstract */
/* This module contains A-MPDU aggregation relatived functions. */
/* */
/* NOTES */
/* None */
/* */
/****************************************************************************/
/*Revision History: */
/* Who When What */
/* -------- -------- ----------------------------------------------*/
/* */
/* Honda 12-4-06 created */
/* */
/****************************************************************************/
#ifndef _CAGG_H
#define _CAGG_H
/*
* the aggregation functions flag, 0 if don't do aggregate
*/
#define ZM_AGG_FPGA_DEBUG 1
#define ZM_AGG_FPGA_REORDERING 1
#ifndef ZM_AGG_TALLY
//#define ZM_AGG_TALLY
#endif
/*
* Aggregate control
*/
#define ZM_AGG_POOL_SIZE 20
#define ZM_BAW_POOL_SIZE 32
#define ZM_AGGQ_SIZE 64
#define ZM_AGGQ_SIZE_MASK (ZM_AGGQ_SIZE-1)
#define ZM_AGG_LOW_THRESHOLD 1
#define ZM_AGG_HIGH_THRESHOLD 5
/*
* number of access categories (ac)
*/
#define ZM_AC 4
/*
* the timer to clear aggregation queue, unit: 1 tick
* if the packet is too old (current time - arrival time)
* the packet and the aggregate queue will be cleared
*/
#define ZM_AGG_CLEAR_TIME 10
/*
* delete the queue if idle for ZM_DELETE_TIME
* unit: 10ms
*/
#define ZM_AGG_DELETE_TIME 10000
/*
* block ack window size
*/
#define ZM_AGG_BAW_SIZE 64
#define ZM_AGG_BAW_MASK (ZM_AGG_BAW_SIZE-1)
/*
* originator ADDBA Resquest receiver
* |----------------------------->|
* 1| ACK |1
* |<-----------------------------|
* 2| ADDBA Response |2
* |<-----------------------------|
* 3| ACK |3
* |----------------------------->|
* 4 4
*/
#define ZM_AGG_ADDBA_REQUEST 1
#define ZM_AGG_ADDBA_REQUEST_ACK 2
#define ZM_AGG_ADDBA_RESPONSE 3
#define ZM_AGG_ADDBA_RESPONSE_ACK 4
#define ZM_AGG_SINGLE_MPDU 00
#define ZM_AGG_FIRST_MPDU 01
#define ZM_AGG_MIDDLE_MPDU 11
#define ZM_AGG_LAST_MPDU 10
/*
* end of Aggregate control
*/
#define TID_TX struct aggQueue*
#define TID_BAW struct baw_q*
#define BAW wd->baw_enabler
#define DESTQ wd->destQ
/*
* Queue access
*/
#define zm_agg_qlen(dev, head, tail) ((head - tail) & ZM_AGGQ_SIZE_MASK)
#define zm_agg_inQ(tid_tx, pt) ((((pt - tid_tx->aggTail) & ZM_AGGQ_SIZE_MASK) < \
((tid_tx->aggHead - tid_tx->aggTail) & ZM_AGGQ_SIZE_MASK))? TRUE:FALSE)
#define zm_agg_plus(pt) pt = (pt + 1) & ZM_AGGQ_SIZE_MASK
#define zm_agg_min(A, B) ((A>B)? B:A)
#define zm_agg_GetTime() wd->tick
#define TXQL (zfHpGetMaxTxdCount(dev) - zfHpGetFreeTxdCount(dev))
/* don't change AGG_MIN_TXQL easily, this might cause BAW BSOD */
#define AGG_MIN_TXQL 2
/*
* consider tcp,udp,ac(1234)
*/
#define zm_agg_dynamic_threshold(dev, ar) ((ar > 16)? 11: \
(ar > 12)? 8: \
(ar > 8)? 5: \
(ar > 4)? 2:1)
#define zm_agg_weight(ac) ((3 == ac)? 4: \
(2 == ac)? 3: \
(0 == ac)? 2:1)
/*
* the required free queue ratio per ac
*/
#define zm_agg_ratio(ac) ((3 == ac)? 3: \
