| /* |
| comedi/drivers/s626.c |
| Sensoray s626 Comedi driver |
| |
| COMEDI - Linux Control and Measurement Device Interface |
| Copyright (C) 2000 David A. Schleef <ds@schleef.org> |
| |
| Based on Sensoray Model 626 Linux driver Version 0.2 |
| Copyright (C) 2002-2004 Sensoray Co., Inc. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| */ |
| |
| /* |
| Driver: s626 |
| Description: Sensoray 626 driver |
| Devices: [Sensoray] 626 (s626) |
| Authors: Gianluca Palli <gpalli@deis.unibo.it>, |
| Updated: Fri, 15 Feb 2008 10:28:42 +0000 |
| Status: experimental |
| |
| Configuration options: |
| [0] - PCI bus of device (optional) |
| [1] - PCI slot of device (optional) |
| If bus/slot is not specified, the first supported |
| PCI device found will be used. |
| |
| INSN_CONFIG instructions: |
| analog input: |
| none |
| |
| analog output: |
| none |
| |
| digital channel: |
| s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels |
| supported configuration options: |
| INSN_CONFIG_DIO_QUERY |
| COMEDI_INPUT |
| COMEDI_OUTPUT |
| |
| encoder: |
| Every channel must be configured before reading. |
| |
| Example code |
| |
| insn.insn=INSN_CONFIG; //configuration instruction |
| insn.n=1; //number of operation (must be 1) |
| insn.data=&initialvalue; //initial value loaded into encoder |
| //during configuration |
| insn.subdev=5; //encoder subdevice |
| insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel |
| //to configure |
| |
| comedi_do_insn(cf,&insn); //executing configuration |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| |
| #include "../comedidev.h" |
| |
| #include "comedi_pci.h" |
| |
| #include "comedi_fc.h" |
| #include "s626.h" |
| |
| MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>"); |
| MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); |
| MODULE_LICENSE("GPL"); |
| |
| struct s626_board { |
| const char *name; |
| int ai_chans; |
| int ai_bits; |
| int ao_chans; |
| int ao_bits; |
| int dio_chans; |
| int dio_banks; |
| int enc_chans; |
| }; |
| |
| static const struct s626_board s626_boards[] = { |
| { |
| .name = "s626", |
| .ai_chans = S626_ADC_CHANNELS, |
| .ai_bits = 14, |
| .ao_chans = S626_DAC_CHANNELS, |
| .ao_bits = 13, |
| .dio_chans = S626_DIO_CHANNELS, |
| .dio_banks = S626_DIO_BANKS, |
| .enc_chans = S626_ENCODER_CHANNELS, |
| } |
| }; |
| |
| #define thisboard ((const struct s626_board *)dev->board_ptr) |
| #define PCI_VENDOR_ID_S626 0x1131 |
| #define PCI_DEVICE_ID_S626 0x7146 |
| |
| /* |
| * For devices with vendor:device id == 0x1131:0x7146 you must specify |
| * also subvendor:subdevice ids, because otherwise it will conflict with |
| * Philips SAA7146 media/dvb based cards. |
| */ |
| static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = { |
| {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, 0x6000, 0x0272, 0, 0, 0}, |
| {0} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, s626_pci_table); |
| |
| static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it); |
| static int s626_detach(struct comedi_device *dev); |
| |
| static struct comedi_driver driver_s626 = { |
| .driver_name = "s626", |
| .module = THIS_MODULE, |
| .attach = s626_attach, |
| .detach = s626_detach, |
| }; |
| |
| struct s626_private { |
| struct pci_dev *pdev; |
| void *base_addr; |
| int got_regions; |
| short allocatedBuf; |
| uint8_t ai_cmd_running; /* ai_cmd is running */ |
| uint8_t ai_continous; /* continous aquisition */ |
| int ai_sample_count; /* number of samples to acquire */ |
| unsigned int ai_sample_timer; |
| /* time between samples in units of the timer */ |
| int ai_convert_count; /* conversion counter */ |
| unsigned int ai_convert_timer; |
| /* time between conversion in units of the timer */ |
| uint16_t CounterIntEnabs; |
| /* Counter interrupt enable mask for MISC2 register. */ |
| uint8_t AdcItems; /* Number of items in ADC poll list. */ |
| struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */ |
| struct bufferDMA ANABuf; |
| /* DMA buffer used to receive ADC data and hold DAC data. */ |
| uint32_t *pDacWBuf; |
| /* Pointer to logical adrs of DMA buffer used to hold DAC data. */ |
| uint16_t Dacpol; /* Image of DAC polarity register. */ |
| uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */ |
| uint16_t ChargeEnabled; /* Image of MISC2 Battery */ |
| /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */ |
| uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */ |
| uint32_t I2CAdrs; |
| /* I2C device address for onboard EEPROM (board rev dependent). */ |
| /* short I2Cards; */ |
| unsigned int ao_readback[S626_DAC_CHANNELS]; |
| }; |
| |
| struct dio_private { |
| uint16_t RDDIn; |
| uint16_t WRDOut; |
| uint16_t RDEdgSel; |
| uint16_t WREdgSel; |
| uint16_t RDCapSel; |
| uint16_t WRCapSel; |
| uint16_t RDCapFlg; |
| uint16_t RDIntSel; |
| uint16_t WRIntSel; |
| }; |
| |
| static struct dio_private dio_private_A = { |
| .RDDIn = LP_RDDINA, |
| .WRDOut = LP_WRDOUTA, |
| .RDEdgSel = LP_RDEDGSELA, |
| .WREdgSel = LP_WREDGSELA, |
| .RDCapSel = LP_RDCAPSELA, |
| .WRCapSel = LP_WRCAPSELA, |
| .RDCapFlg = LP_RDCAPFLGA, |
| .RDIntSel = LP_RDINTSELA, |
| .WRIntSel = LP_WRINTSELA, |
| }; |
| |
| static struct dio_private dio_private_B = { |
| .RDDIn = LP_RDDINB, |
| .WRDOut = LP_WRDOUTB, |
| .RDEdgSel = LP_RDEDGSELB, |
| .WREdgSel = LP_WREDGSELB, |
| .RDCapSel = LP_RDCAPSELB, |
| .WRCapSel = LP_WRCAPSELB, |
| .RDCapFlg = LP_RDCAPFLGB, |
| .RDIntSel = LP_RDINTSELB, |
| .WRIntSel = LP_WRINTSELB, |
| }; |
| |
| static struct dio_private dio_private_C = { |
| .RDDIn = LP_RDDINC, |
| .WRDOut = LP_WRDOUTC, |
| .RDEdgSel = LP_RDEDGSELC, |
| .WREdgSel = LP_WREDGSELC, |
| .RDCapSel = LP_RDCAPSELC, |
| .WRCapSel = LP_WRCAPSELC, |
| .RDCapFlg = LP_RDCAPFLGC, |
| .RDIntSel = LP_RDINTSELC, |
| .WRIntSel = LP_WRINTSELC, |
| }; |
| |
| /* to group dio devices (48 bits mask and data are not allowed ???) |
| static struct dio_private *dio_private_word[]={ |
| &dio_private_A, |
| &dio_private_B, |
| &dio_private_C, |
| }; |
| */ |
| |
| #define devpriv ((struct s626_private *)dev->private) |
| #define diopriv ((struct dio_private *)s->private) |
| |
| COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table); |
| |
| /* ioctl routines */ |
| static int s626_ai_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */ |
| static int s626_ai_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s); |
| static int s626_ai_cmdtest(struct comedi_device *dev, |
| struct comedi_subdevice *s, struct comedi_cmd *cmd); |
| static int s626_ai_cancel(struct comedi_device *dev, |
| struct comedi_subdevice *s); |
| static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_dio_insn_bits(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_dio_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan); |
| static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop, |
| unsigned int mask); |
| static int s626_dio_clear_irq(struct comedi_device *dev); |
| static int s626_enc_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_enc_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_enc_insn_write(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data); |
| static int s626_ns_to_timer(int *nanosec, int round_mode); |
| static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd); |
| static int s626_ai_inttrig(struct comedi_device *dev, |
| struct comedi_subdevice *s, unsigned int trignum); |
| static irqreturn_t s626_irq_handler(int irq, void *d); |
| static unsigned int s626_ai_reg_to_uint(int data); |
| /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */ |
| |
| /* end ioctl routines */ |
| |
| /* internal routines */ |
| static void s626_dio_init(struct comedi_device *dev); |
| static void ResetADC(struct comedi_device *dev, uint8_t * ppl); |
| static void LoadTrimDACs(struct comedi_device *dev); |
| static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan, |
| uint8_t DacData); |
| static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr); |
| static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val); |
| static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata); |
| static void SendDAC(struct comedi_device *dev, uint32_t val); |
| static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage); |
| static void DEBItransfer(struct comedi_device *dev); |
| static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr); |
| static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata); |
| static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask, |
| uint16_t wdata); |
| static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, |
| size_t bsize); |
| |
| /* COUNTER OBJECT ------------------------------------------------ */ |
| struct enc_private { |
| /* Pointers to functions that differ for A and B counters: */ |
| uint16_t(*GetEnable) (struct comedi_device * dev, struct enc_private *); /* Return clock enable. */ |
| uint16_t(*GetIntSrc) (struct comedi_device * dev, struct enc_private *); /* Return interrupt source. */ |
| uint16_t(*GetLoadTrig) (struct comedi_device * dev, struct enc_private *); /* Return preload trigger source. */ |
| uint16_t(*GetMode) (struct comedi_device * dev, struct enc_private *); /* Return standardized operating mode. */ |
| void (*PulseIndex) (struct comedi_device * dev, struct enc_private *); /* Generate soft index strobe. */ |
| void (*SetEnable) (struct comedi_device * dev, struct enc_private *, uint16_t enab); /* Program clock enable. */ |
| void (*SetIntSrc) (struct comedi_device * dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */ |
| void (*SetLoadTrig) (struct comedi_device * dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */ |
| void (*SetMode) (struct comedi_device * dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */ |
| void (*ResetCapFlags) (struct comedi_device * dev, struct enc_private *); /* Reset event capture flags. */ |
| |
| uint16_t MyCRA; /* Address of CRA register. */ |
| uint16_t MyCRB; /* Address of CRB register. */ |
| uint16_t MyLatchLsw; /* Address of Latch least-significant-word */ |
| /* register. */ |
| uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */ |
| }; |
| |
| #define encpriv ((struct enc_private *)(dev->subdevices+5)->private) |
| |
| /* counters routines */ |
| static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, |
| int tick); |
| static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k); |
| static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k); |
| static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k); |
| static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k); |
| static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k); |
| static void SetMode_A(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Setup, uint16_t DisableIntSrc); |
| static void SetMode_B(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Setup, uint16_t DisableIntSrc); |
| static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, |
| uint16_t enab); |
| static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, |
| uint16_t enab); |
| static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k); |
| static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k); |
| static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, |
| uint16_t value); |
| /* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */ |
| static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Trig); |
| static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Trig); |
| static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k); |
| static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k); |
| static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k, |
| uint16_t IntSource); |
| static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k, |
| uint16_t IntSource); |
| static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k); |
| static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k); |
| /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */ |
| /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */ |
| /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */ |
| /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */ |
| /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */ |
| /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */ |
| /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */ |
| /* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */ |
| static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k); |
| static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k); |
| static void Preload(struct comedi_device *dev, struct enc_private *k, |
| uint32_t value); |
| static void CountersInit(struct comedi_device *dev); |
| /* end internal routines */ |
| |
| /* Counter objects constructor. */ |
| |
| /* Counter overflow/index event flag masks for RDMISC2. */ |
| #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4))) |
| #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10))) |
| #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) } |
| |
| /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */ |
| /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */ |
| |
| /* struct enc_private; */ |
| static struct enc_private enc_private_data[] = { |
| { |
| .GetEnable = GetEnable_A, |
| .GetIntSrc = GetIntSrc_A, |
| .GetLoadTrig = GetLoadTrig_A, |
| .GetMode = GetMode_A, |
| .PulseIndex = PulseIndex_A, |
| .SetEnable = SetEnable_A, |
| .SetIntSrc = SetIntSrc_A, |
| .SetLoadTrig = SetLoadTrig_A, |
| .SetMode = SetMode_A, |
| .ResetCapFlags = ResetCapFlags_A, |
| .MyCRA = LP_CR0A, |
| .MyCRB = LP_CR0B, |
| .MyLatchLsw = LP_CNTR0ALSW, |
| .MyEventBits = EVBITS(0), |
| }, |
| { |
| .GetEnable = GetEnable_A, |
| .GetIntSrc = GetIntSrc_A, |
| .GetLoadTrig = GetLoadTrig_A, |
| .GetMode = GetMode_A, |
| .PulseIndex = PulseIndex_A, |
| .SetEnable = SetEnable_A, |
| .SetIntSrc = SetIntSrc_A, |
| .SetLoadTrig = SetLoadTrig_A, |
| .SetMode = SetMode_A, |
| .ResetCapFlags = ResetCapFlags_A, |
| .MyCRA = LP_CR1A, |
| .MyCRB = LP_CR1B, |
| .MyLatchLsw = LP_CNTR1ALSW, |
| .MyEventBits = EVBITS(1), |
| }, |
| { |
| .GetEnable = GetEnable_A, |
| .GetIntSrc = GetIntSrc_A, |
| .GetLoadTrig = GetLoadTrig_A, |
| .GetMode = GetMode_A, |
| .PulseIndex = PulseIndex_A, |
| .SetEnable = SetEnable_A, |
| .SetIntSrc = SetIntSrc_A, |
| .SetLoadTrig = SetLoadTrig_A, |
| .SetMode = SetMode_A, |
| .ResetCapFlags = ResetCapFlags_A, |
| .MyCRA = LP_CR2A, |
| .MyCRB = LP_CR2B, |
| .MyLatchLsw = LP_CNTR2ALSW, |
| .MyEventBits = EVBITS(2), |
| }, |
| { |
| .GetEnable = GetEnable_B, |
| .GetIntSrc = GetIntSrc_B, |
| .GetLoadTrig = GetLoadTrig_B, |
| .GetMode = GetMode_B, |
| .PulseIndex = PulseIndex_B, |
| .SetEnable = SetEnable_B, |
| .SetIntSrc = SetIntSrc_B, |
| .SetLoadTrig = SetLoadTrig_B, |
| .SetMode = SetMode_B, |
| .ResetCapFlags = ResetCapFlags_B, |
| .MyCRA = LP_CR0A, |
| .MyCRB = LP_CR0B, |
| .MyLatchLsw = LP_CNTR0BLSW, |
| .MyEventBits = EVBITS(3), |
| }, |
| { |
| .GetEnable = GetEnable_B, |
| .GetIntSrc = GetIntSrc_B, |
| .GetLoadTrig = GetLoadTrig_B, |
| .GetMode = GetMode_B, |
| .PulseIndex = PulseIndex_B, |
| .SetEnable = SetEnable_B, |
| .SetIntSrc = SetIntSrc_B, |
| .SetLoadTrig = SetLoadTrig_B, |
| .SetMode = SetMode_B, |
| .ResetCapFlags = ResetCapFlags_B, |
| .MyCRA = LP_CR1A, |
| .MyCRB = LP_CR1B, |
| .MyLatchLsw = LP_CNTR1BLSW, |
| .MyEventBits = EVBITS(4), |
| }, |
| { |
| .GetEnable = GetEnable_B, |
| .GetIntSrc = GetIntSrc_B, |
| .GetLoadTrig = GetLoadTrig_B, |
| .GetMode = GetMode_B, |
| .PulseIndex = PulseIndex_B, |
| .SetEnable = SetEnable_B, |
| .SetIntSrc = SetIntSrc_B, |
| .SetLoadTrig = SetLoadTrig_B, |
| .SetMode = SetMode_B, |
| .ResetCapFlags = ResetCapFlags_B, |
| .MyCRA = LP_CR2A, |
| .MyCRB = LP_CR2B, |
| .MyLatchLsw = LP_CNTR2BLSW, |
| .MyEventBits = EVBITS(5), |
| }, |
| }; |
| |
| /* enab/disable a function or test status bit(s) that are accessed */ |
| /* through Main Control Registers 1 or 2. */ |
| #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS)) |
| |
| #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS)) |
| |
| #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0) |
| |
| /* #define WR7146(REGARDS,CTRLWORD) |
| writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */ |
| #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS)) |
| |
| /* #define RR7146(REGARDS) |
| readl((uint32_t)(devpriv->base_addr+(REGARDS))) */ |
| #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS)) |
| |
| #define BUGFIX_STREG(REGADRS) (REGADRS - 4) |
| |
| /* Write a time slot control record to TSL2. */ |
| #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2)) |
| #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL)) |
| |
| /* Code macros used for constructing I2C command bytes. */ |
| #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24)) |
| #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16)) |
| #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8)) |
| |
| static const struct comedi_lrange s626_range_table = { 2, { |
| RANGE(-5, 5), |
| RANGE(-10, 10), |
| } |
| }; |
| |
| static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it) |
| { |
| /* uint8_t PollList; */ |
| /* uint16_t AdcData; */ |
| /* uint16_t StartVal; */ |
| /* uint16_t index; */ |
| /* unsigned int data[16]; */ |
| int result; |
| int i; |
| int ret; |
| resource_size_t resourceStart; |
| dma_addr_t appdma; |
| struct comedi_subdevice *s; |
| const struct pci_device_id *ids; |
| struct pci_dev *pdev = NULL; |
| |
| if (alloc_private(dev, sizeof(struct s626_private)) < 0) |
| return -ENOMEM; |
| |
| for (i = 0; i < (ARRAY_SIZE(s626_pci_table) - 1) && !pdev; i++) { |
| ids = &s626_pci_table[i]; |
| do { |
| pdev = pci_get_subsys(ids->vendor, ids->device, |
| ids->subvendor, ids->subdevice, |
| pdev); |
| |
| if ((it->options[0] || it->options[1]) && pdev) { |
| /* matches requested bus/slot */ |
| if (pdev->bus->number == it->options[0] && |
| PCI_SLOT(pdev->devfn) == it->options[1]) |
| break; |
| } else |
| break; |
| } while (1); |
| } |
| devpriv->pdev = pdev; |
| |
| if (pdev == NULL) { |
| printk("s626_attach: Board not present!!!\n"); |
| return -ENODEV; |
| } |
| |
| result = comedi_pci_enable(pdev, "s626"); |
| if (result < 0) { |
| printk("s626_attach: comedi_pci_enable fails\n"); |
| return -ENODEV; |
| } |
| devpriv->got_regions = 1; |
| |
| resourceStart = pci_resource_start(devpriv->pdev, 0); |
| |
| devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE); |
| if (devpriv->base_addr == NULL) { |
| printk("s626_attach: IOREMAP failed\n"); |
| return -ENODEV; |
| } |
| |
| if (devpriv->base_addr) { |
| /* disable master interrupt */ |
| writel(0, devpriv->base_addr + P_IER); |
| |
| /* soft reset */ |
| writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1); |
| |
| /* DMA FIXME DMA// */ |
| DEBUG("s626_attach: DMA ALLOCATION\n"); |
| |
| /* adc buffer allocation */ |
| devpriv->allocatedBuf = 0; |
| |
| devpriv->ANABuf.LogicalBase = |
| pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma); |
| |
| if (devpriv->ANABuf.LogicalBase == NULL) { |
| printk("s626_attach: DMA Memory mapping error\n"); |
| return -ENOMEM; |
| } |
| |
| devpriv->ANABuf.PhysicalBase = appdma; |
| |
| DEBUG |
| ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", |
| devpriv->ANABuf.LogicalBase, DMABUF_SIZE, |
| (uint32_t) devpriv->ANABuf.PhysicalBase); |
| |
| devpriv->allocatedBuf++; |
| |
| devpriv->RPSBuf.LogicalBase = |
| pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma); |
| |
| if (devpriv->RPSBuf.LogicalBase == NULL) { |
| printk("s626_attach: DMA Memory mapping error\n"); |
| return -ENOMEM; |
| } |
| |
| devpriv->RPSBuf.PhysicalBase = appdma; |
| |
| DEBUG |
| ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", |
| devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, |
| (uint32_t) devpriv->RPSBuf.PhysicalBase); |
| |
| devpriv->allocatedBuf++; |
| |
| } |
| |
| dev->board_ptr = s626_boards; |
| dev->board_name = thisboard->name; |
| |
| if (alloc_subdevices(dev, 6) < 0) |
| return -ENOMEM; |
| |
| dev->iobase = (unsigned long)devpriv->base_addr; |
| dev->irq = devpriv->pdev->irq; |
| |
| /* set up interrupt handler */ |
| if (dev->irq == 0) { |
| printk(" unknown irq (bad)\n"); |
| } else { |
| ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED, |
| "s626", dev); |
| |
| if (ret < 0) { |
| printk(" irq not available\n"); |
| dev->irq = 0; |
| } |
| } |
| |
| DEBUG("s626_attach: -- it opts %d,%d -- \n", |
| it->options[0], it->options[1]); |
| |
| s = dev->subdevices + 0; |
| /* analog input subdevice */ |
| dev->read_subdev = s; |
| /* we support single-ended (ground) and differential */ |
| s->type = COMEDI_SUBD_AI; |
| s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ; |
| s->n_chan = thisboard->ai_chans; |
| s->maxdata = (0xffff >> 2); |
| s->range_table = &s626_range_table; |
| s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist |
| length that the board can |
| handle */ |
| s->insn_config = s626_ai_insn_config; |
| s->insn_read = s626_ai_insn_read; |
| s->do_cmd = s626_ai_cmd; |
| s->do_cmdtest = s626_ai_cmdtest; |
| s->cancel = s626_ai_cancel; |
| |
| s = dev->subdevices + 1; |
| /* analog output subdevice */ |
| s->type = COMEDI_SUBD_AO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = thisboard->ao_chans; |
| s->maxdata = (0x3fff); |
| s->range_table = &range_bipolar10; |
| s->insn_write = s626_ao_winsn; |
| s->insn_read = s626_ao_rinsn; |
| |
| s = dev->subdevices + 2; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = S626_DIO_CHANNELS; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = &dio_private_A; |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = dev->subdevices + 3; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = 16; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = &dio_private_B; |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = dev->subdevices + 4; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = 16; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = &dio_private_C; |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = dev->subdevices + 5; |
| /* encoder (counter) subdevice */ |
| s->type = COMEDI_SUBD_COUNTER; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; |
| s->n_chan = thisboard->enc_chans; |
| s->private = enc_private_data; |
| s->insn_config = s626_enc_insn_config; |
| s->insn_read = s626_enc_insn_read; |
| s->insn_write = s626_enc_insn_write; |
| s->maxdata = 0xffffff; |
| s->range_table = &range_unknown; |
| |
| /* stop ai_command */ |
| devpriv->ai_cmd_running = 0; |
| |
| if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) { |
| dma_addr_t pPhysBuf; |
| uint16_t chan; |
| |
| /* enab DEBI and audio pins, enable I2C interface. */ |
| MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C); |
| /* Configure DEBI operating mode. */ |
| WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */ |
| /* bits wide. */ |
| | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
| |
| /* Declare DEBI */ |
| /* transfer timeout */ |
| /* interval. */ |
| |DEBI_SWAP /* Set up byte lane */ |
| /* steering. */ |
| | DEBI_CFG_INTEL); /* Intel-compatible */ |
| /* local bus (DEBI */ |
| /* never times out). */ |
| DEBUG("s626_attach: %d debi init -- %d\n", |
| DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) | |
| DEBI_SWAP | DEBI_CFG_INTEL, |
| DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ | |
| DEBI_CFG_16Q); |
| |
| /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */ |
| /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */ |
| |
| /* Paging is disabled. */ |
| WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */ |
| |
| /* Init GPIO so that ADC Start* is negated. */ |
| WR7146(P_GPIO, GPIO_BASE | GPIO1_HI); |
| |
| /* IsBoardRevA is a boolean that indicates whether the board is RevA. |
| * |
| * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC |
| * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which |
| * is used to access the onboard serial EEPROM. The EEPROM's I2C |
| * DeviceAddress is hardwired to a value that is dependent on the |
| * 626 board revision. On all board revisions, the EEPROM stores |
| * TrimDAC calibration constants for analog I/O. On RevB and |
| * higher boards, the DeviceAddress is hardwired to 0 to enable |
| * the EEPROM to also store the PCI SubVendorID and SubDeviceID; |
| * this is the address at which the SAA7146 expects a |
| * configuration EEPROM to reside. On RevA boards, the EEPROM |