(2 == ac)? (zfHpGetMaxTxdCount(dev)*1/4): \
(0 == ac)? (zfHpGetMaxTxdCount(dev)*2/4): \
(zfHpGetMaxTxdCount(dev)*3/4))
//#define zm_agg_ratio(ac) 3
/*
* end of Queue access
*/
#define ZM_AGGMSG_LEV ZM_LV_3
#define zm_msg0_agg(lv, msg) if (ZM_AGGMSG_LEV >= lv) \
{zm_debug_msg0(msg);}
#define zm_msg1_agg(lv, msg, val) if (ZM_AGGMSG_LEV >= lv) \
{zm_debug_msg1(msg, val);}
#define zm_msg2_agg(lv, msg, val) if (ZM_AGGMSG_LEV >= lv) \
{zm_debug_msg2(msg, val);}
#ifndef ZM_ENABLE_FW_BA_RETRANSMISSION //disable BAW
struct baw_header_r {
u16_t *header;
u16_t *mic;
u16_t *snap;
u16_t headerLen;
u16_t micLen;
u16_t snapLen;
u16_t removeLen;
u8_t keyIdx;
};
struct baw_header {
u16_t header[29];//[(8+30+2+18)/2]; 58 bytes /* ctr+(4+a1+a2+a3+2+a4)+qos+iv */
u16_t headerLen;
u16_t mic[4]; //[8/2]; 8 bytes
u16_t micLen;
u16_t snap[4]; //[8/2]; 8 bytes
u16_t snapLen;
u16_t removeLen;
u8_t keyIdx;
};
struct bufInfo {
zbuf_t* buf;
u8_t baw_retransmit;
u32_t timestamp;
struct baw_header *baw_header;
};
#endif
struct aggElement
{
zbuf_t* buf;
u32_t arrivalTime;
u8_t baw_retransmit;
struct zsAdditionInfo addInfo;
//struct baw_header baw_header;
};
#ifndef ZM_ENABLE_FW_BA_RETRANSMISSION //disable BAW
struct baw_buf
{
zbuf_t* buf;
u16_t baw_seq;
u32_t timestamp;
u8_t baw_retransmit;
struct baw_header baw_header;
};
struct baw_q {
struct baw_buf frame[ZM_VTXQ_SIZE];
u16_t enabled;
u16_t start_seq;
u16_t head;
u16_t tail;
u16_t size;
TID_TX tid_tx;
//struct baw_header *baw_header;
};
struct baw_enabler
{
struct baw_q tid_baw[ZM_BAW_POOL_SIZE];
u8_t delPoint;
void (*core)(zdev_t* dev, u16_t baw_seq, u32_t bitmap, u16_t aggLen);
//void (*core);
void (*init)(zdev_t* dev);
TID_BAW (*getNewQ)(zdev_t* dev, u16_t start_seq, TID_TX tid_tx);
TID_BAW (*getQ)(zdev_t* dev, u16_t baw_seq);
u16_t (*insert)(zdev_t* dev, zbuf_t* buf, u16_t baw_seq, TID_BAW tid_baw, u8_t baw_retransmit, struct baw_header_r *header_r);
struct bufInfo* (*pop)(zdev_t* dev, u16_t index, TID_BAW tid_baw);
void (*enable)(zdev_t* dev, TID_BAW tid_baw, u16_t start_seq);
void (*disable)(zdev_t* dev, TID_BAW tid_baw);
};
#endif
struct aggQueue
{
struct aggElement aggvtxq[ZM_AGGQ_SIZE];
u16_t aggHead;
u16_t aggTail;
s16_t size;
u16_t aggQSTA;
u16_t aggQEnabled;
u16_t ac;
u16_t tid;
u16_t aggReady;
u16_t clearFlag;
u16_t deleteFlag;
u32_t lastArrival;
u16_t aggFrameSize;
u16_t bar_ssn; /* starting sequence number in BAR */
u16_t dst[3];
u16_t complete; /* complete indication pointer */
};
struct aggSta
{
u16_t count[ZM_AC];
TID_TX tid_tx[8];
u16_t aggFlag[ZM_AC];
};
struct agg_tid_rx
{
u16_t aid;
u16_t ac;
u16_t addBaExchangeStatusCode;
//struct zsAdditionInfo *addInfo;
u16_t seq_start; /* first seq expected next */
u16_t baw_head; /* head of valid block ack window */
u16_t baw_tail; /* tail of valid block ack window */