| * device address, which is hardwired to 4, prevents the SAA7146 |
| * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in |
| * default values, instead. |
| */ |
| |
| /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */ |
| /* DeviceType (0xA0) */ |
| /* and DeviceAddress<<1. */ |
| |
| devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */ |
| /* eeprom(revb) */ |
| |
| /* Issue an I2C ABORT command to halt any I2C operation in */ |
| /* progress and reset BUSY flag. */ |
| WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); |
| /* Write I2C control: abort any I2C activity. */ |
| MC_ENABLE(P_MC2, MC2_UPLD_IIC); |
| /* Invoke command upload */ |
| while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; |
| /* and wait for upload to complete. */ |
| |
| /* Per SAA7146 data sheet, write to STATUS reg twice to |
| * reset all I2C error flags. */ |
| for (i = 0; i < 2; i++) { |
| WR7146(P_I2CSTAT, I2C_CLKSEL); |
| /* Write I2C control: reset error flags. */ |
| MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */ |
| while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; |
| /* and wait for upload to complete. */ |
| } |
| |
| /* Init audio interface functional attributes: set DAC/ADC |
| * serial clock rates, invert DAC serial clock so that |
| * DAC data setup times are satisfied, enable DAC serial |
| * clock out. |
| */ |
| |
| WR7146(P_ACON2, ACON2_INIT); |
| |
| /* Set up TSL1 slot list, which is used to control the |
| * accumulation of ADC data: RSD1 = shift data in on SD1. |
| * SIB_A1 = store data uint8_t at next available location in |
| * FB BUFFER1 register. */ |
| WR7146(P_TSL1, RSD1 | SIB_A1); |
| /* Fetch ADC high data uint8_t. */ |
| WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); |
| /* Fetch ADC low data uint8_t; end of TSL1. */ |
| |
| /* enab TSL1 slot list so that it executes all the time. */ |
| WR7146(P_ACON1, ACON1_ADCSTART); |
| |
| /* Initialize RPS registers used for ADC. */ |
| |
| /* Physical start of RPS program. */ |
| WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase); |
| |
| WR7146(P_RPSPAGE1, 0); |
| /* RPS program performs no explicit mem writes. */ |
| WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */ |
| |
| /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface |
| * to a known state by invoking ADCs until FB BUFFER 1 |
| * register shows that it is correctly receiving ADC data. |
| * This is necessary because the SAA7146 ADC interface does |
| * not start up in a defined state after a PCI reset. |
| */ |
| |
| /* PollList = EOPL; // Create a simple polling */ |
| /* // list for analog input */ |
| /* // channel 0. */ |
| /* ResetADC( dev, &PollList ); */ |
| |
| /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */ |
| /* //Get initial ADC */ |
| /* //value. */ |
| |
| /* StartVal = data[0]; */ |
| |
| /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */ |
| /* // Invoke ADCs until the new ADC value differs from the initial */ |
| /* // value or a timeout occurs. The timeout protects against the */ |
| /* // possibility that the driver is restarting and the ADC data is a */ |
| /* // fixed value resulting from the applied ADC analog input being */ |
| /* // unusually quiet or at the rail. */ |
| |
| /* for ( index = 0; index < 500; index++ ) */ |
| /* { */ |
| /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */ |
| /* AdcData = data[0]; //ReadADC( &AdcData ); */ |
| /* if ( AdcData != StartVal ) */ |
| /* break; */ |
| /* } */ |
| |
| /* end initADC */ |
| |
| /* init the DAC interface */ |
| |
| /* Init Audio2's output DMAC attributes: burst length = 1 |
| * DWORD, threshold = 1 DWORD. |
| */ |
| WR7146(P_PCI_BT_A, 0); |
| |
| /* Init Audio2's output DMA physical addresses. The protection |
| * address is set to 1 DWORD past the base address so that a |
| * single DWORD will be transferred each time a DMA transfer is |
| * enabled. */ |
| |
| pPhysBuf = |
| devpriv->ANABuf.PhysicalBase + |
| (DAC_WDMABUF_OS * sizeof(uint32_t)); |
| |
| WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */ |
| WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */ |
| |
| /* Cache Audio2's output DMA buffer logical address. This is |
| * where DAC data is buffered for A2 output DMA transfers. */ |
| devpriv->pDacWBuf = |
| (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS; |
| |
| /* Audio2's output channels does not use paging. The protection |
| * violation handling bit is set so that the DMAC will |
| * automatically halt and its PCI address pointer will be reset |
| * when the protection address is reached. */ |
| |
| WR7146(P_PAGEA2_OUT, 8); |
| |
| /* Initialize time slot list 2 (TSL2), which is used to control |
| * the clock generation for and serialization of data to be sent |
| * to the DAC devices. Slot 0 is a NOP that is used to trap TSL |
| * execution; this permits other slots to be safely modified |
| * without first turning off the TSL sequencer (which is |
| * apparently impossible to do). Also, SD3 (which is driven by a |
| * pull-up resistor) is shifted in and stored to the MSB of |
| * FB_BUFFER2 to be used as evidence that the slot sequence has |
| * not yet finished executing. |
| */ |
| |
| SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); |
| /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */ |
| |
| /* Initialize slot 1, which is constant. Slot 1 causes a |
| * DWORD to be transferred from audio channel 2's output FIFO |
| * to the FIFO's output buffer so that it can be serialized |
| * and sent to the DAC during subsequent slots. All remaining |
| * slots are dynamically populated as required by the target |
| * DAC device. |
| */ |
| SETVECT(1, LF_A2); |
| /* Slot 1: Fetch DWORD from Audio2's output FIFO. */ |
| |
| /* Start DAC's audio interface (TSL2) running. */ |
| WR7146(P_ACON1, ACON1_DACSTART); |
| |
| /* end init DAC interface */ |
| |
| /* Init Trim DACs to calibrated values. Do it twice because the |
| * SAA7146 audio channel does not always reset properly and |
| * sometimes causes the first few TrimDAC writes to malfunction. |
| */ |
| |
| LoadTrimDACs(dev); |
| LoadTrimDACs(dev); /* Insurance. */ |
| |
| /* Manually init all gate array hardware in case this is a soft |
| * reset (we have no way of determining whether this is a warm |
| * or cold start). This is necessary because the gate array will |
| * reset only in response to a PCI hard reset; there is no soft |
| * reset function. */ |
| |
| /* Init all DAC outputs to 0V and init all DAC setpoint and |
| * polarity images. |
| */ |
| for (chan = 0; chan < S626_DAC_CHANNELS; chan++) |
| SetDAC(dev, chan, 0); |
| |
| /* Init image of WRMISC2 Battery Charger Enabled control bit. |
| * This image is used when the state of the charger control bit, |
| * which has no direct hardware readback mechanism, is queried. |
| */ |
| devpriv->ChargeEnabled = 0; |
| |
| /* Init image of watchdog timer interval in WRMISC2. This image |
| * maintains the value of the control bits of MISC2 are |
| * continuously reset to zero as long as the WD timer is disabled. |
| */ |
| devpriv->WDInterval = 0; |
| |
| /* Init Counter Interrupt enab mask for RDMISC2. This mask is |
| * applied against MISC2 when testing to determine which timer |
| * events are requesting interrupt service. |
| */ |
| devpriv->CounterIntEnabs = 0; |
| |
| /* Init counters. */ |
| CountersInit(dev); |
| |
| /* Without modifying the state of the Battery Backup enab, disable |
| * the watchdog timer, set DIO channels 0-5 to operate in the |
| * standard DIO (vs. counter overflow) mode, disable the battery |
| * charger, and reset the watchdog interval selector to zero. |
| */ |
| WriteMISC2(dev, (uint16_t) (DEBIread(dev, |
| LP_RDMISC2) & |
| MISC2_BATT_ENABLE)); |
| |
| /* Initialize the digital I/O subsystem. */ |
| s626_dio_init(dev); |
| |
| /* enable interrupt test */ |
| /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */ |
| } |
| |
| DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor, |
| (uint32_t) devpriv->base_addr); |
| |
| return 1; |
| } |
| |
| static unsigned int s626_ai_reg_to_uint(int data) |
| { |
| unsigned int tempdata; |
| |
| tempdata = (data >> 18); |
| if (tempdata & 0x2000) |
| tempdata &= 0x1fff; |
| else |
| tempdata += (1 << 13); |
| |
| return tempdata; |
| } |
| |
| /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */ |
| /* return 0; */ |
| /* } */ |
| |
| static irqreturn_t s626_irq_handler(int irq, void *d) |
| { |
| struct comedi_device *dev = d; |
| struct comedi_subdevice *s; |
| struct comedi_cmd *cmd; |
| struct enc_private *k; |
| unsigned long flags; |
| int32_t *readaddr; |
| uint32_t irqtype, irqstatus; |
| int i = 0; |
| short tempdata; |
| uint8_t group; |
| uint16_t irqbit; |
| |
| DEBUG("s626_irq_handler: interrupt request recieved!!!\n"); |
| |
| if (dev->attached == 0) |
| return IRQ_NONE; |
| /* lock to avoid race with comedi_poll */ |
| spin_lock_irqsave(&dev->spinlock, flags); |
| |
| /* save interrupt enable register state */ |
| irqstatus = readl(devpriv->base_addr + P_IER); |
| |
| /* read interrupt type */ |
| irqtype = readl(devpriv->base_addr + P_ISR); |
| |
| /* disable master interrupt */ |
| writel(0, devpriv->base_addr + P_IER); |
| |
| /* clear interrupt */ |
| writel(irqtype, devpriv->base_addr + P_ISR); |
| |
| /* do somethings */ |
| DEBUG("s626_irq_handler: interrupt type %d\n", irqtype); |
| |
| switch (irqtype) { |
| case IRQ_RPS1: /* end_of_scan occurs */ |
| |
| DEBUG("s626_irq_handler: RPS1 irq detected\n"); |
| |
| /* manage ai subdevice */ |
| s = dev->subdevices; |
| cmd = &(s->async->cmd); |
| |
| /* Init ptr to DMA buffer that holds new ADC data. We skip the |
| * first uint16_t in the buffer because it contains junk data from |
| * the final ADC of the previous poll list scan. |
| */ |
| readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1; |
| |
| /* get the data and hand it over to comedi */ |
| for (i = 0; i < (s->async->cmd.chanlist_len); i++) { |
| /* Convert ADC data to 16-bit integer values and copy to application */ |
| /* buffer. */ |
| tempdata = s626_ai_reg_to_uint((int)*readaddr); |
| readaddr++; |
| |
| /* put data into read buffer */ |
| /* comedi_buf_put(s->async, tempdata); */ |
| if (cfc_write_to_buffer(s, tempdata) == 0) |
| printk |
| ("s626_irq_handler: cfc_write_to_buffer error!\n"); |
| |
| DEBUG("s626_irq_handler: ai channel %d acquired: %d\n", |
| i, tempdata); |
| } |
| |
| /* end of scan occurs */ |
| s->async->events |= COMEDI_CB_EOS; |
| |
| if (!(devpriv->ai_continous)) |
| devpriv->ai_sample_count--; |
| if (devpriv->ai_sample_count <= 0) { |
| devpriv->ai_cmd_running = 0; |
| |
| /* Stop RPS program. */ |
| MC_DISABLE(P_MC1, MC1_ERPS1); |
| |
| /* send end of acquisition */ |
| s->async->events |= COMEDI_CB_EOA; |
| |
| /* disable master interrupt */ |
| irqstatus = 0; |
| } |
| |
| if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) { |
| DEBUG |
| ("s626_irq_handler: enable interrupt on dio channel %d\n", |
| cmd->scan_begin_arg); |
| |
| s626_dio_set_irq(dev, cmd->scan_begin_arg); |
| |
| DEBUG("s626_irq_handler: External trigger is set!!!\n"); |
| } |
| /* tell comedi that data is there */ |
| DEBUG("s626_irq_handler: events %d\n", s->async->events); |
| comedi_event(dev, s); |
| break; |
| case IRQ_GPIO3: /* check dio and conter interrupt */ |
| |
| DEBUG("s626_irq_handler: GPIO3 irq detected\n"); |
| |
| /* manage ai subdevice */ |
| s = dev->subdevices; |
| cmd = &(s->async->cmd); |
| |
| /* s626_dio_clear_irq(dev); */ |
| |
| for (group = 0; group < S626_DIO_BANKS; group++) { |
| irqbit = 0; |
| /* read interrupt type */ |
| irqbit = DEBIread(dev, |
| ((struct dio_private *)(dev-> |
| subdevices + |
| 2 + |
| group)-> |
| private)->RDCapFlg); |
| |
| /* check if interrupt is generated from dio channels */ |
| if (irqbit) { |
| s626_dio_reset_irq(dev, group, irqbit); |
| DEBUG |
| ("s626_irq_handler: check interrupt on dio group %d %d\n", |
| group, i); |
| if (devpriv->ai_cmd_running) { |
| /* check if interrupt is an ai acquisition start trigger */ |
| if ((irqbit >> (cmd->start_arg - |
| (16 * group))) |
| == 1 && cmd->start_src == TRIG_EXT) { |
| DEBUG |
| ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", |
| cmd->start_arg); |
| |
| /* Start executing the RPS program. */ |
| MC_ENABLE(P_MC1, MC1_ERPS1); |
| |
| DEBUG |
| ("s626_irq_handler: aquisition start triggered!!!\n"); |
| |
| if (cmd->scan_begin_src == |
| TRIG_EXT) { |
| DEBUG |
| ("s626_ai_cmd: enable interrupt on dio channel %d\n", |
| cmd-> |
| scan_begin_arg); |
| |
| s626_dio_set_irq(dev, |
| cmd->scan_begin_arg); |
| |
| DEBUG |
| ("s626_irq_handler: External scan trigger is set!!!\n"); |
| } |
| } |
| if ((irqbit >> (cmd->scan_begin_arg - |
| (16 * group))) |
| == 1 |
| && cmd->scan_begin_src == |
| TRIG_EXT) { |
| DEBUG |
| ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", |
| cmd->scan_begin_arg); |
| |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| MC_ENABLE(P_MC2, MC2_ADC_RPS); |
| |
| DEBUG |
| ("s626_irq_handler: scan triggered!!! %d\n", |
| devpriv->ai_sample_count); |
| if (cmd->convert_src == |
| TRIG_EXT) { |
| |
| DEBUG |
| ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", |
| cmd->convert_arg - |
| (16 * group), |
| group); |
| |
| devpriv->ai_convert_count |
| = cmd->chanlist_len; |
| |
| s626_dio_set_irq(dev, |
| cmd->convert_arg); |
| |
| DEBUG |
| ("s626_irq_handler: External convert trigger is set!!!\n"); |
| } |
| |
| if (cmd->convert_src == |
| TRIG_TIMER) { |
| k = &encpriv[5]; |
| devpriv->ai_convert_count |
| = cmd->chanlist_len; |
| k->SetEnable(dev, k, |
| CLKENAB_ALWAYS); |
| } |
| } |
| if ((irqbit >> (cmd->convert_arg - |
| (16 * group))) |
| == 1 |
| && cmd->convert_src == TRIG_EXT) { |
| DEBUG |
| ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", |
| cmd->convert_arg); |
| |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| MC_ENABLE(P_MC2, MC2_ADC_RPS); |
| |
| DEBUG |
| ("s626_irq_handler: adc convert triggered!!!\n"); |
| |
| devpriv->ai_convert_count--; |
| |
| if (devpriv->ai_convert_count > |
| 0) { |
| |
| DEBUG |
| ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", |
| cmd->convert_arg - |
| (16 * group), |
| group); |
| |
| s626_dio_set_irq(dev, |
| cmd->convert_arg); |
| |
| DEBUG |
| ("s626_irq_handler: External trigger is set!!!\n"); |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| /* read interrupt type */ |
| irqbit = DEBIread(dev, LP_RDMISC2); |
| |
| /* check interrupt on counters */ |
| DEBUG("s626_irq_handler: check counters interrupt %d\n", |
| irqbit); |
| |
| if (irqbit & IRQ_COINT1A) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 1A overflow\n"); |
| k = &encpriv[0]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| } |
| if (irqbit & IRQ_COINT2A) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 2A overflow\n"); |
| k = &encpriv[1]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| } |
| if (irqbit & IRQ_COINT3A) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 3A overflow\n"); |
| k = &encpriv[2]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| } |
| if (irqbit & IRQ_COINT1B) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 1B overflow\n"); |
| k = &encpriv[3]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| } |
| if (irqbit & IRQ_COINT2B) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 2B overflow\n"); |
| k = &encpriv[4]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| |
| if (devpriv->ai_convert_count > 0) { |
| devpriv->ai_convert_count--; |
| if (devpriv->ai_convert_count == 0) |
| k->SetEnable(dev, k, CLKENAB_INDEX); |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| DEBUG |
| ("s626_irq_handler: conver timer trigger!!! %d\n", |
| devpriv->ai_convert_count); |
| |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| MC_ENABLE(P_MC2, MC2_ADC_RPS); |
| } |
| } |
| } |
| if (irqbit & IRQ_COINT3B) { |
| DEBUG |
| ("s626_irq_handler: interrupt on counter 3B overflow\n"); |
| k = &encpriv[5]; |
| |
| /* clear interrupt capture flag */ |
| k->ResetCapFlags(dev, k); |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| DEBUG |
| ("s626_irq_handler: scan timer trigger!!!\n"); |
| |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| MC_ENABLE(P_MC2, MC2_ADC_RPS); |
| } |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| DEBUG |
| ("s626_irq_handler: convert timer trigger is set\n"); |
| k = &encpriv[4]; |
| devpriv->ai_convert_count = cmd->chanlist_len; |
| k->SetEnable(dev, k, CLKENAB_ALWAYS); |
| } |
| } |
| } |
| |
| /* enable interrupt */ |
| writel(irqstatus, devpriv->base_addr + P_IER); |
| |
| DEBUG("s626_irq_handler: exit interrupt service routine.\n"); |
| |
| spin_unlock_irqrestore(&dev->spinlock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static int s626_detach(struct comedi_device *dev) |
| { |
| if (devpriv) { |
| /* stop ai_command */ |
| devpriv->ai_cmd_running = 0; |
| |
| if (devpriv->base_addr) { |
| /* interrupt mask */ |
| WR7146(P_IER, 0); /* Disable master interrupt. */ |
| WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */ |
| |
| /* Disable the watchdog timer and battery charger. */ |
| WriteMISC2(dev, 0); |
| |
| /* Close all interfaces on 7146 device. */ |
| WR7146(P_MC1, MC1_SHUTDOWN); |
| WR7146(P_ACON1, ACON1_BASE); |
| |
| CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE); |
| CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE); |
| } |
| |
| if (dev->irq) |
| free_irq(dev->irq, dev); |
| |
| if (devpriv->base_addr) |
| iounmap(devpriv->base_addr); |
| |
| if (devpriv->pdev) { |
| if (devpriv->got_regions) |
| comedi_pci_disable(devpriv->pdev); |
| pci_dev_put(devpriv->pdev); |
| } |
| } |
| |
| DEBUG("s626_detach: S626 detached!\n"); |
| |
| return 0; |
| } |
| |
| /* |
| * this functions build the RPS program for hardware driven acquistion |
| */ |
| void ResetADC(struct comedi_device *dev, uint8_t * ppl) |
| { |
| register uint32_t *pRPS; |
| uint32_t JmpAdrs; |
| uint16_t i; |
| uint16_t n; |
| uint32_t LocalPPL; |
| struct comedi_cmd *cmd = &(dev->subdevices->async->cmd); |
| |
| /* Stop RPS program in case it is currently running. */ |
| MC_DISABLE(P_MC1, MC1_ERPS1); |
| |
| /* Set starting logical address to write RPS commands. */ |
| pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase; |
| |
| /* Initialize RPS instruction pointer. */ |
| WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase); |
| |
| /* Construct RPS program in RPSBuf DMA buffer */ |
| |
| if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) { |
| DEBUG("ResetADC: scan_begin pause inserted\n"); |
| /* Wait for Start trigger. */ |
| *pRPS++ = RPS_PAUSE | RPS_SIGADC; |
| *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; |
| } |
| |
| /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary |
| * because the first RPS DEBI Write following a non-RPS DEBI write |
| * seems to always fail. If we don't do this dummy write, the ADC |
| * gain might not be set to the value required for the first slot in |
| * the poll list; the ADC gain would instead remain unchanged from |
| * the previously programmed value. |
| */ |
| *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); |
| /* Write DEBI Write command and address to shadow RAM. */ |
| |
| *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; |
| *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); |
| /* Write DEBI immediate data to shadow RAM: */ |
| |
| *pRPS++ = GSEL_BIPOLAR5V; |
| /* arbitrary immediate data value. */ |
| |
| *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; |
| /* Reset "shadow RAM uploaded" flag. */ |
| *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */ |
| *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */ |
| |
| /* Digitize all slots in the poll list. This is implemented as a |
| * for loop to limit the slot count to 16 in case the application |
| * forgot to set the EOPL flag in the final slot. |
| */ |
| for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) { |
| /* Convert application's poll list item to private board class |
| * format. Each app poll list item is an uint8_t with form |
| * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = |
| * +-10V, 1 = +-5V, and EOPL = End of Poll List marker. |
| */ |
| LocalPPL = |
| (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V : |
| GSEL_BIPOLAR10V); |
| |
| /* Switch ADC analog gain. */ |
| *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */ |
| /* and address to */ |
| /* shadow RAM. */ |
| *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; |
| *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */ |
| /* immediate data to */ |
| /* shadow RAM. */ |
| *pRPS++ = LocalPPL; |
| *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */ |
| /* flag. */ |
| *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */ |
| *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */ |
| /* finish. */ |
| |
| /* Select ADC analog input channel. */ |
| *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); |
| /* Write DEBI command and address to shadow RAM. */ |
| *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL; |
| *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); |
| /* Write DEBI immediate data to shadow RAM. */ |
| *pRPS++ = LocalPPL; |
| *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; |
| /* Reset "shadow RAM uploaded" flag. */ |
| |
| *pRPS++ = RPS_UPLOAD | RPS_DEBI; |
| /* Invoke shadow RAM upload. */ |
| |
| *pRPS++ = RPS_PAUSE | RPS_DEBI; |
| /* Wait for shadow upload to finish. */ |
| |
| /* Delay at least 10 microseconds for analog input settling. |
| * Instead of padding with NOPs, we use RPS_JUMP instructions |
| * here; this allows us to produce a longer delay than is |
| * possible with NOPs because each RPS_JUMP flushes the RPS' |
| * instruction prefetch pipeline. |
| */ |
| JmpAdrs = |
| (uint32_t) devpriv->RPSBuf.PhysicalBase + |
| (uint32_t) ((unsigned long)pRPS - |
| (unsigned long)devpriv->RPSBuf.LogicalBase); |
| for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) { |
| JmpAdrs += 8; /* Repeat to implement time delay: */ |
| *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */ |
| *pRPS++ = JmpAdrs; |
| } |
| |
| if (cmd != NULL && cmd->convert_src != TRIG_NOW) { |
| DEBUG("ResetADC: convert pause inserted\n"); |
| /* Wait for Start trigger. */ |
| *pRPS++ = RPS_PAUSE | RPS_SIGADC; |
| *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; |
| } |
| /* Start ADC by pulsing GPIO1. */ |
| *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */ |
| *pRPS++ = GPIO_BASE | GPIO1_LO; |
| *pRPS++ = RPS_NOP; |
| /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ |
| *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */ |
| *pRPS++ = GPIO_BASE | GPIO1_HI; |
| |
| /* Wait for ADC to complete (GPIO2 is asserted high when ADC not |
| * busy) and for data from previous conversion to shift into FB |
| * BUFFER 1 register. |
| */ |
| *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */ |
| |
| /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */ |
| *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); |
| *pRPS++ = |
| (uint32_t) devpriv->ANABuf.PhysicalBase + |
| (devpriv->AdcItems << 2); |
| |
| /* If this slot's EndOfPollList flag is set, all channels have */ |
| /* now been processed. */ |
| if (*ppl++ & EOPL) { |
| devpriv->AdcItems++; /* Adjust poll list item count. */ |
| break; /* Exit poll list processing loop. */ |
| } |
| } |
| DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems); |
| |
| /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the |
| * ADC to stabilize for 2 microseconds before starting the final |
| * (dummy) conversion. This delay is necessary to allow sufficient |
| * time between last conversion finished and the start of the dummy |
| * conversion. Without this delay, the last conversion's data value |
| * is sometimes set to the previous conversion's data value. |
| */ |
| for (n = 0; n < (2 * RPSCLK_PER_US); n++) |
| *pRPS++ = RPS_NOP; |
| |
| /* Start a dummy conversion to cause the data from the last |
| * conversion of interest to be shifted in. |
| */ |
| *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */ |
| *pRPS++ = GPIO_BASE | GPIO1_LO; |
| *pRPS++ = RPS_NOP; |
| /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ |
| *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */ |
| *pRPS++ = GPIO_BASE | GPIO1_HI; |
| |