//u16_t free_count; /* block ack window size */
u8_t sq_exceed_count;
u8_t sq_behind_count;
struct aggElement frame[ZM_AGG_BAW_SIZE + 1]; /* out-of-order rx frames */
};
struct aggControl
{
u16_t aggEnabled;
u16_t ampduIndication;
u16_t addbaIndication;
//TID_BAW tid_baw;
u32_t timestamp;
};
struct aggBaFrameParameter
{
zbuf_t* buf;
u16_t ba_parameter;
u8_t dialog;
u16_t ba_policy;
u16_t tid;
u16_t buffer_size;
u16_t ba_timeout;
u16_t ba_start_seq;
u16_t status_code;
};
struct aggBarControl
{
u16_t bar_ack_policy ;
u16_t multi_tid ;
u16_t compressed_bitmap ;
u16_t tid_info ;
};
struct aggTally
{
u32_t got_packets_sum;
u32_t got_bytes_sum;
u32_t sent_packets_sum;
u32_t sent_bytes_sum;
u32_t avg_got_packets;
u32_t avg_got_bytes;
u32_t avg_sent_packets;
u32_t avg_sent_bytes;
u16_t time;
};
struct destQ {
struct dest{
u16_t Qtype : 1; /* 0 aggr, 1 vtxq */
TID_TX tid_tx;
void* vtxq;
struct dest* next;
} *dest[4];
struct dest* Head[4];
//s16_t size[4];
u16_t ppri;
void (*insert)(zdev_t* dev, u16_t Qtype, u16_t ac, TID_TX tid_tx, void* vtxq);
void (*delete)(zdev_t* dev, u16_t Qtype, TID_TX tid_tx, void* vtxq);
void (*init)(zdev_t* dev);
struct dest* (*getNext)(zdev_t* dev, u16_t ac);
u16_t (*exist)(zdev_t* dev, u16_t Qtype, u16_t ac, TID_TX tid_tx, void* vtxq);
//void (*scan)(zdev_t* dev);
};
/*
* aggregation tx
*/
void zfAggInit(zdev_t* dev);
u16_t zfApFindSta(zdev_t* dev, u16_t* addr);
u16_t zfAggGetSta(zdev_t* dev, zbuf_t* buf);
TID_TX zfAggTxGetQueue(zdev_t* dev, u16_t aid, u16_t tid);
TID_TX zfAggTxNewQueue(zdev_t* dev, u16_t aid, u16_t tid, zbuf_t* buf);
u16_t zfAggTxEnqueue(zdev_t* dev, zbuf_t* buf, u16_t aid, TID_TX tid_tx);
u16_t zfAggTx(zdev_t* dev, zbuf_t* buf, u16_t tid);
u16_t zfAggTxReadyCount(zdev_t* dev, u16_t ac);
u16_t zfAggTxPartial(zdev_t* dev, u16_t ac, u16_t readycount);
u16_t zfAggTxSend(zdev_t* dev, u32_t freeTxd, TID_TX tid_tx);
TID_TX zfAggTxGetReadyQueue(zdev_t* dev, u16_t ac);
zbuf_t* zfAggTxGetVtxq(zdev_t* dev, TID_TX tid_tx);
u16_t zfAggTxDeleteQueue(zdev_t* dev, u16_t qnum);
u16_t zfAggScanAndClear(zdev_t* dev, u32_t time);
u16_t zfAggClearQueue(zdev_t* dev);
void zfAggTxScheduler(zdev_t* dev, u8_t ScanAndClear);
/* tid_tx manipulation */
#ifndef ZM_ENABLE_FW_BA_RETRANSMISSION //disable BAW
u16_t zfAggTidTxInsertHead(zdev_t* dev, struct bufInfo* buf_info, TID_TX tid_tx);
#endif
void zfAggDestInsert(zdev_t* dev, u16_t Qtype, u16_t ac, TID_TX tid_tx, void* vtxq);
void zfAggDestDelete(zdev_t* dev, u16_t Qtype, TID_TX tid_tx, void* vtxq);
void zfAggDestInit(zdev_t* dev);
struct dest* zfAggDestGetNext(zdev_t* dev, u16_t ac);
u16_t zfAggDestExist(zdev_t* dev, u16_t Qtype, u16_t ac, TID_TX tid_tx, void* vtxq);
/*
* aggregation rx
*/
struct agg_tid_rx *zfAggRxEnabled(zdev_t* dev, zbuf_t* buf);