| /* Wait for the data from the last conversion of interest to arrive |
| * in FB BUFFER 1 register. |
| */ |
| *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */ |
| |
| /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */ |
| *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */ |
| *pRPS++ = |
| (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2); |
| |
| /* Indicate ADC scan loop is finished. */ |
| /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */ |
| |
| /* invoke interrupt */ |
| if (devpriv->ai_cmd_running == 1) { |
| DEBUG("ResetADC: insert irq in ADC RPS task\n"); |
| *pRPS++ = RPS_IRQ; |
| } |
| /* Restart RPS program at its beginning. */ |
| *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */ |
| *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase; |
| |
| /* End of RPS program build */ |
| } |
| |
| /* TO COMPLETE, IF NECESSARY */ |
| static int s626_ai_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| return -EINVAL; |
| } |
| |
| /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */ |
| /* { */ |
| /* register uint8_t i; */ |
| /* register int32_t *readaddr; */ |
| |
| /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */ |
| |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */ |
| |
| /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */ |
| /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */ |
| |
| /* Init ptr to DMA buffer that holds new ADC data. We skip the |
| * first uint16_t in the buffer because it contains junk data from |
| * the final ADC of the previous poll list scan. |
| */ |
| /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */ |
| |
| /* Convert ADC data to 16-bit integer values and copy to application buffer. */ |
| /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */ |
| /* *data = s626_ai_reg_to_uint( *readaddr++ ); */ |
| /* DEBUG("s626_ai_rinsn: data %d \n",*data); */ |
| /* data++; */ |
| /* } */ |
| |
| /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */ |
| /* return i; */ |
| /* } */ |
| |
| static int s626_ai_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| uint16_t chan = CR_CHAN(insn->chanspec); |
| uint16_t range = CR_RANGE(insn->chanspec); |
| uint16_t AdcSpec = 0; |
| uint32_t GpioImage; |
| int n; |
| |
| /* interrupt call test */ |
| /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */ |
| /* Writing a logical 1 into any of the RPS_PSR bits causes the |
| * corresponding interrupt to be generated if enabled |
| */ |
| |
| DEBUG("s626_ai_insn_read: entering\n"); |
| |
| /* Convert application's ADC specification into form |
| * appropriate for register programming. |
| */ |
| if (range == 0) |
| AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V); |
| else |
| AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V); |
| |
| /* Switch ADC analog gain. */ |
| DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */ |
| |
| /* Select ADC analog input channel. */ |
| DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */ |
| |
| for (n = 0; n < insn->n; n++) { |
| |
| /* Delay 10 microseconds for analog input settling. */ |
| udelay(10); |
| |
| /* Start ADC by pulsing GPIO1 low. */ |
| GpioImage = RR7146(P_GPIO); |
| /* Assert ADC Start command */ |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| /* and stretch it out. */ |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| /* Negate ADC Start command. */ |
| WR7146(P_GPIO, GpioImage | GPIO1_HI); |
| |
| /* Wait for ADC to complete (GPIO2 is asserted high when */ |
| /* ADC not busy) and for data from previous conversion to */ |
| /* shift into FB BUFFER 1 register. */ |
| |
| /* Wait for ADC done. */ |
| while (!(RR7146(P_PSR) & PSR_GPIO2)) ; |
| |
| /* Fetch ADC data. */ |
| if (n != 0) |
| data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); |
| |
| /* Allow the ADC to stabilize for 4 microseconds before |
| * starting the next (final) conversion. This delay is |
| * necessary to allow sufficient time between last |
| * conversion finished and the start of the next |
| * conversion. Without this delay, the last conversion's |
| * data value is sometimes set to the previous |
| * conversion's data value. |
| */ |
| udelay(4); |
| } |
| |
| /* Start a dummy conversion to cause the data from the |
| * previous conversion to be shifted in. */ |
| GpioImage = RR7146(P_GPIO); |
| |
| /* Assert ADC Start command */ |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| /* and stretch it out. */ |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| WR7146(P_GPIO, GpioImage & ~GPIO1_HI); |
| /* Negate ADC Start command. */ |
| WR7146(P_GPIO, GpioImage | GPIO1_HI); |
| |
| /* Wait for the data to arrive in FB BUFFER 1 register. */ |
| |
| /* Wait for ADC done. */ |
| while (!(RR7146(P_PSR) & PSR_GPIO2)) ; |
| |
| /* Fetch ADC data from audio interface's input shift register. */ |
| |
| /* Fetch ADC data. */ |
| if (n != 0) |
| data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); |
| |
| DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]); |
| |
| return n; |
| } |
| |
| static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd) |
| { |
| |
| int n; |
| |
| for (n = 0; n < cmd->chanlist_len; n++) { |
| if (CR_RANGE((cmd->chanlist)[n]) == 0) |
| ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V); |
| else |
| ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V); |
| } |
| if (n != 0) |
| ppl[n - 1] |= EOPL; |
| |
| return n; |
| } |
| |
| static int s626_ai_inttrig(struct comedi_device *dev, |
| struct comedi_subdevice *s, unsigned int trignum) |
| { |
| if (trignum != 0) |
| return -EINVAL; |
| |
| DEBUG("s626_ai_inttrig: trigger adc start..."); |
| |
| /* Start executing the RPS program. */ |
| MC_ENABLE(P_MC1, MC1_ERPS1); |
| |
| s->async->inttrig = NULL; |
| |
| DEBUG(" done\n"); |
| |
| return 1; |
| } |
| |
| /* TO COMPLETE */ |
| static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) |
| { |
| |
| uint8_t ppl[16]; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| struct enc_private *k; |
| int tick; |
| |
| DEBUG("s626_ai_cmd: entering command function\n"); |
| |
| if (devpriv->ai_cmd_running) { |
| printk("s626_ai_cmd: Another ai_cmd is running %d\n", |
| dev->minor); |
| return -EBUSY; |
| } |
| /* disable interrupt */ |
| writel(0, devpriv->base_addr + P_IER); |
| |
| /* clear interrupt request */ |
| writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR); |
| |
| /* clear any pending interrupt */ |
| s626_dio_clear_irq(dev); |
| /* s626_enc_clear_irq(dev); */ |
| |
| /* reset ai_cmd_running flag */ |
| devpriv->ai_cmd_running = 0; |
| |
| /* test if cmd is valid */ |
| if (cmd == NULL) { |
| DEBUG("s626_ai_cmd: NULL command\n"); |
| return -EINVAL; |
| } else { |
| DEBUG("s626_ai_cmd: command recieved!!!\n"); |
| } |
| |
| if (dev->irq == 0) { |
| comedi_error(dev, |
| "s626_ai_cmd: cannot run command without an irq"); |
| return -EIO; |
| } |
| |
| s626_ai_load_polllist(ppl, cmd); |
| devpriv->ai_cmd_running = 1; |
| devpriv->ai_convert_count = 0; |
| |
| switch (cmd->scan_begin_src) { |
| case TRIG_FOLLOW: |
| break; |
| case TRIG_TIMER: |
| /* set a conter to generate adc trigger at scan_begin_arg interval */ |
| k = &encpriv[5]; |
| tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg, |
| cmd->flags & TRIG_ROUND_MASK); |
| |
| /* load timer value and enable interrupt */ |
| s626_timer_load(dev, k, tick); |
| k->SetEnable(dev, k, CLKENAB_ALWAYS); |
| |
| DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n", |
| tick); |
| |
| break; |
| case TRIG_EXT: |
| /* set the digital line and interrupt for scan trigger */ |
| if (cmd->start_src != TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->scan_begin_arg); |
| |
| DEBUG("s626_ai_cmd: External scan trigger is set!!!\n"); |
| |
| break; |
| } |
| |
| switch (cmd->convert_src) { |
| case TRIG_NOW: |
| break; |
| case TRIG_TIMER: |
| /* set a conter to generate adc trigger at convert_arg interval */ |
| k = &encpriv[4]; |
| tick = s626_ns_to_timer((int *)&cmd->convert_arg, |
| cmd->flags & TRIG_ROUND_MASK); |
| |
| /* load timer value and enable interrupt */ |
| s626_timer_load(dev, k, tick); |
| k->SetEnable(dev, k, CLKENAB_INDEX); |
| |
| DEBUG |
| ("s626_ai_cmd: convert trigger timer is set with value %d\n", |
| tick); |
| break; |
| case TRIG_EXT: |
| /* set the digital line and interrupt for convert trigger */ |
| if (cmd->scan_begin_src != TRIG_EXT |
| && cmd->start_src == TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->convert_arg); |
| |
| DEBUG("s626_ai_cmd: External convert trigger is set!!!\n"); |
| |
| break; |
| } |
| |
| switch (cmd->stop_src) { |
| case TRIG_COUNT: |
| /* data arrives as one packet */ |
| devpriv->ai_sample_count = cmd->stop_arg; |
| devpriv->ai_continous = 0; |
| break; |
| case TRIG_NONE: |
| /* continous aquisition */ |
| devpriv->ai_continous = 1; |
| devpriv->ai_sample_count = 0; |
| break; |
| } |
| |
| ResetADC(dev, ppl); |
| |
| switch (cmd->start_src) { |
| case TRIG_NOW: |
| /* Trigger ADC scan loop start by setting RPS Signal 0. */ |
| /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */ |
| |
| /* Start executing the RPS program. */ |
| MC_ENABLE(P_MC1, MC1_ERPS1); |
| |
| DEBUG("s626_ai_cmd: ADC triggered\n"); |
| s->async->inttrig = NULL; |
| break; |
| case TRIG_EXT: |
| /* configure DIO channel for acquisition trigger */ |
| s626_dio_set_irq(dev, cmd->start_arg); |
| |
| DEBUG("s626_ai_cmd: External start trigger is set!!!\n"); |
| |
| s->async->inttrig = NULL; |
| break; |
| case TRIG_INT: |
| s->async->inttrig = s626_ai_inttrig; |
| break; |
| } |
| |
| /* enable interrupt */ |
| writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); |
| |
| DEBUG("s626_ai_cmd: command function terminated\n"); |
| |
| return 0; |
| } |
| |
| static int s626_ai_cmdtest(struct comedi_device *dev, |
| struct comedi_subdevice *s, struct comedi_cmd *cmd) |
| { |
| int err = 0; |
| int tmp; |
| |
| /* cmdtest tests a particular command to see if it is valid. Using |
| * the cmdtest ioctl, a user can create a valid cmd and then have it |
| * executes by the cmd ioctl. |
| * |
| * cmdtest returns 1,2,3,4 or 0, depending on which tests the |
| * command passes. */ |
| |
| /* step 1: make sure trigger sources are trivially valid */ |
| |
| tmp = cmd->start_src; |
| cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT; |
| if (!cmd->start_src || tmp != cmd->start_src) |
| err++; |
| |
| tmp = cmd->scan_begin_src; |
| cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW; |
| if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src) |
| err++; |
| |
| tmp = cmd->convert_src; |
| cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW; |
| if (!cmd->convert_src || tmp != cmd->convert_src) |
| err++; |
| |
| tmp = cmd->scan_end_src; |
| cmd->scan_end_src &= TRIG_COUNT; |
| if (!cmd->scan_end_src || tmp != cmd->scan_end_src) |
| err++; |
| |
| tmp = cmd->stop_src; |
| cmd->stop_src &= TRIG_COUNT | TRIG_NONE; |
| if (!cmd->stop_src || tmp != cmd->stop_src) |
| err++; |
| |
| if (err) |
| return 1; |
| |
| /* step 2: make sure trigger sources are unique and mutually |
| compatible */ |
| |
| /* note that mutual compatibility is not an issue here */ |
| if (cmd->scan_begin_src != TRIG_TIMER && |
| cmd->scan_begin_src != TRIG_EXT |
| && cmd->scan_begin_src != TRIG_FOLLOW) |
| err++; |
| if (cmd->convert_src != TRIG_TIMER && |
| cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW) |
| err++; |
| if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE) |
| err++; |
| |
| if (err) |
| return 2; |
| |
| /* step 3: make sure arguments are trivially compatible */ |
| |
| if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) { |
| cmd->start_arg = 0; |
| err++; |
| } |
| |
| if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) { |
| cmd->start_arg = 39; |
| err++; |
| } |
| |
| if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) { |
| cmd->scan_begin_arg = 39; |
| err++; |
| } |
| |
| if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) { |
| cmd->convert_arg = 39; |
| err++; |
| } |
| #define MAX_SPEED 200000 /* in nanoseconds */ |
| #define MIN_SPEED 2000000000 /* in nanoseconds */ |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| if (cmd->scan_begin_arg < MAX_SPEED) { |
| cmd->scan_begin_arg = MAX_SPEED; |
| err++; |
| } |
| if (cmd->scan_begin_arg > MIN_SPEED) { |
| cmd->scan_begin_arg = MIN_SPEED; |
| err++; |
| } |
| } else { |
| /* external trigger */ |
| /* should be level/edge, hi/lo specification here */ |
| /* should specify multiple external triggers */ |
| /* if(cmd->scan_begin_arg>9){ */ |
| /* cmd->scan_begin_arg=9; */ |
| /* err++; */ |
| /* } */ |
| } |
| if (cmd->convert_src == TRIG_TIMER) { |
| if (cmd->convert_arg < MAX_SPEED) { |
| cmd->convert_arg = MAX_SPEED; |
| err++; |
| } |
| if (cmd->convert_arg > MIN_SPEED) { |
| cmd->convert_arg = MIN_SPEED; |
| err++; |
| } |
| } else { |
| /* external trigger */ |
| /* see above */ |
| /* if(cmd->convert_arg>9){ */ |
| /* cmd->convert_arg=9; */ |
| /* err++; */ |
| /* } */ |
| } |
| |
| if (cmd->scan_end_arg != cmd->chanlist_len) { |
| cmd->scan_end_arg = cmd->chanlist_len; |
| err++; |
| } |
| if (cmd->stop_src == TRIG_COUNT) { |
| if (cmd->stop_arg > 0x00ffffff) { |
| cmd->stop_arg = 0x00ffffff; |
| err++; |
| } |
| } else { |
| /* TRIG_NONE */ |
| if (cmd->stop_arg != 0) { |
| cmd->stop_arg = 0; |
| err++; |
| } |
| } |
| |
| if (err) |
| return 3; |
| |
| /* step 4: fix up any arguments */ |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| tmp = cmd->scan_begin_arg; |
| s626_ns_to_timer((int *)&cmd->scan_begin_arg, |
| cmd->flags & TRIG_ROUND_MASK); |
| if (tmp != cmd->scan_begin_arg) |
| err++; |
| } |
| if (cmd->convert_src == TRIG_TIMER) { |
| tmp = cmd->convert_arg; |
| s626_ns_to_timer((int *)&cmd->convert_arg, |
| cmd->flags & TRIG_ROUND_MASK); |
| if (tmp != cmd->convert_arg) |
| err++; |
| if (cmd->scan_begin_src == TRIG_TIMER && |
| cmd->scan_begin_arg < |
| cmd->convert_arg * cmd->scan_end_arg) { |
| cmd->scan_begin_arg = |
| cmd->convert_arg * cmd->scan_end_arg; |
| err++; |
| } |
| } |
| |
| if (err) |
| return 4; |
| |
| return 0; |
| } |
| |
| static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) |
| { |
| /* Stop RPS program in case it is currently running. */ |
| MC_DISABLE(P_MC1, MC1_ERPS1); |
| |
| /* disable master interrupt */ |
| writel(0, devpriv->base_addr + P_IER); |
| |
| devpriv->ai_cmd_running = 0; |
| |
| return 0; |
| } |
| |
| /* This function doesn't require a particular form, this is just what |
| * happens to be used in some of the drivers. It should convert ns |
| * nanoseconds to a counter value suitable for programming the device. |
| * Also, it should adjust ns so that it cooresponds to the actual time |
| * that the device will use. */ |
| static int s626_ns_to_timer(int *nanosec, int round_mode) |
| { |
| int divider, base; |
| |
| base = 500; /* 2MHz internal clock */ |
| |
| switch (round_mode) { |
| case TRIG_ROUND_NEAREST: |
| default: |
| divider = (*nanosec + base / 2) / base; |
| break; |
| case TRIG_ROUND_DOWN: |
| divider = (*nanosec) / base; |
| break; |
| case TRIG_ROUND_UP: |
| divider = (*nanosec + base - 1) / base; |
| break; |
| } |
| |
| *nanosec = base * divider; |
| return divider - 1; |
| } |
| |
| static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| int i; |
| uint16_t chan = CR_CHAN(insn->chanspec); |
| int16_t dacdata; |
| |
| for (i = 0; i < insn->n; i++) { |
| dacdata = (int16_t) data[i]; |
| devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i]; |
| dacdata -= (0x1fff); |
| |
| SetDAC(dev, chan, dacdata); |
| } |
| |
| return i; |
| } |
| |
| static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| int i; |
| |
| for (i = 0; i < insn->n; i++) |
| data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)]; |
| |
| return i; |
| } |
| |
| /* *************** DIGITAL I/O FUNCTIONS *************** |
| * All DIO functions address a group of DIO channels by means of |
| * "group" argument. group may be 0, 1 or 2, which correspond to DIO |
| * ports A, B and C, respectively. |
| */ |
| |
| static void s626_dio_init(struct comedi_device *dev) |
| { |
| uint16_t group; |
| struct comedi_subdevice *s; |
| |
| /* Prepare to treat writes to WRCapSel as capture disables. */ |
| DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); |
| |
| /* For each group of sixteen channels ... */ |
| for (group = 0; group < S626_DIO_BANKS; group++) { |
| s = dev->subdevices + 2 + group; |
| DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */ |
| DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */ |
| /* captures. */ |
| DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */ |
| /* default edge */ |
| /* polarity. */ |
| DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */ |
| /* to inactive state. */ |
| } |
| DEBUG("s626_dio_init: DIO initialized \n"); |
| } |
| |
| /* DIO devices are slightly special. Although it is possible to |
| * implement the insn_read/insn_write interface, it is much more |
| * useful to applications if you implement the insn_bits interface. |
| * This allows packed reading/writing of the DIO channels. The comedi |
| * core can convert between insn_bits and insn_read/write */ |
| |
| static int s626_dio_insn_bits(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| /* Length of data must be 2 (mask and new data, see below) */ |
| if (insn->n == 0) |
| return 0; |
| |
| if (insn->n != 2) { |
| printk |
| ("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", |
| dev->minor); |
| return -EINVAL; |
| } |
| |
| /* |
| * The insn data consists of a mask in data[0] and the new data in |
| * data[1]. The mask defines which bits we are concerning about. |
| * The new data must be anded with the mask. Each channel |
| * corresponds to a bit. |
| */ |
| if (data[0]) { |
| /* Check if requested ports are configured for output */ |
| if ((s->io_bits & data[0]) != data[0]) |
| return -EIO; |
| |
| s->state &= ~data[0]; |
| s->state |= data[0] & data[1]; |
| |
| /* Write out the new digital output lines */ |
| |
| DEBIwrite(dev, diopriv->WRDOut, s->state); |
| } |
| data[1] = DEBIread(dev, diopriv->RDDIn); |
| |
| return 2; |
| } |
| |
| static int s626_dio_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| switch (data[0]) { |
| case INSN_CONFIG_DIO_QUERY: |
| data[1] = |
| (s-> |
| io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT : |
| COMEDI_INPUT; |
| return insn->n; |
| break; |
| case COMEDI_INPUT: |
| s->io_bits &= ~(1 << CR_CHAN(insn->chanspec)); |
| break; |
| case COMEDI_OUTPUT: |
| s->io_bits |= 1 << CR_CHAN(insn->chanspec); |
| break; |
| default: |
| return -EINVAL; |
| break; |
| } |
| DEBIwrite(dev, diopriv->WRDOut, s->io_bits); |
| |
| return 1; |
| } |
| |
| static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan) |
| { |
| unsigned int group; |
| unsigned int bitmask; |
| unsigned int status; |
| |
| /* select dio bank */ |
| group = chan / 16; |
| bitmask = 1 << (chan - (16 * group)); |
| DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n", |
| chan - (16 * group), group); |
| |
| /* set channel to capture positive edge */ |
| status = DEBIread(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->RDEdgSel); |
| DEBIwrite(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->WREdgSel, |
| bitmask | status); |
| |
| /* enable interrupt on selected channel */ |
| status = DEBIread(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->RDIntSel); |
| DEBIwrite(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->WRIntSel, |
| bitmask | status); |
| |
| /* enable edge capture write command */ |
| DEBIwrite(dev, LP_MISC1, MISC1_EDCAP); |
| |
| /* enable edge capture on selected channel */ |
| status = DEBIread(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->RDCapSel); |
| DEBIwrite(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->WRCapSel, |
| bitmask | status); |
| |
| return 0; |
| } |
| |
| static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group, |
| unsigned int mask) |
| { |
| DEBUG |
| ("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", |
| mask, group); |
| |
| /* disable edge capture write command */ |
| DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); |
| |
| /* enable edge capture on selected channel */ |
| DEBIwrite(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->WRCapSel, mask); |
| |
| return 0; |
| } |
| |
| static int s626_dio_clear_irq(struct comedi_device *dev) |
| { |
| unsigned int group; |
| |
| /* disable edge capture write command */ |
| DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); |
| |
| for (group = 0; group < S626_DIO_BANKS; group++) { |
| /* clear pending events and interrupt */ |
| DEBIwrite(dev, |
| ((struct dio_private *)(dev->subdevices + 2 + |
| group)->private)->WRCapSel, |
| 0xffff); |
| } |
| |
| return 0; |
| } |
| |
| /* Now this function initializes the value of the counter (data[0]) |
| and set the subdevice. To complete with trigger and interrupt |
| configuration */ |
| static int s626_enc_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */ |
| /* index. */ |
| (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */ |
| (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */ |
| (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */ |
| /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */ |
| (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */ |
| (CLKENAB_INDEX << BF_CLKENAB); |
| /* uint16_t DisableIntSrc=TRUE; */ |
| /* uint32_t Preloadvalue; //Counter initial value */ |
| uint16_t valueSrclatch = LATCHSRC_AB_READ; |
| uint16_t enab = CLKENAB_ALWAYS; |
| struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; |
| |
| DEBUG("s626_enc_insn_config: encoder config\n"); |
| |
| /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */ |
| |
| k->SetMode(dev, k, Setup, TRUE); |
| Preload(dev, k, *(insn->data)); |
| k->PulseIndex(dev, k); |
| SetLatchSource(dev, k, valueSrclatch); |
| k->SetEnable(dev, k, (uint16_t) (enab != 0)); |
| |
| return insn->n; |
| } |
| |
| static int s626_enc_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| int n; |
| struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; |
| |
| DEBUG("s626_enc_insn_read: encoder read channel %d \n", |
| CR_CHAN(insn->chanspec)); |
| |
| for (n = 0; n < insn->n; n++) |
| data[n] = ReadLatch(dev, k); |
| |
| DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]); |
| |
| return n; |
| } |
| |
| static int s626_enc_insn_write(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| |
| struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; |
| |
| DEBUG("s626_enc_insn_write: encoder write channel %d \n", |
| CR_CHAN(insn->chanspec)); |
| |
| /* Set the preload register */ |
| Preload(dev, k, data[0]); |
| |
| /* Software index pulse forces the preload register to load */ |
| /* into the counter */ |
| k->SetLoadTrig(dev, k, 0); |
| k->PulseIndex(dev, k); |
| k->SetLoadTrig(dev, k, 2); |
| |
| DEBUG("s626_enc_insn_write: End encoder write\n"); |
| |
| return 1; |
| } |
| |
| static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, |
| int tick) |
| { |
| uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */ |
| /* index. */ |
| (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */ |
| (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */ |
| (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */ |
| (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */ |
| (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */ |
| (CLKENAB_INDEX << BF_CLKENAB); |
| uint16_t valueSrclatch = LATCHSRC_A_INDXA; |
| /* uint16_t enab=CLKENAB_ALWAYS; */ |
| |
| k->SetMode(dev, k, Setup, FALSE); |
| |
| /* Set the preload register */ |
| Preload(dev, k, tick); |
| |
| /* Software index pulse forces the preload register to load */ |
| /* into the counter */ |
| k->SetLoadTrig(dev, k, 0); |
| k->PulseIndex(dev, k); |
| |
| /* set reload on counter overflow */ |
| k->SetLoadTrig(dev, k, 1); |
| |
| /* set interrupt on overflow */ |
| k->SetIntSrc(dev, k, INTSRC_OVER); |
| |
| SetLatchSource(dev, k, valueSrclatch); |
| /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */ |
| } |
| |
| /* *********** DAC FUNCTIONS *********** */ |
| |
| /* Slot 0 base settings. */ |
| #define VECT0 (XSD2 | RSD3 | SIB_A2) |
| /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */ |
| |
| /* TrimDac LogicalChan-to-PhysicalChan mapping table. */ |
| static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; |