u16_t zfAggRx(zdev_t* dev, zbuf_t* buf, struct zsAdditionInfo *addInfo, struct agg_tid_rx *tid_rx);
struct agg_tid_rx *zfAggRxGetQueue(zdev_t* dev, zbuf_t* buf);
u16_t zfAggRxEnqueue(zdev_t* dev, zbuf_t* buf, struct agg_tid_rx *tid_rx, struct zsAdditionInfo *addInfo);
u16_t zfAggRxFlush(zdev_t* dev, u16_t seq_no, struct agg_tid_rx *tid_rx);
u16_t zfAggRxFreeBuf(zdev_t* dev, u16_t destroy);
u16_t zfAggRxClear(zdev_t* dev, u32_t time);
void zfAggRecvBAR(zdev_t* dev, zbuf_t* buf);
/*
* end of aggregation rx
*/
/*
* ADDBA
*/
u16_t zfAggSendAddbaRequest(zdev_t* dev, u16_t *dst, u16_t ac, u16_t up);
u16_t zfAggSetAddbaFrameBody(zdev_t* dev,zbuf_t* buf, u16_t offset, u16_t ac, u16_t up);
u16_t zfAggGenAddbaHeader(zdev_t* dev, u16_t* dst,
u16_t* header, u16_t len, zbuf_t* buf, u16_t vap, u8_t encrypt);
u16_t zfAggProcessAction(zdev_t* dev, zbuf_t* buf);
u16_t zfAggBlockAckActionFrame(zdev_t* dev, zbuf_t* buf);
u16_t zfAggRecvAddbaRequest(zdev_t* dev, zbuf_t* buf);
u16_t zfAggRecvAddbaResponse(zdev_t* dev, zbuf_t* buf);
u16_t zfAggRecvDelba(zdev_t* dev, zbuf_t* buf);
u16_t zfAggSendAddbaResponse(zdev_t* dev, struct aggBaFrameParameter *bf);
u16_t zfAggSetAddbaResponseFrameBody(zdev_t* dev, zbuf_t* buf,
struct aggBaFrameParameter *bf, u16_t offset);
u16_t zfAggAddbaSetTidRx(zdev_t* dev, zbuf_t* buf,
struct aggBaFrameParameter *bf);
/*
* zfAggTxSendEth
*/
u16_t zfAggTxSendEth(zdev_t* dev, zbuf_t* buf, u16_t port, u16_t bufType, u8_t flag, struct aggControl *aggControl, TID_TX tid_tx);
/*
* statistics functions
*/
u16_t zfAggTallyReset(zdev_t* dev);
u16_t zfAggPrintTally(zdev_t* dev);
/*
* BAR
*/
void zfAggInvokeBar(zdev_t* dev, TID_TX tid_tx);
u16_t zfAggSendBar(zdev_t* dev, TID_TX tid_tx, struct aggBarControl *aggBarControl);
u16_t zfAggSetBarBody(zdev_t* dev, zbuf_t* buf, u16_t offset, TID_TX tid_tx, struct aggBarControl *aggBarControl);
u16_t zfAggGenBarHeader(zdev_t* dev, u16_t* dst,
u16_t* header, u16_t len, zbuf_t* buf, u16_t vap, u8_t encrypt);
#ifndef ZM_ENABLE_FW_BA_RETRANSMISSION //disable BAW
/* BAW BA retransmission */
void zfBawCore(zdev_t* dev, u16_t baw_seq, u32_t bitmap, u16_t aggLen);
void zfBawInit(zdev_t* dev);
TID_BAW zfBawGetNewQ(zdev_t* dev, u16_t start_seq, TID_TX tid_tx);
u16_t zfBawInsert(zdev_t* dev, zbuf_t* buf, u16_t baw_seq, TID_BAW tid_baw, u8_t baw_retransmit, struct baw_header_r *header_r);
struct bufInfo* zfBawPop(zdev_t* dev, u16_t index, TID_BAW tid_baw);
void zfBawEnable(zdev_t* dev, TID_BAW tid_baw, u16_t start_seq);
void zfBawDisable(zdev_t* dev, TID_BAW tid_baw);
TID_BAW zfBawGetQ(zdev_t* dev, u16_t baw_seq);
void zfAggTxRetransmit(zdev_t* dev, struct bufInfo *buf_info, struct aggControl *aggControl, TID_TX tid_tx);
#endif
/* extern functions */
extern zbuf_t* zfGetVtxq(zdev_t* dev, u8_t ac);
#endif /* #ifndef _CAGG_H */