| |
| /* TrimDac LogicalChan-to-EepromAdrs mapping table. */ |
| static uint8_t trimadrs[] = |
| { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 }; |
| |
| static void LoadTrimDACs(struct comedi_device *dev) |
| { |
| register uint8_t i; |
| |
| /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */ |
| for (i = 0; i < ARRAY_SIZE(trimchan); i++) |
| WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i])); |
| } |
| |
| static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan, |
| uint8_t DacData) |
| { |
| uint32_t chan; |
| |
| /* Save the new setpoint in case the application needs to read it back later. */ |
| devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData; |
| |
| /* Map logical channel number to physical channel number. */ |
| chan = (uint32_t) trimchan[LogicalChan]; |
| |
| /* Set up TSL2 records for TrimDac write operation. All slots shift |
| * 0xFF in from pulled-up SD3 so that the end of the slot sequence |
| * can be detected. |
| */ |
| |
| SETVECT(2, XSD2 | XFIFO_1 | WS3); |
| /* Slot 2: Send high uint8_t to target TrimDac. */ |
| SETVECT(3, XSD2 | XFIFO_0 | WS3); |
| /* Slot 3: Send low uint8_t to target TrimDac. */ |
| SETVECT(4, XSD2 | XFIFO_3 | WS1); |
| /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */ |
| SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); |
| /* Slot 5: Send NOP low uint8_t to DAC0. */ |
| |
| /* Construct and transmit target DAC's serial packet: |
| * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the |
| * DAC channel's address, and D<7:0> is the DAC setpoint. Append a |
| * WORD value (that writes a channel 0 NOP command to a non-existent |
| * main DAC channel) that serves to keep the clock running after the |
| * packet has been sent to the target DAC. |
| */ |
| |
| /* Address the DAC channel within the trimdac device. */ |
| SendDAC(dev, ((uint32_t) chan << 8) |
| | (uint32_t) DacData); /* Include DAC setpoint data. */ |
| } |
| |
| /* ************** EEPROM ACCESS FUNCTIONS ************** */ |
| /* Read uint8_t from EEPROM. */ |
| |
| static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr) |
| { |
| uint8_t rtnval; |
| |
| /* Send EEPROM target address. */ |
| if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) |
| /* Byte2 = I2C command: write to I2C EEPROM device. */ |
| | I2C_B1(I2C_ATTRSTOP, addr) |
| /* Byte1 = EEPROM internal target address. */ |
| | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */ |
| /* Abort function and declare error if handshake failed. */ |
| DEBUG("I2Cread: error handshake I2Cread a\n"); |
| return 0; |
| } |
| /* Execute EEPROM read. */ |
| if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) |
| |
| /* Byte2 = I2C */ |
| /* command: read */ |
| /* from I2C EEPROM */ |
| /* device. */ |
| |I2C_B1(I2C_ATTRSTOP, 0) |
| |
| /* Byte1 receives */ |
| /* uint8_t from */ |
| /* EEPROM. */ |
| |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */ |
| |
| /* Abort function and declare error if handshake failed. */ |
| DEBUG("I2Cread: error handshake I2Cread b\n"); |
| return 0; |
| } |
| /* Return copy of EEPROM value. */ |
| rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16); |
| return rtnval; |
| } |
| |
| static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val) |
| { |
| /* Write I2C command to I2C Transfer Control shadow register. */ |
| WR7146(P_I2CCTRL, val); |
| |
| /* Upload I2C shadow registers into working registers and wait for */ |
| /* upload confirmation. */ |
| |
| MC_ENABLE(P_MC2, MC2_UPLD_IIC); |
| while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; |
| |
| /* Wait until I2C bus transfer is finished or an error occurs. */ |
| while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ; |
| |
| /* Return non-zero if I2C error occured. */ |
| return RR7146(P_I2CCTRL) & I2C_ERR; |
| |
| } |
| |
| /* Private helper function: Write setpoint to an application DAC channel. */ |
| |
| static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata) |
| { |
| register uint16_t signmask; |
| register uint32_t WSImage; |
| |
| /* Adjust DAC data polarity and set up Polarity Control Register */ |
| /* image. */ |
| signmask = 1 << chan; |
| if (dacdata < 0) { |
| dacdata = -dacdata; |
| devpriv->Dacpol |= signmask; |
| } else |
| devpriv->Dacpol &= ~signmask; |
| |
| /* Limit DAC setpoint value to valid range. */ |
| if ((uint16_t) dacdata > 0x1FFF) |
| dacdata = 0x1FFF; |
| |
| /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 |
| * and V3 transmit the setpoint to the target DAC. V4 and V5 send |
| * data to a non-existent TrimDac channel just to keep the clock |
| * running after sending data to the target DAC. This is necessary |
| * to eliminate the clock glitch that would otherwise occur at the |
| * end of the target DAC's serial data stream. When the sequence |
| * restarts at V0 (after executing V5), the gate array automatically |
| * disables gating for the DAC clock and all DAC chip selects. |
| */ |
| |
| WSImage = (chan & 2) ? WS1 : WS2; |
| /* Choose DAC chip select to be asserted. */ |
| SETVECT(2, XSD2 | XFIFO_1 | WSImage); |
| /* Slot 2: Transmit high data byte to target DAC. */ |
| SETVECT(3, XSD2 | XFIFO_0 | WSImage); |
| /* Slot 3: Transmit low data byte to target DAC. */ |
| SETVECT(4, XSD2 | XFIFO_3 | WS3); |
| /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */ |
| SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); |
| /* Slot 5: running after writing target DAC's low data byte. */ |
| |
| /* Construct and transmit target DAC's serial packet: |
| * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, |
| * and D<12:0> is the DAC setpoint. Append a WORD value (that writes |
| * to a non-existent TrimDac channel) that serves to keep the clock |
| * running after the packet has been sent to the target DAC. |
| */ |
| SendDAC(dev, 0x0F000000 |
| /* Continue clock after target DAC data (write to non-existent trimdac). */ |
| | 0x00004000 |
| /* Address the two main dual-DAC devices (TSL's chip select enables |
| * target device). */ |
| | ((uint32_t) (chan & 1) << 15) |
| /* Address the DAC channel within the device. */ |
| | (uint32_t) dacdata); /* Include DAC setpoint data. */ |
| |
| } |
| |
| /* Private helper function: Transmit serial data to DAC via Audio |
| * channel 2. Assumes: (1) TSL2 slot records initialized, and (2) |
| * Dacpol contains valid target image. |
| */ |
| |
| static void SendDAC(struct comedi_device *dev, uint32_t val) |
| { |
| |
| /* START THE SERIAL CLOCK RUNNING ------------- */ |
| |
| /* Assert DAC polarity control and enable gating of DAC serial clock |
| * and audio bit stream signals. At this point in time we must be |
| * assured of being in time slot 0. If we are not in slot 0, the |
| * serial clock and audio stream signals will be disabled; this is |
| * because the following DEBIwrite statement (which enables signals |
| * to be passed through the gate array) would execute before the |
| * trailing edge of WS1/WS3 (which turns off the signals), thus |
| * causing the signals to be inactive during the DAC write. |
| */ |
| DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol); |
| |
| /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */ |
| |
| /* Copy DAC setpoint value to DAC's output DMA buffer. */ |
| |
| /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */ |
| *devpriv->pDacWBuf = val; |
| |
| /* enab the output DMA transfer. This will cause the DMAC to copy |
| * the DAC's data value to A2's output FIFO. The DMA transfer will |
| * then immediately terminate because the protection address is |
| * reached upon transfer of the first DWORD value. |
| */ |
| MC_ENABLE(P_MC1, MC1_A2OUT); |
| |
| /* While the DMA transfer is executing ... */ |
| |
| /* Reset Audio2 output FIFO's underflow flag (along with any other |
| * FIFO underflow/overflow flags). When set, this flag will |
| * indicate that we have emerged from slot 0. |
| */ |
| WR7146(P_ISR, ISR_AFOU); |
| |
| /* Wait for the DMA transfer to finish so that there will be data |
| * available in the FIFO when time slot 1 tries to transfer a DWORD |
| * from the FIFO to the output buffer register. We test for DMA |
| * Done by polling the DMAC enable flag; this flag is automatically |
| * cleared when the transfer has finished. |
| */ |
| while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ; |
| |
| /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */ |
| |
| /* FIFO data is now available, so we enable execution of time slots |
| * 1 and higher by clearing the EOS flag in slot 0. Note that SD3 |
| * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list |
| * detection. |
| */ |
| SETVECT(0, XSD2 | RSD3 | SIB_A2); |
| |
| /* Wait for slot 1 to execute to ensure that the Packet will be |
| * transmitted. This is detected by polling the Audio2 output FIFO |
| * underflow flag, which will be set when slot 1 execution has |
| * finished transferring the DAC's data DWORD from the output FIFO |
| * to the output buffer register. |
| */ |
| while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ; |
| |
| /* Set up to trap execution at slot 0 when the TSL sequencer cycles |
| * back to slot 0 after executing the EOS in slot 5. Also, |
| * simultaneously shift out and in the 0x00 that is ALWAYS the value |
| * stored in the last byte to be shifted out of the FIFO's DWORD |
| * buffer register. |
| */ |
| SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS); |
| |
| /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */ |
| |
| /* Wait for the TSL to finish executing all time slots before |
| * exiting this function. We must do this so that the next DAC |
| * write doesn't start, thereby enabling clock/chip select signals: |
| * |
| * 1. Before the TSL sequence cycles back to slot 0, which disables |
| * the clock/cs signal gating and traps slot // list execution. |
| * we have not yet finished slot 5 then the clock/cs signals are |
| * still gated and we have not finished transmitting the stream. |
| * |
| * 2. While slots 2-5 are executing due to a late slot 0 trap. In |
| * this case, the slot sequence is currently repeating, but with |
| * clock/cs signals disabled. We must wait for slot 0 to trap |
| * execution before setting up the next DAC setpoint DMA transfer |
| * and enabling the clock/cs signals. To detect the end of slot 5, |
| * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If |
| * the TSL has not yet finished executing slot 5 ... |
| */ |
| if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) { |
| /* The trap was set on time and we are still executing somewhere |
| * in slots 2-5, so we now wait for slot 0 to execute and trap |
| * TSL execution. This is detected when FB_BUFFER2 MSB changes |
| * from 0xFF to 0x00, which slot 0 causes to happen by shifting |
| * out/in on SD2 the 0x00 that is always referenced by slot 5. |
| */ |
| while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ; |
| } |
| /* Either (1) we were too late setting the slot 0 trap; the TSL |
| * sequencer restarted slot 0 before we could set the EOS trap flag, |
| * or (2) we were not late and execution is now trapped at slot 0. |
| * In either case, we must now change slot 0 so that it will store |
| * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. |
| * In order to do this, we reprogram slot 0 so that it will shift in |
| * SD3, which is driven only by a pull-up resistor. |
| */ |
| SETVECT(0, RSD3 | SIB_A2 | EOS); |
| |
| /* Wait for slot 0 to execute, at which time the TSL is setup for |
| * the next DAC write. This is detected when FB_BUFFER2 MSB changes |
| * from 0x00 to 0xFF. |
| */ |
| while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ; |
| } |
| |
| static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage) |
| { |
| DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */ |
| /* MISC2 register. */ |
| DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */ |
| DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */ |
| } |
| |
| /* Initialize the DEBI interface for all transfers. */ |
| |
| static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr) |
| { |
| uint16_t retval; |
| |
| /* Set up DEBI control register value in shadow RAM. */ |
| WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); |
| |
| /* Execute the DEBI transfer. */ |
| DEBItransfer(dev); |
| |
| /* Fetch target register value. */ |
| retval = (uint16_t) RR7146(P_DEBIAD); |
| |
| /* Return register value. */ |
| return retval; |
| } |
| |
| /* Execute a DEBI transfer. This must be called from within a */ |
| /* critical section. */ |
| static void DEBItransfer(struct comedi_device *dev) |
| { |
| /* Initiate upload of shadow RAM to DEBI control register. */ |
| MC_ENABLE(P_MC2, MC2_UPLD_DEBI); |
| |
| /* Wait for completion of upload from shadow RAM to DEBI control */ |
| /* register. */ |
| while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ; |
| |
| /* Wait until DEBI transfer is done. */ |
| while (RR7146(P_PSR) & PSR_DEBI_S) ; |
| } |
| |
| /* Write a value to a gate array register. */ |
| static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata) |
| { |
| |
| /* Set up DEBI control register value in shadow RAM. */ |
| WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); |
| WR7146(P_DEBIAD, wdata); |
| |
| /* Execute the DEBI transfer. */ |
| DEBItransfer(dev); |
| } |
| |
| /* Replace the specified bits in a gate array register. Imports: mask |
| * specifies bits that are to be preserved, wdata is new value to be |
| * or'd with the masked original. |
| */ |
| static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask, |
| uint16_t wdata) |
| { |
| |
| /* Copy target gate array register into P_DEBIAD register. */ |
| WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); |
| /* Set up DEBI control reg value in shadow RAM. */ |
| DEBItransfer(dev); /* Execute the DEBI Read transfer. */ |
| |
| /* Write back the modified image. */ |
| WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); |
| /* Set up DEBI control reg value in shadow RAM. */ |
| |
| WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); |
| /* Modify the register image. */ |
| DEBItransfer(dev); /* Execute the DEBI Write transfer. */ |
| } |
| |
| static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, |
| size_t bsize) |
| { |
| void *vbptr; |
| dma_addr_t vpptr; |
| |
| DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n"); |
| if (pdma == NULL) |
| return; |
| /* find the matching allocation from the board struct */ |
| |
| vbptr = pdma->LogicalBase; |
| vpptr = pdma->PhysicalBase; |
| if (vbptr) { |
| pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr); |
| pdma->LogicalBase = 0; |
| pdma->PhysicalBase = 0; |
| |
| DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n", |
| vbptr, bsize, (uint32_t) vpptr); |
| } |
| } |
| |
| /* ****** COUNTER FUNCTIONS ******* */ |
| /* All counter functions address a specific counter by means of the |
| * "Counter" argument, which is a logical counter number. The Counter |
| * argument may have any of the following legal values: 0=0A, 1=1A, |
| * 2=2A, 3=0B, 4=1B, 5=2B. |
| */ |
| |
| /* Forward declarations for functions that are common to both A and B counters: */ |
| |
| /* ****** PRIVATE COUNTER FUNCTIONS ****** */ |
| |
| /* Read a counter's output latch. */ |
| |
| static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k) |
| { |
| register uint32_t value; |
| /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */ |
| |
| /* Latch counts and fetch LSW of latched counts value. */ |
| value = (uint32_t) DEBIread(dev, k->MyLatchLsw); |
| |
| /* Fetch MSW of latched counts and combine with LSW. */ |
| value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16); |
| |
| /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */ |
| |
| /* Return latched counts. */ |
| return value; |
| } |
| |
| /* Reset a counter's index and overflow event capture flags. */ |
| |
| static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k) |
| { |
| DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), |
| CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A); |
| } |
| |
| static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k) |
| { |
| DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), |
| CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B); |
| } |
| |
| /* Return counter setup in a format (COUNTER_SETUP) that is consistent */ |
| /* for both A and B counters. */ |
| |
| static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k) |
| { |
| register uint16_t cra; |
| register uint16_t crb; |
| register uint16_t setup; |
| |
| /* Fetch CRA and CRB register images. */ |
| cra = DEBIread(dev, k->MyCRA); |
| crb = DEBIread(dev, k->MyCRB); |
| |
| /* Populate the standardized counter setup bit fields. Note: */ |
| /* IndexSrc is restricted to ENC_X or IndxPol. */ |
| setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */ |
| |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */ |
| |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */ |
| |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */ |
| |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */ |
| |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */ |
| |
| /* Adjust mode-dependent parameters. */ |
| if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */ |
| setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |
| |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */ |
| |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */ |
| |
| else /* If Counter mode (ClkSrcA<1> == 0): */ |
| setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */ |
| |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */ |
| |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */ |
| (MULT_X1 << STDBIT_CLKMULT) : |
| ((cra >> (CRABIT_CLKMULT_A - |
| STDBIT_CLKMULT)) & STDMSK_CLKMULT))); |
| |
| /* Return adjusted counter setup. */ |
| return setup; |
| } |
| |
| static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k) |
| { |
| register uint16_t cra; |
| register uint16_t crb; |
| register uint16_t setup; |
| |
| /* Fetch CRA and CRB register images. */ |
| cra = DEBIread(dev, k->MyCRA); |
| crb = DEBIread(dev, k->MyCRB); |
| |
| /* Populate the standardized counter setup bit fields. Note: */ |
| /* IndexSrc is restricted to ENC_X or IndxPol. */ |
| setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */ |
| |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */ |
| |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */ |
| |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */ |
| |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */ |
| |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */ |
| |
| /* Adjust mode-dependent parameters. */ |
| if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */ |
| setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */ |
| |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */ |
| |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */ |
| |
| else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */ |
| setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |
| |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */ |
| |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */ |
| |
| else /* If Counter mode (ClkSrcB<1> == 0): */ |
| setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |
| |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */ |
| |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */ |
| |
| /* Return adjusted counter setup. */ |
| return setup; |
| } |
| |
| /* |
| * Set the operating mode for the specified counter. The setup |
| * parameter is treated as a COUNTER_SETUP data type. The following |
| * parameters are programmable (all other parms are ignored): ClkMult, |
| * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. |
| */ |
| |
| static void SetMode_A(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Setup, uint16_t DisableIntSrc) |
| { |
| register uint16_t cra; |
| register uint16_t crb; |
| register uint16_t setup = Setup; /* Cache the Standard Setup. */ |
| |
| /* Initialize CRA and CRB images. */ |
| cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */ |
| |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */ |
| |
| crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */ |
| | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */ |
| |
| /* Force IntSrc to Disabled if DisableIntSrc is asserted. */ |
| if (!DisableIntSrc) |
| cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - |
| CRABIT_INTSRC_A)); |
| |
| /* Populate all mode-dependent attributes of CRA & CRB images. */ |
| switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { |
| case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */ |
| /* (Extender valid only for B counters). */ |
| |
| case CLKSRC_TIMER: /* Timer Mode: */ |
| cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */ |
| |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */ |
| |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */ |
| |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */ |
| break; |
| |
| default: /* Counter Mode: */ |
| cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */ |
| | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */ |
| |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */ |
| (MULT_X1 << CRABIT_CLKMULT_A) : |
| ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A - |
| STDBIT_CLKMULT)))); |
| } |
| |
| /* Force positive index polarity if IndxSrc is software-driven only, */ |
| /* otherwise pass it through. */ |
| if (~setup & STDMSK_INDXSRC) |
| cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A - |
| STDBIT_INDXPOL)); |
| |
| /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */ |
| /* enable mask to indicate the counter interrupt is disabled. */ |
| if (DisableIntSrc) |
| devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; |
| |
| /* While retaining CounterB and LatchSrc configurations, program the */ |
| /* new counter operating mode. */ |
| DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra); |
| DEBIreplace(dev, k->MyCRB, |
| (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb); |
| } |
| |
| static void SetMode_B(struct comedi_device *dev, struct enc_private *k, |
| uint16_t Setup, uint16_t DisableIntSrc) |
| { |
| register uint16_t cra; |
| register uint16_t crb; |
| register uint16_t setup = Setup; /* Cache the Standard Setup. */ |
| |
| /* Initialize CRA and CRB images. */ |
| cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */ |
| |
| crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */ |
| | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */ |
| |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */ |
| |
| /* Force IntSrc to Disabled if DisableIntSrc is asserted. */ |
| if (!DisableIntSrc) |
| crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - |
| CRBBIT_INTSRC_B)); |
| |
| /* Populate all mode-dependent attributes of CRA & CRB images. */ |
| switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { |
| case CLKSRC_TIMER: /* Timer Mode: */ |
| cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */ |
| |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */ |
| crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */ |
| |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */ |
| break; |
| |
| case CLKSRC_EXTENDER: /* Extender Mode: */ |
| cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */ |
| |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */ |
| crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */ |
| |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */ |
| break; |
| |
| default: /* Counter Mode: */ |
| cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */ |
| crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */ |
| |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */ |
| (MULT_X1 << CRBBIT_CLKMULT_B) : |
| ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B - |
| STDBIT_CLKMULT)))); |
| } |
| |
| /* Force positive index polarity if IndxSrc is software-driven only, */ |
| /* otherwise pass it through. */ |
| if (~setup & STDMSK_INDXSRC) |
| crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL - |
| CRBBIT_INDXPOL_B)); |
| |
| /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */ |
| /* enable mask to indicate the counter interrupt is disabled. */ |
| if (DisableIntSrc) |
| devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; |
|